linux/drivers/media/i2c/soc_camera/mt9t031.c

841 lines
22 KiB
C

/*
* Driver for MT9T031 CMOS Image Sensor from Micron
*
* Copyright (C) 2008, Guennadi Liakhovetski, DENX Software Engineering <lg@denx.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/device.h>
#include <linux/i2c.h>
#include <linux/log2.h>
#include <linux/pm.h>
#include <linux/slab.h>
#include <linux/v4l2-mediabus.h>
#include <linux/videodev2.h>
#include <linux/module.h>
#include <media/soc_camera.h>
#include <media/v4l2-clk.h>
#include <media/v4l2-subdev.h>
#include <media/v4l2-ctrls.h>
/*
* ATTENTION: this driver still cannot be used outside of the soc-camera
* framework because of its PM implementation, using the video_device node.
* If hardware becomes available for testing, alternative PM approaches shall
* be considered and tested.
*/
/*
* mt9t031 i2c address 0x5d
* The platform has to define struct i2c_board_info objects and link to them
* from struct soc_camera_host_desc
*/
/* mt9t031 selected register addresses */
#define MT9T031_CHIP_VERSION 0x00
#define MT9T031_ROW_START 0x01
#define MT9T031_COLUMN_START 0x02
#define MT9T031_WINDOW_HEIGHT 0x03
#define MT9T031_WINDOW_WIDTH 0x04
#define MT9T031_HORIZONTAL_BLANKING 0x05
#define MT9T031_VERTICAL_BLANKING 0x06
#define MT9T031_OUTPUT_CONTROL 0x07
#define MT9T031_SHUTTER_WIDTH_UPPER 0x08
#define MT9T031_SHUTTER_WIDTH 0x09
#define MT9T031_PIXEL_CLOCK_CONTROL 0x0a
#define MT9T031_FRAME_RESTART 0x0b
#define MT9T031_SHUTTER_DELAY 0x0c
#define MT9T031_RESET 0x0d
#define MT9T031_READ_MODE_1 0x1e
#define MT9T031_READ_MODE_2 0x20
#define MT9T031_READ_MODE_3 0x21
#define MT9T031_ROW_ADDRESS_MODE 0x22
#define MT9T031_COLUMN_ADDRESS_MODE 0x23
#define MT9T031_GLOBAL_GAIN 0x35
#define MT9T031_CHIP_ENABLE 0xF8
#define MT9T031_MAX_HEIGHT 1536
#define MT9T031_MAX_WIDTH 2048
#define MT9T031_MIN_HEIGHT 2
#define MT9T031_MIN_WIDTH 18
#define MT9T031_HORIZONTAL_BLANK 142
#define MT9T031_VERTICAL_BLANK 25
#define MT9T031_COLUMN_SKIP 32
#define MT9T031_ROW_SKIP 20
struct mt9t031 {
struct v4l2_subdev subdev;
struct v4l2_ctrl_handler hdl;
struct {
/* exposure/auto-exposure cluster */
struct v4l2_ctrl *autoexposure;
struct v4l2_ctrl *exposure;
};
struct v4l2_rect rect; /* Sensor window */
struct v4l2_clk *clk;
u16 xskip;
u16 yskip;
unsigned int total_h;
unsigned short y_skip_top; /* Lines to skip at the top */
};
static struct mt9t031 *to_mt9t031(const struct i2c_client *client)
{
return container_of(i2c_get_clientdata(client), struct mt9t031, subdev);
}
static int reg_read(struct i2c_client *client, const u8 reg)
{
return i2c_smbus_read_word_swapped(client, reg);
}
static int reg_write(struct i2c_client *client, const u8 reg,
const u16 data)
{
return i2c_smbus_write_word_swapped(client, reg, data);
}
static int reg_set(struct i2c_client *client, const u8 reg,
const u16 data)
{
int ret;
ret = reg_read(client, reg);
if (ret < 0)
return ret;
return reg_write(client, reg, ret | data);
}
static int reg_clear(struct i2c_client *client, const u8 reg,
const u16 data)
{
int ret;
ret = reg_read(client, reg);
if (ret < 0)
return ret;
return reg_write(client, reg, ret & ~data);
}
static int set_shutter(struct i2c_client *client, const u32 data)
{
int ret;
ret = reg_write(client, MT9T031_SHUTTER_WIDTH_UPPER, data >> 16);
if (ret >= 0)
ret = reg_write(client, MT9T031_SHUTTER_WIDTH, data & 0xffff);
return ret;
}
static int get_shutter(struct i2c_client *client, u32 *data)
{
int ret;
ret = reg_read(client, MT9T031_SHUTTER_WIDTH_UPPER);
*data = ret << 16;
if (ret >= 0)
ret = reg_read(client, MT9T031_SHUTTER_WIDTH);
*data |= ret & 0xffff;
return ret < 0 ? ret : 0;
}
static int mt9t031_idle(struct i2c_client *client)
{
int ret;
/* Disable chip output, synchronous option update */
ret = reg_write(client, MT9T031_RESET, 1);
if (ret >= 0)
ret = reg_write(client, MT9T031_RESET, 0);
if (ret >= 0)
ret = reg_clear(client, MT9T031_OUTPUT_CONTROL, 2);
return ret >= 0 ? 0 : -EIO;
}
static int mt9t031_s_stream(struct v4l2_subdev *sd, int enable)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
int ret;
if (enable)
/* Switch to master "normal" mode */
ret = reg_set(client, MT9T031_OUTPUT_CONTROL, 2);
else
/* Stop sensor readout */
ret = reg_clear(client, MT9T031_OUTPUT_CONTROL, 2);
if (ret < 0)
return -EIO;
return 0;
}
/* target must be _even_ */
static u16 mt9t031_skip(s32 *source, s32 target, s32 max)
{
unsigned int skip;
if (*source < target + target / 2) {
*source = target;
return 1;
}
skip = min(max, *source + target / 2) / target;
if (skip > 8)
skip = 8;
*source = target * skip;
return skip;
}
/* rect is the sensor rectangle, the caller guarantees parameter validity */
static int mt9t031_set_params(struct i2c_client *client,
struct v4l2_rect *rect, u16 xskip, u16 yskip)
{
struct mt9t031 *mt9t031 = to_mt9t031(client);
int ret;
u16 xbin, ybin;
const u16 hblank = MT9T031_HORIZONTAL_BLANK,
vblank = MT9T031_VERTICAL_BLANK;
xbin = min(xskip, (u16)3);
ybin = min(yskip, (u16)3);
/*
* Could just do roundup(rect->left, [xy]bin * 2); but this is cheaper.
* There is always a valid suitably aligned value. The worst case is
* xbin = 3, width = 2048. Then we will start at 36, the last read out
* pixel will be 2083, which is < 2085 - first black pixel.
*
* MT9T031 datasheet imposes window left border alignment, depending on
* the selected xskip. Failing to conform to this requirement produces
* dark horizontal stripes in the image. However, even obeying to this
* requirement doesn't eliminate the stripes in all configurations. They
* appear "locally reproducibly," but can differ between tests under
* different lighting conditions.
*/
switch (xbin) {
case 1:
rect->left &= ~1;
break;
case 2:
rect->left &= ~3;
break;
case 3:
rect->left = rect->left > roundup(MT9T031_COLUMN_SKIP, 6) ?
(rect->left / 6) * 6 : roundup(MT9T031_COLUMN_SKIP, 6);
}
rect->top &= ~1;
dev_dbg(&client->dev, "skip %u:%u, rect %ux%u@%u:%u\n",
xskip, yskip, rect->width, rect->height, rect->left, rect->top);
/* Disable register update, reconfigure atomically */
ret = reg_set(client, MT9T031_OUTPUT_CONTROL, 1);
if (ret < 0)
return ret;
/* Blanking and start values - default... */
ret = reg_write(client, MT9T031_HORIZONTAL_BLANKING, hblank);
if (ret >= 0)
ret = reg_write(client, MT9T031_VERTICAL_BLANKING, vblank);
if (yskip != mt9t031->yskip || xskip != mt9t031->xskip) {
/* Binning, skipping */
if (ret >= 0)
ret = reg_write(client, MT9T031_COLUMN_ADDRESS_MODE,
((xbin - 1) << 4) | (xskip - 1));
if (ret >= 0)
ret = reg_write(client, MT9T031_ROW_ADDRESS_MODE,
((ybin - 1) << 4) | (yskip - 1));
}
dev_dbg(&client->dev, "new physical left %u, top %u\n",
rect->left, rect->top);
/*
* The caller provides a supported format, as guaranteed by
* .try_mbus_fmt(), soc_camera_s_crop() and soc_camera_cropcap()
*/
if (ret >= 0)
ret = reg_write(client, MT9T031_COLUMN_START, rect->left);
if (ret >= 0)
ret = reg_write(client, MT9T031_ROW_START, rect->top);
if (ret >= 0)
ret = reg_write(client, MT9T031_WINDOW_WIDTH, rect->width - 1);
if (ret >= 0)
ret = reg_write(client, MT9T031_WINDOW_HEIGHT,
rect->height + mt9t031->y_skip_top - 1);
if (ret >= 0 && v4l2_ctrl_g_ctrl(mt9t031->autoexposure) == V4L2_EXPOSURE_AUTO) {
mt9t031->total_h = rect->height + mt9t031->y_skip_top + vblank;
ret = set_shutter(client, mt9t031->total_h);
}
/* Re-enable register update, commit all changes */
if (ret >= 0)
ret = reg_clear(client, MT9T031_OUTPUT_CONTROL, 1);
if (ret >= 0) {
mt9t031->rect = *rect;
mt9t031->xskip = xskip;
mt9t031->yskip = yskip;
}
return ret < 0 ? ret : 0;
}
static int mt9t031_s_crop(struct v4l2_subdev *sd, const struct v4l2_crop *a)
{
struct v4l2_rect rect = a->c;
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct mt9t031 *mt9t031 = to_mt9t031(client);
rect.width = ALIGN(rect.width, 2);
rect.height = ALIGN(rect.height, 2);
soc_camera_limit_side(&rect.left, &rect.width,
MT9T031_COLUMN_SKIP, MT9T031_MIN_WIDTH, MT9T031_MAX_WIDTH);
soc_camera_limit_side(&rect.top, &rect.height,
MT9T031_ROW_SKIP, MT9T031_MIN_HEIGHT, MT9T031_MAX_HEIGHT);
return mt9t031_set_params(client, &rect, mt9t031->xskip, mt9t031->yskip);
}
static int mt9t031_g_crop(struct v4l2_subdev *sd, struct v4l2_crop *a)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct mt9t031 *mt9t031 = to_mt9t031(client);
a->c = mt9t031->rect;
a->type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
return 0;
}
static int mt9t031_cropcap(struct v4l2_subdev *sd, struct v4l2_cropcap *a)
{
a->bounds.left = MT9T031_COLUMN_SKIP;
a->bounds.top = MT9T031_ROW_SKIP;
a->bounds.width = MT9T031_MAX_WIDTH;
a->bounds.height = MT9T031_MAX_HEIGHT;
a->defrect = a->bounds;
a->type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
a->pixelaspect.numerator = 1;
a->pixelaspect.denominator = 1;
return 0;
}
static int mt9t031_g_fmt(struct v4l2_subdev *sd,
struct v4l2_mbus_framefmt *mf)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct mt9t031 *mt9t031 = to_mt9t031(client);
mf->width = mt9t031->rect.width / mt9t031->xskip;
mf->height = mt9t031->rect.height / mt9t031->yskip;
mf->code = V4L2_MBUS_FMT_SBGGR10_1X10;
mf->colorspace = V4L2_COLORSPACE_SRGB;
mf->field = V4L2_FIELD_NONE;
return 0;
}
static int mt9t031_s_fmt(struct v4l2_subdev *sd,
struct v4l2_mbus_framefmt *mf)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct mt9t031 *mt9t031 = to_mt9t031(client);
u16 xskip, yskip;
struct v4l2_rect rect = mt9t031->rect;
/*
* try_fmt has put width and height within limits.
* S_FMT: use binning and skipping for scaling
*/
xskip = mt9t031_skip(&rect.width, mf->width, MT9T031_MAX_WIDTH);
yskip = mt9t031_skip(&rect.height, mf->height, MT9T031_MAX_HEIGHT);
mf->code = V4L2_MBUS_FMT_SBGGR10_1X10;
mf->colorspace = V4L2_COLORSPACE_SRGB;
/* mt9t031_set_params() doesn't change width and height */
return mt9t031_set_params(client, &rect, xskip, yskip);
}
/*
* If a user window larger than sensor window is requested, we'll increase the
* sensor window.
*/
static int mt9t031_try_fmt(struct v4l2_subdev *sd,
struct v4l2_mbus_framefmt *mf)
{
v4l_bound_align_image(
&mf->width, MT9T031_MIN_WIDTH, MT9T031_MAX_WIDTH, 1,
&mf->height, MT9T031_MIN_HEIGHT, MT9T031_MAX_HEIGHT, 1, 0);
mf->code = V4L2_MBUS_FMT_SBGGR10_1X10;
mf->colorspace = V4L2_COLORSPACE_SRGB;
return 0;
}
#ifdef CONFIG_VIDEO_ADV_DEBUG
static int mt9t031_g_register(struct v4l2_subdev *sd,
struct v4l2_dbg_register *reg)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
if (reg->reg > 0xff)
return -EINVAL;
reg->size = 1;
reg->val = reg_read(client, reg->reg);
if (reg->val > 0xffff)
return -EIO;
return 0;
}
static int mt9t031_s_register(struct v4l2_subdev *sd,
const struct v4l2_dbg_register *reg)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
if (reg->reg > 0xff)
return -EINVAL;
if (reg_write(client, reg->reg, reg->val) < 0)
return -EIO;
return 0;
}
#endif
static int mt9t031_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
{
struct mt9t031 *mt9t031 = container_of(ctrl->handler,
struct mt9t031, hdl);
const u32 shutter_max = MT9T031_MAX_HEIGHT + MT9T031_VERTICAL_BLANK;
s32 min, max;
switch (ctrl->id) {
case V4L2_CID_EXPOSURE_AUTO:
min = mt9t031->exposure->minimum;
max = mt9t031->exposure->maximum;
mt9t031->exposure->val =
(shutter_max / 2 + (mt9t031->total_h - 1) * (max - min))
/ shutter_max + min;
break;
}
return 0;
}
static int mt9t031_s_ctrl(struct v4l2_ctrl *ctrl)
{
struct mt9t031 *mt9t031 = container_of(ctrl->handler,
struct mt9t031, hdl);
struct v4l2_subdev *sd = &mt9t031->subdev;
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct v4l2_ctrl *exp = mt9t031->exposure;
int data;
switch (ctrl->id) {
case V4L2_CID_VFLIP:
if (ctrl->val)
data = reg_set(client, MT9T031_READ_MODE_2, 0x8000);
else
data = reg_clear(client, MT9T031_READ_MODE_2, 0x8000);
if (data < 0)
return -EIO;
return 0;
case V4L2_CID_HFLIP:
if (ctrl->val)
data = reg_set(client, MT9T031_READ_MODE_2, 0x4000);
else
data = reg_clear(client, MT9T031_READ_MODE_2, 0x4000);
if (data < 0)
return -EIO;
return 0;
case V4L2_CID_GAIN:
/* See Datasheet Table 7, Gain settings. */
if (ctrl->val <= ctrl->default_value) {
/* Pack it into 0..1 step 0.125, register values 0..8 */
unsigned long range = ctrl->default_value - ctrl->minimum;
data = ((ctrl->val - ctrl->minimum) * 8 + range / 2) / range;
dev_dbg(&client->dev, "Setting gain %d\n", data);
data = reg_write(client, MT9T031_GLOBAL_GAIN, data);
if (data < 0)
return -EIO;
} else {
/* Pack it into 1.125..128 variable step, register values 9..0x7860 */
/* We assume qctrl->maximum - qctrl->default_value - 1 > 0 */
unsigned long range = ctrl->maximum - ctrl->default_value - 1;
/* calculated gain: map 65..127 to 9..1024 step 0.125 */
unsigned long gain = ((ctrl->val - ctrl->default_value - 1) *
1015 + range / 2) / range + 9;
if (gain <= 32) /* calculated gain 9..32 -> 9..32 */
data = gain;
else if (gain <= 64) /* calculated gain 33..64 -> 0x51..0x60 */
data = ((gain - 32) * 16 + 16) / 32 + 80;
else
/* calculated gain 65..1024 -> (1..120) << 8 + 0x60 */
data = (((gain - 64 + 7) * 32) & 0xff00) | 0x60;
dev_dbg(&client->dev, "Set gain from 0x%x to 0x%x\n",
reg_read(client, MT9T031_GLOBAL_GAIN), data);
data = reg_write(client, MT9T031_GLOBAL_GAIN, data);
if (data < 0)
return -EIO;
}
return 0;
case V4L2_CID_EXPOSURE_AUTO:
if (ctrl->val == V4L2_EXPOSURE_MANUAL) {
unsigned int range = exp->maximum - exp->minimum;
unsigned int shutter = ((exp->val - exp->minimum) * 1048 +
range / 2) / range + 1;
u32 old;
get_shutter(client, &old);
dev_dbg(&client->dev, "Set shutter from %u to %u\n",
old, shutter);
if (set_shutter(client, shutter) < 0)
return -EIO;
} else {
const u16 vblank = MT9T031_VERTICAL_BLANK;
mt9t031->total_h = mt9t031->rect.height +
mt9t031->y_skip_top + vblank;
if (set_shutter(client, mt9t031->total_h) < 0)
return -EIO;
}
return 0;
default:
return -EINVAL;
}
return 0;
}
/*
* Power Management:
* This function does nothing for now but must be present for pm to work
*/
static int mt9t031_runtime_suspend(struct device *dev)
{
return 0;
}
/*
* Power Management:
* COLUMN_ADDRESS_MODE and ROW_ADDRESS_MODE are not rewritten if unchanged
* they are however changed at reset if the platform hook is present
* thus we rewrite them with the values stored by the driver
*/
static int mt9t031_runtime_resume(struct device *dev)
{
struct video_device *vdev = to_video_device(dev);
struct v4l2_subdev *sd = soc_camera_vdev_to_subdev(vdev);
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct mt9t031 *mt9t031 = to_mt9t031(client);
int ret;
u16 xbin, ybin;
xbin = min(mt9t031->xskip, (u16)3);
ybin = min(mt9t031->yskip, (u16)3);
ret = reg_write(client, MT9T031_COLUMN_ADDRESS_MODE,
((xbin - 1) << 4) | (mt9t031->xskip - 1));
if (ret < 0)
return ret;
ret = reg_write(client, MT9T031_ROW_ADDRESS_MODE,
((ybin - 1) << 4) | (mt9t031->yskip - 1));
if (ret < 0)
return ret;
return 0;
}
static const struct dev_pm_ops mt9t031_dev_pm_ops = {
.runtime_suspend = mt9t031_runtime_suspend,
.runtime_resume = mt9t031_runtime_resume,
};
static struct device_type mt9t031_dev_type = {
.name = "MT9T031",
.pm = &mt9t031_dev_pm_ops,
};
static int mt9t031_s_power(struct v4l2_subdev *sd, int on)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct soc_camera_subdev_desc *ssdd = soc_camera_i2c_to_desc(client);
struct video_device *vdev = soc_camera_i2c_to_vdev(client);
struct mt9t031 *mt9t031 = to_mt9t031(client);
int ret;
if (on) {
ret = soc_camera_power_on(&client->dev, ssdd, mt9t031->clk);
if (ret < 0)
return ret;
if (vdev)
/* Not needed during probing, when vdev isn't available yet */
vdev->dev.type = &mt9t031_dev_type;
} else {
if (vdev)
vdev->dev.type = NULL;
soc_camera_power_off(&client->dev, ssdd, mt9t031->clk);
}
return 0;
}
/*
* Interface active, can use i2c. If it fails, it can indeed mean, that
* this wasn't our capture interface, so, we wait for the right one
*/
static int mt9t031_video_probe(struct i2c_client *client)
{
struct mt9t031 *mt9t031 = to_mt9t031(client);
s32 data;
int ret;
ret = mt9t031_s_power(&mt9t031->subdev, 1);
if (ret < 0)
return ret;
ret = mt9t031_idle(client);
if (ret < 0) {
dev_err(&client->dev, "Failed to initialise the camera\n");
goto done;
}
/* Read out the chip version register */
data = reg_read(client, MT9T031_CHIP_VERSION);
switch (data) {
case 0x1621:
break;
default:
dev_err(&client->dev,
"No MT9T031 chip detected, register read %x\n", data);
ret = -ENODEV;
goto done;
}
dev_info(&client->dev, "Detected a MT9T031 chip ID %x\n", data);
ret = v4l2_ctrl_handler_setup(&mt9t031->hdl);
done:
mt9t031_s_power(&mt9t031->subdev, 0);
return ret;
}
static int mt9t031_g_skip_top_lines(struct v4l2_subdev *sd, u32 *lines)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct mt9t031 *mt9t031 = to_mt9t031(client);
*lines = mt9t031->y_skip_top;
return 0;
}
static const struct v4l2_ctrl_ops mt9t031_ctrl_ops = {
.g_volatile_ctrl = mt9t031_g_volatile_ctrl,
.s_ctrl = mt9t031_s_ctrl,
};
static struct v4l2_subdev_core_ops mt9t031_subdev_core_ops = {
.s_power = mt9t031_s_power,
#ifdef CONFIG_VIDEO_ADV_DEBUG
.g_register = mt9t031_g_register,
.s_register = mt9t031_s_register,
#endif
};
static int mt9t031_enum_fmt(struct v4l2_subdev *sd, unsigned int index,
enum v4l2_mbus_pixelcode *code)
{
if (index)
return -EINVAL;
*code = V4L2_MBUS_FMT_SBGGR10_1X10;
return 0;
}
static int mt9t031_g_mbus_config(struct v4l2_subdev *sd,
struct v4l2_mbus_config *cfg)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct soc_camera_subdev_desc *ssdd = soc_camera_i2c_to_desc(client);
cfg->flags = V4L2_MBUS_MASTER | V4L2_MBUS_PCLK_SAMPLE_RISING |
V4L2_MBUS_PCLK_SAMPLE_FALLING | V4L2_MBUS_HSYNC_ACTIVE_HIGH |
V4L2_MBUS_VSYNC_ACTIVE_HIGH | V4L2_MBUS_DATA_ACTIVE_HIGH;
cfg->type = V4L2_MBUS_PARALLEL;
cfg->flags = soc_camera_apply_board_flags(ssdd, cfg);
return 0;
}
static int mt9t031_s_mbus_config(struct v4l2_subdev *sd,
const struct v4l2_mbus_config *cfg)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct soc_camera_subdev_desc *ssdd = soc_camera_i2c_to_desc(client);
if (soc_camera_apply_board_flags(ssdd, cfg) &
V4L2_MBUS_PCLK_SAMPLE_FALLING)
return reg_clear(client, MT9T031_PIXEL_CLOCK_CONTROL, 0x8000);
else
return reg_set(client, MT9T031_PIXEL_CLOCK_CONTROL, 0x8000);
}
static struct v4l2_subdev_video_ops mt9t031_subdev_video_ops = {
.s_stream = mt9t031_s_stream,
.s_mbus_fmt = mt9t031_s_fmt,
.g_mbus_fmt = mt9t031_g_fmt,
.try_mbus_fmt = mt9t031_try_fmt,
.s_crop = mt9t031_s_crop,
.g_crop = mt9t031_g_crop,
.cropcap = mt9t031_cropcap,
.enum_mbus_fmt = mt9t031_enum_fmt,
.g_mbus_config = mt9t031_g_mbus_config,
.s_mbus_config = mt9t031_s_mbus_config,
};
static struct v4l2_subdev_sensor_ops mt9t031_subdev_sensor_ops = {
.g_skip_top_lines = mt9t031_g_skip_top_lines,
};
static struct v4l2_subdev_ops mt9t031_subdev_ops = {
.core = &mt9t031_subdev_core_ops,
.video = &mt9t031_subdev_video_ops,
.sensor = &mt9t031_subdev_sensor_ops,
};
static int mt9t031_probe(struct i2c_client *client,
const struct i2c_device_id *did)
{
struct mt9t031 *mt9t031;
struct soc_camera_subdev_desc *ssdd = soc_camera_i2c_to_desc(client);
struct i2c_adapter *adapter = to_i2c_adapter(client->dev.parent);
int ret;
if (!ssdd) {
dev_err(&client->dev, "MT9T031 driver needs platform data\n");
return -EINVAL;
}
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_WORD_DATA)) {
dev_warn(&adapter->dev,
"I2C-Adapter doesn't support I2C_FUNC_SMBUS_WORD\n");
return -EIO;
}
mt9t031 = devm_kzalloc(&client->dev, sizeof(struct mt9t031), GFP_KERNEL);
if (!mt9t031)
return -ENOMEM;
v4l2_i2c_subdev_init(&mt9t031->subdev, client, &mt9t031_subdev_ops);
v4l2_ctrl_handler_init(&mt9t031->hdl, 5);
v4l2_ctrl_new_std(&mt9t031->hdl, &mt9t031_ctrl_ops,
V4L2_CID_VFLIP, 0, 1, 1, 0);
v4l2_ctrl_new_std(&mt9t031->hdl, &mt9t031_ctrl_ops,
V4L2_CID_HFLIP, 0, 1, 1, 0);
v4l2_ctrl_new_std(&mt9t031->hdl, &mt9t031_ctrl_ops,
V4L2_CID_GAIN, 0, 127, 1, 64);
/*
* Simulated autoexposure. If enabled, we calculate shutter width
* ourselves in the driver based on vertical blanking and frame width
*/
mt9t031->autoexposure = v4l2_ctrl_new_std_menu(&mt9t031->hdl,
&mt9t031_ctrl_ops, V4L2_CID_EXPOSURE_AUTO, 1, 0,
V4L2_EXPOSURE_AUTO);
mt9t031->exposure = v4l2_ctrl_new_std(&mt9t031->hdl, &mt9t031_ctrl_ops,
V4L2_CID_EXPOSURE, 1, 255, 1, 255);
mt9t031->subdev.ctrl_handler = &mt9t031->hdl;
if (mt9t031->hdl.error)
return mt9t031->hdl.error;
v4l2_ctrl_auto_cluster(2, &mt9t031->autoexposure,
V4L2_EXPOSURE_MANUAL, true);
mt9t031->y_skip_top = 0;
mt9t031->rect.left = MT9T031_COLUMN_SKIP;
mt9t031->rect.top = MT9T031_ROW_SKIP;
mt9t031->rect.width = MT9T031_MAX_WIDTH;
mt9t031->rect.height = MT9T031_MAX_HEIGHT;
mt9t031->xskip = 1;
mt9t031->yskip = 1;
mt9t031->clk = v4l2_clk_get(&client->dev, "mclk");
if (IS_ERR(mt9t031->clk)) {
ret = PTR_ERR(mt9t031->clk);
goto eclkget;
}
ret = mt9t031_video_probe(client);
if (ret) {
v4l2_clk_put(mt9t031->clk);
eclkget:
v4l2_ctrl_handler_free(&mt9t031->hdl);
}
return ret;
}
static int mt9t031_remove(struct i2c_client *client)
{
struct mt9t031 *mt9t031 = to_mt9t031(client);
v4l2_clk_put(mt9t031->clk);
v4l2_device_unregister_subdev(&mt9t031->subdev);
v4l2_ctrl_handler_free(&mt9t031->hdl);
return 0;
}
static const struct i2c_device_id mt9t031_id[] = {
{ "mt9t031", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, mt9t031_id);
static struct i2c_driver mt9t031_i2c_driver = {
.driver = {
.name = "mt9t031",
},
.probe = mt9t031_probe,
.remove = mt9t031_remove,
.id_table = mt9t031_id,
};
module_i2c_driver(mt9t031_i2c_driver);
MODULE_DESCRIPTION("Micron MT9T031 Camera driver");
MODULE_AUTHOR("Guennadi Liakhovetski <lg@denx.de>");
MODULE_LICENSE("GPL v2");