linux/arch/sparc/kernel/time_64.c

900 lines
21 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* time.c: UltraSparc timer and TOD clock support.
*
* Copyright (C) 1997, 2008 David S. Miller (davem@davemloft.net)
* Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
*
* Based largely on code which is:
*
* Copyright (C) 1996 Thomas K. Dyas (tdyas@eden.rutgers.edu)
*/
#include <linux/errno.h>
#include <linux/export.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/time.h>
#include <linux/timex.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/mc146818rtc.h>
#include <linux/delay.h>
#include <linux/profile.h>
#include <linux/bcd.h>
#include <linux/jiffies.h>
#include <linux/cpufreq.h>
#include <linux/percpu.h>
#include <linux/rtc/m48t59.h>
#include <linux/kernel_stat.h>
#include <linux/clockchips.h>
#include <linux/clocksource.h>
#include <linux/platform_device.h>
#include <linux/ftrace.h>
#include <asm/oplib.h>
#include <asm/timer.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <asm/prom.h>
#include <asm/starfire.h>
#include <asm/smp.h>
#include <asm/sections.h>
#include <asm/cpudata.h>
#include <linux/uaccess.h>
#include <asm/irq_regs.h>
#include <asm/cacheflush.h>
#include "entry.h"
#include "kernel.h"
DEFINE_SPINLOCK(rtc_lock);
#ifdef CONFIG_SMP
unsigned long profile_pc(struct pt_regs *regs)
{
unsigned long pc = instruction_pointer(regs);
if (in_lock_functions(pc))
return regs->u_regs[UREG_RETPC];
return pc;
}
EXPORT_SYMBOL(profile_pc);
#endif
static void tick_disable_protection(void)
{
/* Set things up so user can access tick register for profiling
* purposes. Also workaround BB_ERRATA_1 by doing a dummy
* read back of %tick after writing it.
*/
__asm__ __volatile__(
" ba,pt %%xcc, 1f\n"
" nop\n"
" .align 64\n"
"1: rd %%tick, %%g2\n"
" add %%g2, 6, %%g2\n"
" andn %%g2, %0, %%g2\n"
" wrpr %%g2, 0, %%tick\n"
" rdpr %%tick, %%g0"
: /* no outputs */
: "r" (TICK_PRIV_BIT)
: "g2");
}
static void tick_disable_irq(void)
{
__asm__ __volatile__(
" ba,pt %%xcc, 1f\n"
" nop\n"
" .align 64\n"
"1: wr %0, 0x0, %%tick_cmpr\n"
" rd %%tick_cmpr, %%g0"
: /* no outputs */
: "r" (TICKCMP_IRQ_BIT));
}
static void tick_init_tick(void)
{
tick_disable_protection();
tick_disable_irq();
}
static unsigned long long tick_get_tick(void)
{
unsigned long ret;
__asm__ __volatile__("rd %%tick, %0\n\t"
"mov %0, %0"
: "=r" (ret));
return ret & ~TICK_PRIV_BIT;
}
static int tick_add_compare(unsigned long adj)
{
unsigned long orig_tick, new_tick, new_compare;
__asm__ __volatile__("rd %%tick, %0"
: "=r" (orig_tick));
orig_tick &= ~TICKCMP_IRQ_BIT;
/* Workaround for Spitfire Errata (#54 I think??), I discovered
* this via Sun BugID 4008234, mentioned in Solaris-2.5.1 patch
* number 103640.
*
* On Blackbird writes to %tick_cmpr can fail, the
* workaround seems to be to execute the wr instruction
* at the start of an I-cache line, and perform a dummy
* read back from %tick_cmpr right after writing to it. -DaveM
*/
__asm__ __volatile__("ba,pt %%xcc, 1f\n\t"
" add %1, %2, %0\n\t"
".align 64\n"
"1:\n\t"
"wr %0, 0, %%tick_cmpr\n\t"
"rd %%tick_cmpr, %%g0\n\t"
: "=r" (new_compare)
: "r" (orig_tick), "r" (adj));
__asm__ __volatile__("rd %%tick, %0"
: "=r" (new_tick));
new_tick &= ~TICKCMP_IRQ_BIT;
return ((long)(new_tick - (orig_tick+adj))) > 0L;
}
static unsigned long tick_add_tick(unsigned long adj)
{
unsigned long new_tick;
/* Also need to handle Blackbird bug here too. */
__asm__ __volatile__("rd %%tick, %0\n\t"
"add %0, %1, %0\n\t"
"wrpr %0, 0, %%tick\n\t"
: "=&r" (new_tick)
: "r" (adj));
return new_tick;
}
/* Searches for cpu clock frequency with given cpuid in OpenBoot tree */
static unsigned long cpuid_to_freq(phandle node, int cpuid)
{
bool is_cpu_node = false;
unsigned long freq = 0;
char type[128];
if (!node)
return freq;
if (prom_getproperty(node, "device_type", type, sizeof(type)) != -1)
is_cpu_node = (strcmp(type, "cpu") == 0);
/* try upa-portid then cpuid to get cpuid, see prom_64.c */
if (is_cpu_node && (prom_getint(node, "upa-portid") == cpuid ||
prom_getint(node, "cpuid") == cpuid))
freq = prom_getintdefault(node, "clock-frequency", 0);
if (!freq)
freq = cpuid_to_freq(prom_getchild(node), cpuid);
if (!freq)
freq = cpuid_to_freq(prom_getsibling(node), cpuid);
return freq;
}
static unsigned long tick_get_frequency(void)
{
return cpuid_to_freq(prom_root_node, hard_smp_processor_id());
}
static struct sparc64_tick_ops tick_operations __cacheline_aligned = {
.name = "tick",
.init_tick = tick_init_tick,
.disable_irq = tick_disable_irq,
.get_tick = tick_get_tick,
.add_tick = tick_add_tick,
.add_compare = tick_add_compare,
.get_frequency = tick_get_frequency,
.softint_mask = 1UL << 0,
};
struct sparc64_tick_ops *tick_ops __read_mostly = &tick_operations;
EXPORT_SYMBOL(tick_ops);
static void stick_disable_irq(void)
{
__asm__ __volatile__(
"wr %0, 0x0, %%asr25"
: /* no outputs */
: "r" (TICKCMP_IRQ_BIT));
}
static void stick_init_tick(void)
{
/* Writes to the %tick and %stick register are not
* allowed on sun4v. The Hypervisor controls that
* bit, per-strand.
*/
if (tlb_type != hypervisor) {
tick_disable_protection();
tick_disable_irq();
/* Let the user get at STICK too. */
__asm__ __volatile__(
" rd %%asr24, %%g2\n"
" andn %%g2, %0, %%g2\n"
" wr %%g2, 0, %%asr24"
: /* no outputs */
: "r" (TICK_PRIV_BIT)
: "g1", "g2");
}
stick_disable_irq();
}
static unsigned long long stick_get_tick(void)
{
unsigned long ret;
__asm__ __volatile__("rd %%asr24, %0"
: "=r" (ret));
return ret & ~TICK_PRIV_BIT;
}
static unsigned long stick_add_tick(unsigned long adj)
{
unsigned long new_tick;
__asm__ __volatile__("rd %%asr24, %0\n\t"
"add %0, %1, %0\n\t"
"wr %0, 0, %%asr24\n\t"
: "=&r" (new_tick)
: "r" (adj));
return new_tick;
}
static int stick_add_compare(unsigned long adj)
{
unsigned long orig_tick, new_tick;
__asm__ __volatile__("rd %%asr24, %0"
: "=r" (orig_tick));
orig_tick &= ~TICKCMP_IRQ_BIT;
__asm__ __volatile__("wr %0, 0, %%asr25"
: /* no outputs */
: "r" (orig_tick + adj));
__asm__ __volatile__("rd %%asr24, %0"
: "=r" (new_tick));
new_tick &= ~TICKCMP_IRQ_BIT;
return ((long)(new_tick - (orig_tick+adj))) > 0L;
}
static unsigned long stick_get_frequency(void)
{
return prom_getintdefault(prom_root_node, "stick-frequency", 0);
}
static struct sparc64_tick_ops stick_operations __read_mostly = {
.name = "stick",
.init_tick = stick_init_tick,
.disable_irq = stick_disable_irq,
.get_tick = stick_get_tick,
.add_tick = stick_add_tick,
.add_compare = stick_add_compare,
.get_frequency = stick_get_frequency,
.softint_mask = 1UL << 16,
};
/* On Hummingbird the STICK/STICK_CMPR register is implemented
* in I/O space. There are two 64-bit registers each, the
* first holds the low 32-bits of the value and the second holds
* the high 32-bits.
*
* Since STICK is constantly updating, we have to access it carefully.
*
* The sequence we use to read is:
* 1) read high
* 2) read low
* 3) read high again, if it rolled re-read both low and high again.
*
* Writing STICK safely is also tricky:
* 1) write low to zero
* 2) write high
* 3) write low
*/
static unsigned long __hbird_read_stick(void)
{
unsigned long ret, tmp1, tmp2, tmp3;
unsigned long addr = HBIRD_STICK_ADDR+8;
__asm__ __volatile__("ldxa [%1] %5, %2\n"
"1:\n\t"
"sub %1, 0x8, %1\n\t"
"ldxa [%1] %5, %3\n\t"
"add %1, 0x8, %1\n\t"
"ldxa [%1] %5, %4\n\t"
"cmp %4, %2\n\t"
"bne,a,pn %%xcc, 1b\n\t"
" mov %4, %2\n\t"
"sllx %4, 32, %4\n\t"
"or %3, %4, %0\n\t"
: "=&r" (ret), "=&r" (addr),
"=&r" (tmp1), "=&r" (tmp2), "=&r" (tmp3)
: "i" (ASI_PHYS_BYPASS_EC_E), "1" (addr));
return ret;
}
static void __hbird_write_stick(unsigned long val)
{
unsigned long low = (val & 0xffffffffUL);
unsigned long high = (val >> 32UL);
unsigned long addr = HBIRD_STICK_ADDR;
__asm__ __volatile__("stxa %%g0, [%0] %4\n\t"
"add %0, 0x8, %0\n\t"
"stxa %3, [%0] %4\n\t"
"sub %0, 0x8, %0\n\t"
"stxa %2, [%0] %4"
: "=&r" (addr)
: "0" (addr), "r" (low), "r" (high),
"i" (ASI_PHYS_BYPASS_EC_E));
}
static void __hbird_write_compare(unsigned long val)
{
unsigned long low = (val & 0xffffffffUL);
unsigned long high = (val >> 32UL);
unsigned long addr = HBIRD_STICKCMP_ADDR + 0x8UL;
__asm__ __volatile__("stxa %3, [%0] %4\n\t"
"sub %0, 0x8, %0\n\t"
"stxa %2, [%0] %4"
: "=&r" (addr)
: "0" (addr), "r" (low), "r" (high),
"i" (ASI_PHYS_BYPASS_EC_E));
}
static void hbtick_disable_irq(void)
{
__hbird_write_compare(TICKCMP_IRQ_BIT);
}
static void hbtick_init_tick(void)
{
tick_disable_protection();
/* XXX This seems to be necessary to 'jumpstart' Hummingbird
* XXX into actually sending STICK interrupts. I think because
* XXX of how we store %tick_cmpr in head.S this somehow resets the
* XXX {TICK + STICK} interrupt mux. -DaveM
*/
__hbird_write_stick(__hbird_read_stick());
hbtick_disable_irq();
}
static unsigned long long hbtick_get_tick(void)
{
return __hbird_read_stick() & ~TICK_PRIV_BIT;
}
static unsigned long hbtick_add_tick(unsigned long adj)
{
unsigned long val;
val = __hbird_read_stick() + adj;
__hbird_write_stick(val);
return val;
}
static int hbtick_add_compare(unsigned long adj)
{
unsigned long val = __hbird_read_stick();
unsigned long val2;
val &= ~TICKCMP_IRQ_BIT;
val += adj;
__hbird_write_compare(val);
val2 = __hbird_read_stick() & ~TICKCMP_IRQ_BIT;
return ((long)(val2 - val)) > 0L;
}
static unsigned long hbtick_get_frequency(void)
{
return prom_getintdefault(prom_root_node, "stick-frequency", 0);
}
static struct sparc64_tick_ops hbtick_operations __read_mostly = {
.name = "hbtick",
.init_tick = hbtick_init_tick,
.disable_irq = hbtick_disable_irq,
.get_tick = hbtick_get_tick,
.add_tick = hbtick_add_tick,
.add_compare = hbtick_add_compare,
.get_frequency = hbtick_get_frequency,
.softint_mask = 1UL << 0,
};
unsigned long cmos_regs;
EXPORT_SYMBOL(cmos_regs);
static struct resource rtc_cmos_resource;
static struct platform_device rtc_cmos_device = {
.name = "rtc_cmos",
.id = -1,
.resource = &rtc_cmos_resource,
.num_resources = 1,
};
static int rtc_probe(struct platform_device *op)
{
struct resource *r;
printk(KERN_INFO "%pOF: RTC regs at 0x%llx\n",
op->dev.of_node, op->resource[0].start);
/* The CMOS RTC driver only accepts IORESOURCE_IO, so cons
* up a fake resource so that the probe works for all cases.
* When the RTC is behind an ISA bus it will have IORESOURCE_IO
* already, whereas when it's behind EBUS is will be IORESOURCE_MEM.
*/
r = &rtc_cmos_resource;
r->flags = IORESOURCE_IO;
r->name = op->resource[0].name;
r->start = op->resource[0].start;
r->end = op->resource[0].end;
cmos_regs = op->resource[0].start;
return platform_device_register(&rtc_cmos_device);
}
static const struct of_device_id rtc_match[] = {
{
.name = "rtc",
.compatible = "m5819",
},
{
.name = "rtc",
.compatible = "isa-m5819p",
},
{
.name = "rtc",
.compatible = "isa-m5823p",
},
{
.name = "rtc",
.compatible = "ds1287",
},
{},
};
static struct platform_driver rtc_driver = {
.probe = rtc_probe,
.driver = {
.name = "rtc",
.of_match_table = rtc_match,
},
};
static struct platform_device rtc_bq4802_device = {
.name = "rtc-bq4802",
.id = -1,
.num_resources = 1,
};
static int bq4802_probe(struct platform_device *op)
{
printk(KERN_INFO "%pOF: BQ4802 regs at 0x%llx\n",
op->dev.of_node, op->resource[0].start);
rtc_bq4802_device.resource = &op->resource[0];
return platform_device_register(&rtc_bq4802_device);
}
static const struct of_device_id bq4802_match[] = {
{
.name = "rtc",
.compatible = "bq4802",
},
{},
};
static struct platform_driver bq4802_driver = {
.probe = bq4802_probe,
.driver = {
.name = "bq4802",
.of_match_table = bq4802_match,
},
};
static unsigned char mostek_read_byte(struct device *dev, u32 ofs)
{
struct platform_device *pdev = to_platform_device(dev);
void __iomem *regs = (void __iomem *) pdev->resource[0].start;
return readb(regs + ofs);
}
static void mostek_write_byte(struct device *dev, u32 ofs, u8 val)
{
struct platform_device *pdev = to_platform_device(dev);
void __iomem *regs = (void __iomem *) pdev->resource[0].start;
writeb(val, regs + ofs);
}
static struct m48t59_plat_data m48t59_data = {
.read_byte = mostek_read_byte,
.write_byte = mostek_write_byte,
};
static struct platform_device m48t59_rtc = {
.name = "rtc-m48t59",
.id = 0,
.num_resources = 1,
.dev = {
.platform_data = &m48t59_data,
},
};
static int mostek_probe(struct platform_device *op)
{
struct device_node *dp = op->dev.of_node;
/* On an Enterprise system there can be multiple mostek clocks.
* We should only match the one that is on the central FHC bus.
*/
if (of_node_name_eq(dp->parent, "fhc") &&
!of_node_name_eq(dp->parent->parent, "central"))
return -ENODEV;
printk(KERN_INFO "%pOF: Mostek regs at 0x%llx\n",
dp, op->resource[0].start);
m48t59_rtc.resource = &op->resource[0];
return platform_device_register(&m48t59_rtc);
}
static const struct of_device_id mostek_match[] = {
{
.name = "eeprom",
},
{},
};
static struct platform_driver mostek_driver = {
.probe = mostek_probe,
.driver = {
.name = "mostek",
.of_match_table = mostek_match,
},
};
static struct platform_device rtc_sun4v_device = {
.name = "rtc-sun4v",
.id = -1,
};
static struct platform_device rtc_starfire_device = {
.name = "rtc-starfire",
.id = -1,
};
static int __init clock_init(void)
{
if (this_is_starfire)
return platform_device_register(&rtc_starfire_device);
if (tlb_type == hypervisor)
return platform_device_register(&rtc_sun4v_device);
(void) platform_driver_register(&rtc_driver);
(void) platform_driver_register(&mostek_driver);
(void) platform_driver_register(&bq4802_driver);
return 0;
}
/* Must be after subsys_initcall() so that busses are probed. Must
* be before device_initcall() because things like the RTC driver
* need to see the clock registers.
*/
fs_initcall(clock_init);
/* Return true if this is Hummingbird, aka Ultra-IIe */
static bool is_hummingbird(void)
{
unsigned long ver, manuf, impl;
__asm__ __volatile__ ("rdpr %%ver, %0"
: "=&r" (ver));
manuf = ((ver >> 48) & 0xffff);
impl = ((ver >> 32) & 0xffff);
return (manuf == 0x17 && impl == 0x13);
}
struct freq_table {
unsigned long clock_tick_ref;
unsigned int ref_freq;
};
static DEFINE_PER_CPU(struct freq_table, sparc64_freq_table) = { 0, 0 };
unsigned long sparc64_get_clock_tick(unsigned int cpu)
{
struct freq_table *ft = &per_cpu(sparc64_freq_table, cpu);
if (ft->clock_tick_ref)
return ft->clock_tick_ref;
return cpu_data(cpu).clock_tick;
}
EXPORT_SYMBOL(sparc64_get_clock_tick);
#ifdef CONFIG_CPU_FREQ
static int sparc64_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
void *data)
{
struct cpufreq_freqs *freq = data;
unsigned int cpu;
struct freq_table *ft;
for_each_cpu(cpu, freq->policy->cpus) {
ft = &per_cpu(sparc64_freq_table, cpu);
if (!ft->ref_freq) {
ft->ref_freq = freq->old;
ft->clock_tick_ref = cpu_data(cpu).clock_tick;
}
if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
(val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
cpu_data(cpu).clock_tick =
cpufreq_scale(ft->clock_tick_ref, ft->ref_freq,
freq->new);
}
}
return 0;
}
static struct notifier_block sparc64_cpufreq_notifier_block = {
.notifier_call = sparc64_cpufreq_notifier
};
static int __init register_sparc64_cpufreq_notifier(void)
{
cpufreq_register_notifier(&sparc64_cpufreq_notifier_block,
CPUFREQ_TRANSITION_NOTIFIER);
return 0;
}
core_initcall(register_sparc64_cpufreq_notifier);
#endif /* CONFIG_CPU_FREQ */
static int sparc64_next_event(unsigned long delta,
struct clock_event_device *evt)
{
return tick_operations.add_compare(delta) ? -ETIME : 0;
}
static int sparc64_timer_shutdown(struct clock_event_device *evt)
{
tick_operations.disable_irq();
return 0;
}
static struct clock_event_device sparc64_clockevent = {
.features = CLOCK_EVT_FEAT_ONESHOT,
.set_state_shutdown = sparc64_timer_shutdown,
.set_next_event = sparc64_next_event,
.rating = 100,
.shift = 30,
.irq = -1,
};
static DEFINE_PER_CPU(struct clock_event_device, sparc64_events);
void __irq_entry timer_interrupt(int irq, struct pt_regs *regs)
{
struct pt_regs *old_regs = set_irq_regs(regs);
unsigned long tick_mask = tick_operations.softint_mask;
int cpu = smp_processor_id();
struct clock_event_device *evt = &per_cpu(sparc64_events, cpu);
clear_softint(tick_mask);
irq_enter();
local_cpu_data().irq0_irqs++;
kstat_incr_irq_this_cpu(0);
if (unlikely(!evt->event_handler)) {
printk(KERN_WARNING
"Spurious SPARC64 timer interrupt on cpu %d\n", cpu);
} else
evt->event_handler(evt);
irq_exit();
set_irq_regs(old_regs);
}
void setup_sparc64_timer(void)
{
struct clock_event_device *sevt;
unsigned long pstate;
/* Guarantee that the following sequences execute
* uninterrupted.
*/
__asm__ __volatile__("rdpr %%pstate, %0\n\t"
"wrpr %0, %1, %%pstate"
: "=r" (pstate)
: "i" (PSTATE_IE));
tick_operations.init_tick();
/* Restore PSTATE_IE. */
__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
: /* no outputs */
: "r" (pstate));
sevt = this_cpu_ptr(&sparc64_events);
memcpy(sevt, &sparc64_clockevent, sizeof(*sevt));
sevt->cpumask = cpumask_of(smp_processor_id());
clockevents_register_device(sevt);
}
#define SPARC64_NSEC_PER_CYC_SHIFT 10UL
static struct clocksource clocksource_tick = {
.rating = 100,
.mask = CLOCKSOURCE_MASK(64),
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
static unsigned long tb_ticks_per_usec __read_mostly;
void __delay(unsigned long loops)
{
unsigned long bclock = get_tick();
while ((get_tick() - bclock) < loops)
;
}
EXPORT_SYMBOL(__delay);
void udelay(unsigned long usecs)
{
__delay(tb_ticks_per_usec * usecs);
}
EXPORT_SYMBOL(udelay);
static u64 clocksource_tick_read(struct clocksource *cs)
{
return get_tick();
}
static void __init get_tick_patch(void)
{
unsigned int *addr, *instr, i;
struct get_tick_patch *p;
if (tlb_type == spitfire && is_hummingbird())
return;
for (p = &__get_tick_patch; p < &__get_tick_patch_end; p++) {
instr = (tlb_type == spitfire) ? p->tick : p->stick;
addr = (unsigned int *)(unsigned long)p->addr;
for (i = 0; i < GET_TICK_NINSTR; i++) {
addr[i] = instr[i];
/* ensure that address is modified before flush */
wmb();
flushi(&addr[i]);
}
}
}
static void __init init_tick_ops(struct sparc64_tick_ops *ops)
{
unsigned long freq, quotient, tick;
freq = ops->get_frequency();
quotient = clocksource_hz2mult(freq, SPARC64_NSEC_PER_CYC_SHIFT);
tick = ops->get_tick();
ops->offset = (tick * quotient) >> SPARC64_NSEC_PER_CYC_SHIFT;
ops->ticks_per_nsec_quotient = quotient;
ops->frequency = freq;
tick_operations = *ops;
get_tick_patch();
}
void __init time_init_early(void)
{
if (tlb_type == spitfire) {
if (is_hummingbird()) {
init_tick_ops(&hbtick_operations);
clocksource_tick.archdata.vclock_mode = VCLOCK_NONE;
} else {
init_tick_ops(&tick_operations);
clocksource_tick.archdata.vclock_mode = VCLOCK_TICK;
}
} else {
init_tick_ops(&stick_operations);
clocksource_tick.archdata.vclock_mode = VCLOCK_STICK;
}
}
void __init time_init(void)
{
unsigned long freq;
freq = tick_operations.frequency;
tb_ticks_per_usec = freq / USEC_PER_SEC;
clocksource_tick.name = tick_operations.name;
clocksource_tick.read = clocksource_tick_read;
clocksource_register_hz(&clocksource_tick, freq);
printk("clocksource: mult[%x] shift[%d]\n",
clocksource_tick.mult, clocksource_tick.shift);
sparc64_clockevent.name = tick_operations.name;
clockevents_calc_mult_shift(&sparc64_clockevent, freq, 4);
sparc64_clockevent.max_delta_ns =
clockevent_delta2ns(0x7fffffffffffffffUL, &sparc64_clockevent);
sparc64_clockevent.max_delta_ticks = 0x7fffffffffffffffUL;
sparc64_clockevent.min_delta_ns =
clockevent_delta2ns(0xF, &sparc64_clockevent);
sparc64_clockevent.min_delta_ticks = 0xF;
printk("clockevent: mult[%x] shift[%d]\n",
sparc64_clockevent.mult, sparc64_clockevent.shift);
setup_sparc64_timer();
}
unsigned long long sched_clock(void)
{
unsigned long quotient = tick_operations.ticks_per_nsec_quotient;
unsigned long offset = tick_operations.offset;
/* Use barrier so the compiler emits the loads first and overlaps load
* latency with reading tick, because reading %tick/%stick is a
* post-sync instruction that will flush and restart subsequent
* instructions after it commits.
*/
barrier();
return ((get_tick() * quotient) >> SPARC64_NSEC_PER_CYC_SHIFT) - offset;
}
int read_current_timer(unsigned long *timer_val)
{
*timer_val = get_tick();
return 0;
}