linux/drivers/net/wireless/iwlwifi/iwl-5000.c

1759 lines
52 KiB
C

/******************************************************************************
*
* Copyright(c) 2007 - 2009 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
* The full GNU General Public License is included in this distribution in the
* file called LICENSE.
*
* Contact Information:
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*
*****************************************************************************/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <linux/sched.h>
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/wireless.h>
#include <net/mac80211.h>
#include <linux/etherdevice.h>
#include <asm/unaligned.h>
#include "iwl-eeprom.h"
#include "iwl-dev.h"
#include "iwl-core.h"
#include "iwl-io.h"
#include "iwl-sta.h"
#include "iwl-helpers.h"
#include "iwl-agn-led.h"
#include "iwl-5000-hw.h"
#include "iwl-6000-hw.h"
/* Highest firmware API version supported */
#define IWL5000_UCODE_API_MAX 2
#define IWL5150_UCODE_API_MAX 2
/* Lowest firmware API version supported */
#define IWL5000_UCODE_API_MIN 1
#define IWL5150_UCODE_API_MIN 1
#define IWL5000_FW_PRE "iwlwifi-5000-"
#define _IWL5000_MODULE_FIRMWARE(api) IWL5000_FW_PRE #api ".ucode"
#define IWL5000_MODULE_FIRMWARE(api) _IWL5000_MODULE_FIRMWARE(api)
#define IWL5150_FW_PRE "iwlwifi-5150-"
#define _IWL5150_MODULE_FIRMWARE(api) IWL5150_FW_PRE #api ".ucode"
#define IWL5150_MODULE_FIRMWARE(api) _IWL5150_MODULE_FIRMWARE(api)
static const u16 iwl5000_default_queue_to_tx_fifo[] = {
IWL_TX_FIFO_AC3,
IWL_TX_FIFO_AC2,
IWL_TX_FIFO_AC1,
IWL_TX_FIFO_AC0,
IWL50_CMD_FIFO_NUM,
IWL_TX_FIFO_HCCA_1,
IWL_TX_FIFO_HCCA_2
};
/* NIC configuration for 5000 series */
void iwl5000_nic_config(struct iwl_priv *priv)
{
unsigned long flags;
u16 radio_cfg;
spin_lock_irqsave(&priv->lock, flags);
radio_cfg = iwl_eeprom_query16(priv, EEPROM_RADIO_CONFIG);
/* write radio config values to register */
if (EEPROM_RF_CFG_TYPE_MSK(radio_cfg) < EEPROM_RF_CONFIG_TYPE_MAX)
iwl_set_bit(priv, CSR_HW_IF_CONFIG_REG,
EEPROM_RF_CFG_TYPE_MSK(radio_cfg) |
EEPROM_RF_CFG_STEP_MSK(radio_cfg) |
EEPROM_RF_CFG_DASH_MSK(radio_cfg));
/* set CSR_HW_CONFIG_REG for uCode use */
iwl_set_bit(priv, CSR_HW_IF_CONFIG_REG,
CSR_HW_IF_CONFIG_REG_BIT_RADIO_SI |
CSR_HW_IF_CONFIG_REG_BIT_MAC_SI);
/* W/A : NIC is stuck in a reset state after Early PCIe power off
* (PCIe power is lost before PERST# is asserted),
* causing ME FW to lose ownership and not being able to obtain it back.
*/
iwl_set_bits_mask_prph(priv, APMG_PS_CTRL_REG,
APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS,
~APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS);
spin_unlock_irqrestore(&priv->lock, flags);
}
/*
* EEPROM
*/
static u32 eeprom_indirect_address(const struct iwl_priv *priv, u32 address)
{
u16 offset = 0;
if ((address & INDIRECT_ADDRESS) == 0)
return address;
switch (address & INDIRECT_TYPE_MSK) {
case INDIRECT_HOST:
offset = iwl_eeprom_query16(priv, EEPROM_5000_LINK_HOST);
break;
case INDIRECT_GENERAL:
offset = iwl_eeprom_query16(priv, EEPROM_5000_LINK_GENERAL);
break;
case INDIRECT_REGULATORY:
offset = iwl_eeprom_query16(priv, EEPROM_5000_LINK_REGULATORY);
break;
case INDIRECT_CALIBRATION:
offset = iwl_eeprom_query16(priv, EEPROM_5000_LINK_CALIBRATION);
break;
case INDIRECT_PROCESS_ADJST:
offset = iwl_eeprom_query16(priv, EEPROM_5000_LINK_PROCESS_ADJST);
break;
case INDIRECT_OTHERS:
offset = iwl_eeprom_query16(priv, EEPROM_5000_LINK_OTHERS);
break;
default:
IWL_ERR(priv, "illegal indirect type: 0x%X\n",
address & INDIRECT_TYPE_MSK);
break;
}
/* translate the offset from words to byte */
return (address & ADDRESS_MSK) + (offset << 1);
}
u16 iwl5000_eeprom_calib_version(struct iwl_priv *priv)
{
struct iwl_eeprom_calib_hdr {
u8 version;
u8 pa_type;
u16 voltage;
} *hdr;
hdr = (struct iwl_eeprom_calib_hdr *)iwl_eeprom_query_addr(priv,
EEPROM_5000_CALIB_ALL);
return hdr->version;
}
static void iwl5000_gain_computation(struct iwl_priv *priv,
u32 average_noise[NUM_RX_CHAINS],
u16 min_average_noise_antenna_i,
u32 min_average_noise,
u8 default_chain)
{
int i;
s32 delta_g;
struct iwl_chain_noise_data *data = &priv->chain_noise_data;
/*
* Find Gain Code for the chains based on "default chain"
*/
for (i = default_chain + 1; i < NUM_RX_CHAINS; i++) {
if ((data->disconn_array[i])) {
data->delta_gain_code[i] = 0;
continue;
}
delta_g = (1000 * ((s32)average_noise[default_chain] -
(s32)average_noise[i])) / 1500;
/* bound gain by 2 bits value max, 3rd bit is sign */
data->delta_gain_code[i] =
min(abs(delta_g), (long) CHAIN_NOISE_MAX_DELTA_GAIN_CODE);
if (delta_g < 0)
/* set negative sign */
data->delta_gain_code[i] |= (1 << 2);
}
IWL_DEBUG_CALIB(priv, "Delta gains: ANT_B = %d ANT_C = %d\n",
data->delta_gain_code[1], data->delta_gain_code[2]);
if (!data->radio_write) {
struct iwl_calib_chain_noise_gain_cmd cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.hdr.op_code = IWL_PHY_CALIBRATE_CHAIN_NOISE_GAIN_CMD;
cmd.hdr.first_group = 0;
cmd.hdr.groups_num = 1;
cmd.hdr.data_valid = 1;
cmd.delta_gain_1 = data->delta_gain_code[1];
cmd.delta_gain_2 = data->delta_gain_code[2];
iwl_send_cmd_pdu_async(priv, REPLY_PHY_CALIBRATION_CMD,
sizeof(cmd), &cmd, NULL);
data->radio_write = 1;
data->state = IWL_CHAIN_NOISE_CALIBRATED;
}
data->chain_noise_a = 0;
data->chain_noise_b = 0;
data->chain_noise_c = 0;
data->chain_signal_a = 0;
data->chain_signal_b = 0;
data->chain_signal_c = 0;
data->beacon_count = 0;
}
static void iwl5000_chain_noise_reset(struct iwl_priv *priv)
{
struct iwl_chain_noise_data *data = &priv->chain_noise_data;
int ret;
if ((data->state == IWL_CHAIN_NOISE_ALIVE) && iwl_is_associated(priv)) {
struct iwl_calib_chain_noise_reset_cmd cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.hdr.op_code = IWL_PHY_CALIBRATE_CHAIN_NOISE_RESET_CMD;
cmd.hdr.first_group = 0;
cmd.hdr.groups_num = 1;
cmd.hdr.data_valid = 1;
ret = iwl_send_cmd_pdu(priv, REPLY_PHY_CALIBRATION_CMD,
sizeof(cmd), &cmd);
if (ret)
IWL_ERR(priv,
"Could not send REPLY_PHY_CALIBRATION_CMD\n");
data->state = IWL_CHAIN_NOISE_ACCUMULATE;
IWL_DEBUG_CALIB(priv, "Run chain_noise_calibrate\n");
}
}
void iwl5000_rts_tx_cmd_flag(struct ieee80211_tx_info *info,
__le32 *tx_flags)
{
if ((info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS) ||
(info->control.rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT))
*tx_flags |= TX_CMD_FLG_RTS_CTS_MSK;
else
*tx_flags &= ~TX_CMD_FLG_RTS_CTS_MSK;
}
static struct iwl_sensitivity_ranges iwl5000_sensitivity = {
.min_nrg_cck = 95,
.max_nrg_cck = 0, /* not used, set to 0 */
.auto_corr_min_ofdm = 90,
.auto_corr_min_ofdm_mrc = 170,
.auto_corr_min_ofdm_x1 = 120,
.auto_corr_min_ofdm_mrc_x1 = 240,
.auto_corr_max_ofdm = 120,
.auto_corr_max_ofdm_mrc = 210,
.auto_corr_max_ofdm_x1 = 155,
.auto_corr_max_ofdm_mrc_x1 = 290,
.auto_corr_min_cck = 125,
.auto_corr_max_cck = 200,
.auto_corr_min_cck_mrc = 170,
.auto_corr_max_cck_mrc = 400,
.nrg_th_cck = 95,
.nrg_th_ofdm = 95,
.barker_corr_th_min = 190,
.barker_corr_th_min_mrc = 390,
.nrg_th_cca = 62,
};
static struct iwl_sensitivity_ranges iwl5150_sensitivity = {
.min_nrg_cck = 95,
.max_nrg_cck = 0, /* not used, set to 0 */
.auto_corr_min_ofdm = 90,
.auto_corr_min_ofdm_mrc = 170,
.auto_corr_min_ofdm_x1 = 105,
.auto_corr_min_ofdm_mrc_x1 = 220,
.auto_corr_max_ofdm = 120,
.auto_corr_max_ofdm_mrc = 210,
/* max = min for performance bug in 5150 DSP */
.auto_corr_max_ofdm_x1 = 105,
.auto_corr_max_ofdm_mrc_x1 = 220,
.auto_corr_min_cck = 125,
.auto_corr_max_cck = 200,
.auto_corr_min_cck_mrc = 170,
.auto_corr_max_cck_mrc = 400,
.nrg_th_cck = 95,
.nrg_th_ofdm = 95,
.barker_corr_th_min = 190,
.barker_corr_th_min_mrc = 390,
.nrg_th_cca = 62,
};
const u8 *iwl5000_eeprom_query_addr(const struct iwl_priv *priv,
size_t offset)
{
u32 address = eeprom_indirect_address(priv, offset);
BUG_ON(address >= priv->cfg->eeprom_size);
return &priv->eeprom[address];
}
static void iwl5150_set_ct_threshold(struct iwl_priv *priv)
{
const s32 volt2temp_coef = IWL_5150_VOLTAGE_TO_TEMPERATURE_COEFF;
s32 threshold = (s32)CELSIUS_TO_KELVIN(CT_KILL_THRESHOLD_LEGACY) -
iwl_temp_calib_to_offset(priv);
priv->hw_params.ct_kill_threshold = threshold * volt2temp_coef;
}
static void iwl5000_set_ct_threshold(struct iwl_priv *priv)
{
/* want Celsius */
priv->hw_params.ct_kill_threshold = CT_KILL_THRESHOLD_LEGACY;
}
/*
* Calibration
*/
static int iwl5000_set_Xtal_calib(struct iwl_priv *priv)
{
struct iwl_calib_xtal_freq_cmd cmd;
__le16 *xtal_calib =
(__le16 *)iwl_eeprom_query_addr(priv, EEPROM_5000_XTAL);
cmd.hdr.op_code = IWL_PHY_CALIBRATE_CRYSTAL_FRQ_CMD;
cmd.hdr.first_group = 0;
cmd.hdr.groups_num = 1;
cmd.hdr.data_valid = 1;
cmd.cap_pin1 = le16_to_cpu(xtal_calib[0]);
cmd.cap_pin2 = le16_to_cpu(xtal_calib[1]);
return iwl_calib_set(&priv->calib_results[IWL_CALIB_XTAL],
(u8 *)&cmd, sizeof(cmd));
}
static int iwl5000_send_calib_cfg(struct iwl_priv *priv)
{
struct iwl_calib_cfg_cmd calib_cfg_cmd;
struct iwl_host_cmd cmd = {
.id = CALIBRATION_CFG_CMD,
.len = sizeof(struct iwl_calib_cfg_cmd),
.data = &calib_cfg_cmd,
};
memset(&calib_cfg_cmd, 0, sizeof(calib_cfg_cmd));
calib_cfg_cmd.ucd_calib_cfg.once.is_enable = IWL_CALIB_INIT_CFG_ALL;
calib_cfg_cmd.ucd_calib_cfg.once.start = IWL_CALIB_INIT_CFG_ALL;
calib_cfg_cmd.ucd_calib_cfg.once.send_res = IWL_CALIB_INIT_CFG_ALL;
calib_cfg_cmd.ucd_calib_cfg.flags = IWL_CALIB_INIT_CFG_ALL;
return iwl_send_cmd(priv, &cmd);
}
static void iwl5000_rx_calib_result(struct iwl_priv *priv,
struct iwl_rx_mem_buffer *rxb)
{
struct iwl_rx_packet *pkt = rxb_addr(rxb);
struct iwl_calib_hdr *hdr = (struct iwl_calib_hdr *)pkt->u.raw;
int len = le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_FRAME_SIZE_MSK;
int index;
/* reduce the size of the length field itself */
len -= 4;
/* Define the order in which the results will be sent to the runtime
* uCode. iwl_send_calib_results sends them in a row according to their
* index. We sort them here */
switch (hdr->op_code) {
case IWL_PHY_CALIBRATE_DC_CMD:
index = IWL_CALIB_DC;
break;
case IWL_PHY_CALIBRATE_LO_CMD:
index = IWL_CALIB_LO;
break;
case IWL_PHY_CALIBRATE_TX_IQ_CMD:
index = IWL_CALIB_TX_IQ;
break;
case IWL_PHY_CALIBRATE_TX_IQ_PERD_CMD:
index = IWL_CALIB_TX_IQ_PERD;
break;
case IWL_PHY_CALIBRATE_BASE_BAND_CMD:
index = IWL_CALIB_BASE_BAND;
break;
default:
IWL_ERR(priv, "Unknown calibration notification %d\n",
hdr->op_code);
return;
}
iwl_calib_set(&priv->calib_results[index], pkt->u.raw, len);
}
static void iwl5000_rx_calib_complete(struct iwl_priv *priv,
struct iwl_rx_mem_buffer *rxb)
{
IWL_DEBUG_INFO(priv, "Init. calibration is completed, restarting fw.\n");
queue_work(priv->workqueue, &priv->restart);
}
/*
* ucode
*/
static int iwl5000_load_section(struct iwl_priv *priv,
struct fw_desc *image,
u32 dst_addr)
{
dma_addr_t phy_addr = image->p_addr;
u32 byte_cnt = image->len;
iwl_write_direct32(priv,
FH_TCSR_CHNL_TX_CONFIG_REG(FH_SRVC_CHNL),
FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE);
iwl_write_direct32(priv,
FH_SRVC_CHNL_SRAM_ADDR_REG(FH_SRVC_CHNL), dst_addr);
iwl_write_direct32(priv,
FH_TFDIB_CTRL0_REG(FH_SRVC_CHNL),
phy_addr & FH_MEM_TFDIB_DRAM_ADDR_LSB_MSK);
iwl_write_direct32(priv,
FH_TFDIB_CTRL1_REG(FH_SRVC_CHNL),
(iwl_get_dma_hi_addr(phy_addr)
<< FH_MEM_TFDIB_REG1_ADDR_BITSHIFT) | byte_cnt);
iwl_write_direct32(priv,
FH_TCSR_CHNL_TX_BUF_STS_REG(FH_SRVC_CHNL),
1 << FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_NUM |
1 << FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_IDX |
FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID);
iwl_write_direct32(priv,
FH_TCSR_CHNL_TX_CONFIG_REG(FH_SRVC_CHNL),
FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE |
FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE |
FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_ENDTFD);
return 0;
}
static int iwl5000_load_given_ucode(struct iwl_priv *priv,
struct fw_desc *inst_image,
struct fw_desc *data_image)
{
int ret = 0;
ret = iwl5000_load_section(priv, inst_image,
IWL50_RTC_INST_LOWER_BOUND);
if (ret)
return ret;
IWL_DEBUG_INFO(priv, "INST uCode section being loaded...\n");
ret = wait_event_interruptible_timeout(priv->wait_command_queue,
priv->ucode_write_complete, 5 * HZ);
if (ret == -ERESTARTSYS) {
IWL_ERR(priv, "Could not load the INST uCode section due "
"to interrupt\n");
return ret;
}
if (!ret) {
IWL_ERR(priv, "Could not load the INST uCode section\n");
return -ETIMEDOUT;
}
priv->ucode_write_complete = 0;
ret = iwl5000_load_section(
priv, data_image, IWL50_RTC_DATA_LOWER_BOUND);
if (ret)
return ret;
IWL_DEBUG_INFO(priv, "DATA uCode section being loaded...\n");
ret = wait_event_interruptible_timeout(priv->wait_command_queue,
priv->ucode_write_complete, 5 * HZ);
if (ret == -ERESTARTSYS) {
IWL_ERR(priv, "Could not load the INST uCode section due "
"to interrupt\n");
return ret;
} else if (!ret) {
IWL_ERR(priv, "Could not load the DATA uCode section\n");
return -ETIMEDOUT;
} else
ret = 0;
priv->ucode_write_complete = 0;
return ret;
}
int iwl5000_load_ucode(struct iwl_priv *priv)
{
int ret = 0;
/* check whether init ucode should be loaded, or rather runtime ucode */
if (priv->ucode_init.len && (priv->ucode_type == UCODE_NONE)) {
IWL_DEBUG_INFO(priv, "Init ucode found. Loading init ucode...\n");
ret = iwl5000_load_given_ucode(priv,
&priv->ucode_init, &priv->ucode_init_data);
if (!ret) {
IWL_DEBUG_INFO(priv, "Init ucode load complete.\n");
priv->ucode_type = UCODE_INIT;
}
} else {
IWL_DEBUG_INFO(priv, "Init ucode not found, or already loaded. "
"Loading runtime ucode...\n");
ret = iwl5000_load_given_ucode(priv,
&priv->ucode_code, &priv->ucode_data);
if (!ret) {
IWL_DEBUG_INFO(priv, "Runtime ucode load complete.\n");
priv->ucode_type = UCODE_RT;
}
}
return ret;
}
void iwl5000_init_alive_start(struct iwl_priv *priv)
{
int ret = 0;
/* Check alive response for "valid" sign from uCode */
if (priv->card_alive_init.is_valid != UCODE_VALID_OK) {
/* We had an error bringing up the hardware, so take it
* all the way back down so we can try again */
IWL_DEBUG_INFO(priv, "Initialize Alive failed.\n");
goto restart;
}
/* initialize uCode was loaded... verify inst image.
* This is a paranoid check, because we would not have gotten the
* "initialize" alive if code weren't properly loaded. */
if (iwl_verify_ucode(priv)) {
/* Runtime instruction load was bad;
* take it all the way back down so we can try again */
IWL_DEBUG_INFO(priv, "Bad \"initialize\" uCode load.\n");
goto restart;
}
iwl_clear_stations_table(priv);
ret = priv->cfg->ops->lib->alive_notify(priv);
if (ret) {
IWL_WARN(priv,
"Could not complete ALIVE transition: %d\n", ret);
goto restart;
}
iwl5000_send_calib_cfg(priv);
return;
restart:
/* real restart (first load init_ucode) */
queue_work(priv->workqueue, &priv->restart);
}
static void iwl5000_set_wr_ptrs(struct iwl_priv *priv,
int txq_id, u32 index)
{
iwl_write_direct32(priv, HBUS_TARG_WRPTR,
(index & 0xff) | (txq_id << 8));
iwl_write_prph(priv, IWL50_SCD_QUEUE_RDPTR(txq_id), index);
}
static void iwl5000_tx_queue_set_status(struct iwl_priv *priv,
struct iwl_tx_queue *txq,
int tx_fifo_id, int scd_retry)
{
int txq_id = txq->q.id;
int active = test_bit(txq_id, &priv->txq_ctx_active_msk) ? 1 : 0;
iwl_write_prph(priv, IWL50_SCD_QUEUE_STATUS_BITS(txq_id),
(active << IWL50_SCD_QUEUE_STTS_REG_POS_ACTIVE) |
(tx_fifo_id << IWL50_SCD_QUEUE_STTS_REG_POS_TXF) |
(1 << IWL50_SCD_QUEUE_STTS_REG_POS_WSL) |
IWL50_SCD_QUEUE_STTS_REG_MSK);
txq->sched_retry = scd_retry;
IWL_DEBUG_INFO(priv, "%s %s Queue %d on AC %d\n",
active ? "Activate" : "Deactivate",
scd_retry ? "BA" : "AC", txq_id, tx_fifo_id);
}
int iwl5000_alive_notify(struct iwl_priv *priv)
{
u32 a;
unsigned long flags;
int i, chan;
u32 reg_val;
spin_lock_irqsave(&priv->lock, flags);
priv->scd_base_addr = iwl_read_prph(priv, IWL50_SCD_SRAM_BASE_ADDR);
a = priv->scd_base_addr + IWL50_SCD_CONTEXT_DATA_OFFSET;
for (; a < priv->scd_base_addr + IWL50_SCD_TX_STTS_BITMAP_OFFSET;
a += 4)
iwl_write_targ_mem(priv, a, 0);
for (; a < priv->scd_base_addr + IWL50_SCD_TRANSLATE_TBL_OFFSET;
a += 4)
iwl_write_targ_mem(priv, a, 0);
for (; a < priv->scd_base_addr +
IWL50_SCD_TRANSLATE_TBL_OFFSET_QUEUE(priv->hw_params.max_txq_num); a += 4)
iwl_write_targ_mem(priv, a, 0);
iwl_write_prph(priv, IWL50_SCD_DRAM_BASE_ADDR,
priv->scd_bc_tbls.dma >> 10);
/* Enable DMA channel */
for (chan = 0; chan < FH50_TCSR_CHNL_NUM ; chan++)
iwl_write_direct32(priv, FH_TCSR_CHNL_TX_CONFIG_REG(chan),
FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE |
FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE);
/* Update FH chicken bits */
reg_val = iwl_read_direct32(priv, FH_TX_CHICKEN_BITS_REG);
iwl_write_direct32(priv, FH_TX_CHICKEN_BITS_REG,
reg_val | FH_TX_CHICKEN_BITS_SCD_AUTO_RETRY_EN);
iwl_write_prph(priv, IWL50_SCD_QUEUECHAIN_SEL,
IWL50_SCD_QUEUECHAIN_SEL_ALL(priv->hw_params.max_txq_num));
iwl_write_prph(priv, IWL50_SCD_AGGR_SEL, 0);
/* initiate the queues */
for (i = 0; i < priv->hw_params.max_txq_num; i++) {
iwl_write_prph(priv, IWL50_SCD_QUEUE_RDPTR(i), 0);
iwl_write_direct32(priv, HBUS_TARG_WRPTR, 0 | (i << 8));
iwl_write_targ_mem(priv, priv->scd_base_addr +
IWL50_SCD_CONTEXT_QUEUE_OFFSET(i), 0);
iwl_write_targ_mem(priv, priv->scd_base_addr +
IWL50_SCD_CONTEXT_QUEUE_OFFSET(i) +
sizeof(u32),
((SCD_WIN_SIZE <<
IWL50_SCD_QUEUE_CTX_REG2_WIN_SIZE_POS) &
IWL50_SCD_QUEUE_CTX_REG2_WIN_SIZE_MSK) |
((SCD_FRAME_LIMIT <<
IWL50_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS) &
IWL50_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK));
}
iwl_write_prph(priv, IWL50_SCD_INTERRUPT_MASK,
IWL_MASK(0, priv->hw_params.max_txq_num));
/* Activate all Tx DMA/FIFO channels */
priv->cfg->ops->lib->txq_set_sched(priv, IWL_MASK(0, 7));
iwl5000_set_wr_ptrs(priv, IWL_CMD_QUEUE_NUM, 0);
/* map qos queues to fifos one-to-one */
for (i = 0; i < ARRAY_SIZE(iwl5000_default_queue_to_tx_fifo); i++) {
int ac = iwl5000_default_queue_to_tx_fifo[i];
iwl_txq_ctx_activate(priv, i);
iwl5000_tx_queue_set_status(priv, &priv->txq[i], ac, 0);
}
/*
* TODO - need to initialize these queues and map them to FIFOs
* in the loop above, not only mark them as active. We do this
* because we want the first aggregation queue to be queue #10,
* but do not use 8 or 9 otherwise yet.
*/
iwl_txq_ctx_activate(priv, 7);
iwl_txq_ctx_activate(priv, 8);
iwl_txq_ctx_activate(priv, 9);
spin_unlock_irqrestore(&priv->lock, flags);
iwl_send_wimax_coex(priv);
iwl5000_set_Xtal_calib(priv);
iwl_send_calib_results(priv);
return 0;
}
int iwl5000_hw_set_hw_params(struct iwl_priv *priv)
{
if (priv->cfg->mod_params->num_of_queues >= IWL_MIN_NUM_QUEUES &&
priv->cfg->mod_params->num_of_queues <= IWL50_NUM_QUEUES)
priv->cfg->num_of_queues =
priv->cfg->mod_params->num_of_queues;
priv->hw_params.max_txq_num = priv->cfg->num_of_queues;
priv->hw_params.dma_chnl_num = FH50_TCSR_CHNL_NUM;
priv->hw_params.scd_bc_tbls_size =
priv->cfg->num_of_queues *
sizeof(struct iwl5000_scd_bc_tbl);
priv->hw_params.tfd_size = sizeof(struct iwl_tfd);
priv->hw_params.max_stations = IWL5000_STATION_COUNT;
priv->hw_params.bcast_sta_id = IWL5000_BROADCAST_ID;
priv->hw_params.max_data_size = IWL50_RTC_DATA_SIZE;
priv->hw_params.max_inst_size = IWL50_RTC_INST_SIZE;
priv->hw_params.max_bsm_size = 0;
priv->hw_params.ht40_channel = BIT(IEEE80211_BAND_2GHZ) |
BIT(IEEE80211_BAND_5GHZ);
priv->hw_params.rx_wrt_ptr_reg = FH_RSCSR_CHNL0_WPTR;
priv->hw_params.tx_chains_num = num_of_ant(priv->cfg->valid_tx_ant);
priv->hw_params.rx_chains_num = num_of_ant(priv->cfg->valid_rx_ant);
priv->hw_params.valid_tx_ant = priv->cfg->valid_tx_ant;
priv->hw_params.valid_rx_ant = priv->cfg->valid_rx_ant;
if (priv->cfg->ops->lib->temp_ops.set_ct_kill)
priv->cfg->ops->lib->temp_ops.set_ct_kill(priv);
/* Set initial sensitivity parameters */
/* Set initial calibration set */
switch (priv->hw_rev & CSR_HW_REV_TYPE_MSK) {
case CSR_HW_REV_TYPE_5150:
priv->hw_params.sens = &iwl5150_sensitivity;
priv->hw_params.calib_init_cfg =
BIT(IWL_CALIB_DC) |
BIT(IWL_CALIB_LO) |
BIT(IWL_CALIB_TX_IQ) |
BIT(IWL_CALIB_BASE_BAND);
break;
default:
priv->hw_params.sens = &iwl5000_sensitivity;
priv->hw_params.calib_init_cfg =
BIT(IWL_CALIB_XTAL) |
BIT(IWL_CALIB_LO) |
BIT(IWL_CALIB_TX_IQ) |
BIT(IWL_CALIB_TX_IQ_PERD) |
BIT(IWL_CALIB_BASE_BAND);
break;
}
return 0;
}
/**
* iwl5000_txq_update_byte_cnt_tbl - Set up entry in Tx byte-count array
*/
void iwl5000_txq_update_byte_cnt_tbl(struct iwl_priv *priv,
struct iwl_tx_queue *txq,
u16 byte_cnt)
{
struct iwl5000_scd_bc_tbl *scd_bc_tbl = priv->scd_bc_tbls.addr;
int write_ptr = txq->q.write_ptr;
int txq_id = txq->q.id;
u8 sec_ctl = 0;
u8 sta_id = 0;
u16 len = byte_cnt + IWL_TX_CRC_SIZE + IWL_TX_DELIMITER_SIZE;
__le16 bc_ent;
WARN_ON(len > 0xFFF || write_ptr >= TFD_QUEUE_SIZE_MAX);
if (txq_id != IWL_CMD_QUEUE_NUM) {
sta_id = txq->cmd[txq->q.write_ptr]->cmd.tx.sta_id;
sec_ctl = txq->cmd[txq->q.write_ptr]->cmd.tx.sec_ctl;
switch (sec_ctl & TX_CMD_SEC_MSK) {
case TX_CMD_SEC_CCM:
len += CCMP_MIC_LEN;
break;
case TX_CMD_SEC_TKIP:
len += TKIP_ICV_LEN;
break;
case TX_CMD_SEC_WEP:
len += WEP_IV_LEN + WEP_ICV_LEN;
break;
}
}
bc_ent = cpu_to_le16((len & 0xFFF) | (sta_id << 12));
scd_bc_tbl[txq_id].tfd_offset[write_ptr] = bc_ent;
if (txq->q.write_ptr < TFD_QUEUE_SIZE_BC_DUP)
scd_bc_tbl[txq_id].
tfd_offset[TFD_QUEUE_SIZE_MAX + write_ptr] = bc_ent;
}
void iwl5000_txq_inval_byte_cnt_tbl(struct iwl_priv *priv,
struct iwl_tx_queue *txq)
{
struct iwl5000_scd_bc_tbl *scd_bc_tbl = priv->scd_bc_tbls.addr;
int txq_id = txq->q.id;
int read_ptr = txq->q.read_ptr;
u8 sta_id = 0;
__le16 bc_ent;
WARN_ON(read_ptr >= TFD_QUEUE_SIZE_MAX);
if (txq_id != IWL_CMD_QUEUE_NUM)
sta_id = txq->cmd[read_ptr]->cmd.tx.sta_id;
bc_ent = cpu_to_le16(1 | (sta_id << 12));
scd_bc_tbl[txq_id].tfd_offset[read_ptr] = bc_ent;
if (txq->q.write_ptr < TFD_QUEUE_SIZE_BC_DUP)
scd_bc_tbl[txq_id].
tfd_offset[TFD_QUEUE_SIZE_MAX + read_ptr] = bc_ent;
}
static int iwl5000_tx_queue_set_q2ratid(struct iwl_priv *priv, u16 ra_tid,
u16 txq_id)
{
u32 tbl_dw_addr;
u32 tbl_dw;
u16 scd_q2ratid;
scd_q2ratid = ra_tid & IWL_SCD_QUEUE_RA_TID_MAP_RATID_MSK;
tbl_dw_addr = priv->scd_base_addr +
IWL50_SCD_TRANSLATE_TBL_OFFSET_QUEUE(txq_id);
tbl_dw = iwl_read_targ_mem(priv, tbl_dw_addr);
if (txq_id & 0x1)
tbl_dw = (scd_q2ratid << 16) | (tbl_dw & 0x0000FFFF);
else
tbl_dw = scd_q2ratid | (tbl_dw & 0xFFFF0000);
iwl_write_targ_mem(priv, tbl_dw_addr, tbl_dw);
return 0;
}
static void iwl5000_tx_queue_stop_scheduler(struct iwl_priv *priv, u16 txq_id)
{
/* Simply stop the queue, but don't change any configuration;
* the SCD_ACT_EN bit is the write-enable mask for the ACTIVE bit. */
iwl_write_prph(priv,
IWL50_SCD_QUEUE_STATUS_BITS(txq_id),
(0 << IWL50_SCD_QUEUE_STTS_REG_POS_ACTIVE)|
(1 << IWL50_SCD_QUEUE_STTS_REG_POS_SCD_ACT_EN));
}
int iwl5000_txq_agg_enable(struct iwl_priv *priv, int txq_id,
int tx_fifo, int sta_id, int tid, u16 ssn_idx)
{
unsigned long flags;
u16 ra_tid;
if ((IWL50_FIRST_AMPDU_QUEUE > txq_id) ||
(IWL50_FIRST_AMPDU_QUEUE + priv->cfg->num_of_ampdu_queues
<= txq_id)) {
IWL_WARN(priv,
"queue number out of range: %d, must be %d to %d\n",
txq_id, IWL50_FIRST_AMPDU_QUEUE,
IWL50_FIRST_AMPDU_QUEUE +
priv->cfg->num_of_ampdu_queues - 1);
return -EINVAL;
}
ra_tid = BUILD_RAxTID(sta_id, tid);
/* Modify device's station table to Tx this TID */
iwl_sta_tx_modify_enable_tid(priv, sta_id, tid);
spin_lock_irqsave(&priv->lock, flags);
/* Stop this Tx queue before configuring it */
iwl5000_tx_queue_stop_scheduler(priv, txq_id);
/* Map receiver-address / traffic-ID to this queue */
iwl5000_tx_queue_set_q2ratid(priv, ra_tid, txq_id);
/* Set this queue as a chain-building queue */
iwl_set_bits_prph(priv, IWL50_SCD_QUEUECHAIN_SEL, (1<<txq_id));
/* enable aggregations for the queue */
iwl_set_bits_prph(priv, IWL50_SCD_AGGR_SEL, (1<<txq_id));
/* Place first TFD at index corresponding to start sequence number.
* Assumes that ssn_idx is valid (!= 0xFFF) */
priv->txq[txq_id].q.read_ptr = (ssn_idx & 0xff);
priv->txq[txq_id].q.write_ptr = (ssn_idx & 0xff);
iwl5000_set_wr_ptrs(priv, txq_id, ssn_idx);
/* Set up Tx window size and frame limit for this queue */
iwl_write_targ_mem(priv, priv->scd_base_addr +
IWL50_SCD_CONTEXT_QUEUE_OFFSET(txq_id) +
sizeof(u32),
((SCD_WIN_SIZE <<
IWL50_SCD_QUEUE_CTX_REG2_WIN_SIZE_POS) &
IWL50_SCD_QUEUE_CTX_REG2_WIN_SIZE_MSK) |
((SCD_FRAME_LIMIT <<
IWL50_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS) &
IWL50_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK));
iwl_set_bits_prph(priv, IWL50_SCD_INTERRUPT_MASK, (1 << txq_id));
/* Set up Status area in SRAM, map to Tx DMA/FIFO, activate the queue */
iwl5000_tx_queue_set_status(priv, &priv->txq[txq_id], tx_fifo, 1);
spin_unlock_irqrestore(&priv->lock, flags);
return 0;
}
int iwl5000_txq_agg_disable(struct iwl_priv *priv, u16 txq_id,
u16 ssn_idx, u8 tx_fifo)
{
if ((IWL50_FIRST_AMPDU_QUEUE > txq_id) ||
(IWL50_FIRST_AMPDU_QUEUE + priv->cfg->num_of_ampdu_queues
<= txq_id)) {
IWL_ERR(priv,
"queue number out of range: %d, must be %d to %d\n",
txq_id, IWL50_FIRST_AMPDU_QUEUE,
IWL50_FIRST_AMPDU_QUEUE +
priv->cfg->num_of_ampdu_queues - 1);
return -EINVAL;
}
iwl5000_tx_queue_stop_scheduler(priv, txq_id);
iwl_clear_bits_prph(priv, IWL50_SCD_AGGR_SEL, (1 << txq_id));
priv->txq[txq_id].q.read_ptr = (ssn_idx & 0xff);
priv->txq[txq_id].q.write_ptr = (ssn_idx & 0xff);
/* supposes that ssn_idx is valid (!= 0xFFF) */
iwl5000_set_wr_ptrs(priv, txq_id, ssn_idx);
iwl_clear_bits_prph(priv, IWL50_SCD_INTERRUPT_MASK, (1 << txq_id));
iwl_txq_ctx_deactivate(priv, txq_id);
iwl5000_tx_queue_set_status(priv, &priv->txq[txq_id], tx_fifo, 0);
return 0;
}
u16 iwl5000_build_addsta_hcmd(const struct iwl_addsta_cmd *cmd, u8 *data)
{
u16 size = (u16)sizeof(struct iwl_addsta_cmd);
struct iwl_addsta_cmd *addsta = (struct iwl_addsta_cmd *)data;
memcpy(addsta, cmd, size);
/* resrved in 5000 */
addsta->rate_n_flags = cpu_to_le16(0);
return size;
}
/*
* Activate/Deactivate Tx DMA/FIFO channels according tx fifos mask
* must be called under priv->lock and mac access
*/
void iwl5000_txq_set_sched(struct iwl_priv *priv, u32 mask)
{
iwl_write_prph(priv, IWL50_SCD_TXFACT, mask);
}
static inline u32 iwl5000_get_scd_ssn(struct iwl5000_tx_resp *tx_resp)
{
return le32_to_cpup((__le32 *)&tx_resp->status +
tx_resp->frame_count) & MAX_SN;
}
static int iwl5000_tx_status_reply_tx(struct iwl_priv *priv,
struct iwl_ht_agg *agg,
struct iwl5000_tx_resp *tx_resp,
int txq_id, u16 start_idx)
{
u16 status;
struct agg_tx_status *frame_status = &tx_resp->status;
struct ieee80211_tx_info *info = NULL;
struct ieee80211_hdr *hdr = NULL;
u32 rate_n_flags = le32_to_cpu(tx_resp->rate_n_flags);
int i, sh, idx;
u16 seq;
if (agg->wait_for_ba)
IWL_DEBUG_TX_REPLY(priv, "got tx response w/o block-ack\n");
agg->frame_count = tx_resp->frame_count;
agg->start_idx = start_idx;
agg->rate_n_flags = rate_n_flags;
agg->bitmap = 0;
/* # frames attempted by Tx command */
if (agg->frame_count == 1) {
/* Only one frame was attempted; no block-ack will arrive */
status = le16_to_cpu(frame_status[0].status);
idx = start_idx;
/* FIXME: code repetition */
IWL_DEBUG_TX_REPLY(priv, "FrameCnt = %d, StartIdx=%d idx=%d\n",
agg->frame_count, agg->start_idx, idx);
info = IEEE80211_SKB_CB(priv->txq[txq_id].txb[idx].skb[0]);
info->status.rates[0].count = tx_resp->failure_frame + 1;
info->flags &= ~IEEE80211_TX_CTL_AMPDU;
info->flags |= iwl_tx_status_to_mac80211(status);
iwl_hwrate_to_tx_control(priv, rate_n_flags, info);
/* FIXME: code repetition end */
IWL_DEBUG_TX_REPLY(priv, "1 Frame 0x%x failure :%d\n",
status & 0xff, tx_resp->failure_frame);
IWL_DEBUG_TX_REPLY(priv, "Rate Info rate_n_flags=%x\n", rate_n_flags);
agg->wait_for_ba = 0;
} else {
/* Two or more frames were attempted; expect block-ack */
u64 bitmap = 0;
int start = agg->start_idx;
/* Construct bit-map of pending frames within Tx window */
for (i = 0; i < agg->frame_count; i++) {
u16 sc;
status = le16_to_cpu(frame_status[i].status);
seq = le16_to_cpu(frame_status[i].sequence);
idx = SEQ_TO_INDEX(seq);
txq_id = SEQ_TO_QUEUE(seq);
if (status & (AGG_TX_STATE_FEW_BYTES_MSK |
AGG_TX_STATE_ABORT_MSK))
continue;
IWL_DEBUG_TX_REPLY(priv, "FrameCnt = %d, txq_id=%d idx=%d\n",
agg->frame_count, txq_id, idx);
hdr = iwl_tx_queue_get_hdr(priv, txq_id, idx);
if (!hdr) {
IWL_ERR(priv,
"BUG_ON idx doesn't point to valid skb"
" idx=%d, txq_id=%d\n", idx, txq_id);
return -1;
}
sc = le16_to_cpu(hdr->seq_ctrl);
if (idx != (SEQ_TO_SN(sc) & 0xff)) {
IWL_ERR(priv,
"BUG_ON idx doesn't match seq control"
" idx=%d, seq_idx=%d, seq=%d\n",
idx, SEQ_TO_SN(sc),
hdr->seq_ctrl);
return -1;
}
IWL_DEBUG_TX_REPLY(priv, "AGG Frame i=%d idx %d seq=%d\n",
i, idx, SEQ_TO_SN(sc));
sh = idx - start;
if (sh > 64) {
sh = (start - idx) + 0xff;
bitmap = bitmap << sh;
sh = 0;
start = idx;
} else if (sh < -64)
sh = 0xff - (start - idx);
else if (sh < 0) {
sh = start - idx;
start = idx;
bitmap = bitmap << sh;
sh = 0;
}
bitmap |= 1ULL << sh;
IWL_DEBUG_TX_REPLY(priv, "start=%d bitmap=0x%llx\n",
start, (unsigned long long)bitmap);
}
agg->bitmap = bitmap;
agg->start_idx = start;
IWL_DEBUG_TX_REPLY(priv, "Frames %d start_idx=%d bitmap=0x%llx\n",
agg->frame_count, agg->start_idx,
(unsigned long long)agg->bitmap);
if (bitmap)
agg->wait_for_ba = 1;
}
return 0;
}
static void iwl5000_rx_reply_tx(struct iwl_priv *priv,
struct iwl_rx_mem_buffer *rxb)
{
struct iwl_rx_packet *pkt = rxb_addr(rxb);
u16 sequence = le16_to_cpu(pkt->hdr.sequence);
int txq_id = SEQ_TO_QUEUE(sequence);
int index = SEQ_TO_INDEX(sequence);
struct iwl_tx_queue *txq = &priv->txq[txq_id];
struct ieee80211_tx_info *info;
struct iwl5000_tx_resp *tx_resp = (void *)&pkt->u.raw[0];
u32 status = le16_to_cpu(tx_resp->status.status);
int tid;
int sta_id;
int freed;
if ((index >= txq->q.n_bd) || (iwl_queue_used(&txq->q, index) == 0)) {
IWL_ERR(priv, "Read index for DMA queue txq_id (%d) index %d "
"is out of range [0-%d] %d %d\n", txq_id,
index, txq->q.n_bd, txq->q.write_ptr,
txq->q.read_ptr);
return;
}
info = IEEE80211_SKB_CB(txq->txb[txq->q.read_ptr].skb[0]);
memset(&info->status, 0, sizeof(info->status));
tid = (tx_resp->ra_tid & IWL50_TX_RES_TID_MSK) >> IWL50_TX_RES_TID_POS;
sta_id = (tx_resp->ra_tid & IWL50_TX_RES_RA_MSK) >> IWL50_TX_RES_RA_POS;
if (txq->sched_retry) {
const u32 scd_ssn = iwl5000_get_scd_ssn(tx_resp);
struct iwl_ht_agg *agg = NULL;
agg = &priv->stations[sta_id].tid[tid].agg;
iwl5000_tx_status_reply_tx(priv, agg, tx_resp, txq_id, index);
/* check if BAR is needed */
if ((tx_resp->frame_count == 1) && !iwl_is_tx_success(status))
info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
if (txq->q.read_ptr != (scd_ssn & 0xff)) {
index = iwl_queue_dec_wrap(scd_ssn & 0xff, txq->q.n_bd);
IWL_DEBUG_TX_REPLY(priv, "Retry scheduler reclaim "
"scd_ssn=%d idx=%d txq=%d swq=%d\n",
scd_ssn , index, txq_id, txq->swq_id);
freed = iwl_tx_queue_reclaim(priv, txq_id, index);
priv->stations[sta_id].tid[tid].tfds_in_queue -= freed;
if (priv->mac80211_registered &&
(iwl_queue_space(&txq->q) > txq->q.low_mark) &&
(agg->state != IWL_EMPTYING_HW_QUEUE_DELBA)) {
if (agg->state == IWL_AGG_OFF)
iwl_wake_queue(priv, txq_id);
else
iwl_wake_queue(priv, txq->swq_id);
}
}
} else {
BUG_ON(txq_id != txq->swq_id);
info->status.rates[0].count = tx_resp->failure_frame + 1;
info->flags |= iwl_tx_status_to_mac80211(status);
iwl_hwrate_to_tx_control(priv,
le32_to_cpu(tx_resp->rate_n_flags),
info);
IWL_DEBUG_TX_REPLY(priv, "TXQ %d status %s (0x%08x) rate_n_flags "
"0x%x retries %d\n",
txq_id,
iwl_get_tx_fail_reason(status), status,
le32_to_cpu(tx_resp->rate_n_flags),
tx_resp->failure_frame);
freed = iwl_tx_queue_reclaim(priv, txq_id, index);
if (ieee80211_is_data_qos(tx_resp->frame_ctrl))
priv->stations[sta_id].tid[tid].tfds_in_queue -= freed;
if (priv->mac80211_registered &&
(iwl_queue_space(&txq->q) > txq->q.low_mark))
iwl_wake_queue(priv, txq_id);
}
if (ieee80211_is_data_qos(tx_resp->frame_ctrl))
iwl_txq_check_empty(priv, sta_id, tid, txq_id);
if (iwl_check_bits(status, TX_ABORT_REQUIRED_MSK))
IWL_ERR(priv, "TODO: Implement Tx ABORT REQUIRED!!!\n");
}
/* Currently 5000 is the superset of everything */
u16 iwl5000_get_hcmd_size(u8 cmd_id, u16 len)
{
return len;
}
void iwl5000_setup_deferred_work(struct iwl_priv *priv)
{
/* in 5000 the tx power calibration is done in uCode */
priv->disable_tx_power_cal = 1;
}
void iwl5000_rx_handler_setup(struct iwl_priv *priv)
{
/* init calibration handlers */
priv->rx_handlers[CALIBRATION_RES_NOTIFICATION] =
iwl5000_rx_calib_result;
priv->rx_handlers[CALIBRATION_COMPLETE_NOTIFICATION] =
iwl5000_rx_calib_complete;
priv->rx_handlers[REPLY_TX] = iwl5000_rx_reply_tx;
}
int iwl5000_hw_valid_rtc_data_addr(u32 addr)
{
return (addr >= IWL50_RTC_DATA_LOWER_BOUND) &&
(addr < IWL50_RTC_DATA_UPPER_BOUND);
}
static int iwl5000_send_rxon_assoc(struct iwl_priv *priv)
{
int ret = 0;
struct iwl5000_rxon_assoc_cmd rxon_assoc;
const struct iwl_rxon_cmd *rxon1 = &priv->staging_rxon;
const struct iwl_rxon_cmd *rxon2 = &priv->active_rxon;
if ((rxon1->flags == rxon2->flags) &&
(rxon1->filter_flags == rxon2->filter_flags) &&
(rxon1->cck_basic_rates == rxon2->cck_basic_rates) &&
(rxon1->ofdm_ht_single_stream_basic_rates ==
rxon2->ofdm_ht_single_stream_basic_rates) &&
(rxon1->ofdm_ht_dual_stream_basic_rates ==
rxon2->ofdm_ht_dual_stream_basic_rates) &&
(rxon1->ofdm_ht_triple_stream_basic_rates ==
rxon2->ofdm_ht_triple_stream_basic_rates) &&
(rxon1->acquisition_data == rxon2->acquisition_data) &&
(rxon1->rx_chain == rxon2->rx_chain) &&
(rxon1->ofdm_basic_rates == rxon2->ofdm_basic_rates)) {
IWL_DEBUG_INFO(priv, "Using current RXON_ASSOC. Not resending.\n");
return 0;
}
rxon_assoc.flags = priv->staging_rxon.flags;
rxon_assoc.filter_flags = priv->staging_rxon.filter_flags;
rxon_assoc.ofdm_basic_rates = priv->staging_rxon.ofdm_basic_rates;
rxon_assoc.cck_basic_rates = priv->staging_rxon.cck_basic_rates;
rxon_assoc.reserved1 = 0;
rxon_assoc.reserved2 = 0;
rxon_assoc.reserved3 = 0;
rxon_assoc.ofdm_ht_single_stream_basic_rates =
priv->staging_rxon.ofdm_ht_single_stream_basic_rates;
rxon_assoc.ofdm_ht_dual_stream_basic_rates =
priv->staging_rxon.ofdm_ht_dual_stream_basic_rates;
rxon_assoc.rx_chain_select_flags = priv->staging_rxon.rx_chain;
rxon_assoc.ofdm_ht_triple_stream_basic_rates =
priv->staging_rxon.ofdm_ht_triple_stream_basic_rates;
rxon_assoc.acquisition_data = priv->staging_rxon.acquisition_data;
ret = iwl_send_cmd_pdu_async(priv, REPLY_RXON_ASSOC,
sizeof(rxon_assoc), &rxon_assoc, NULL);
if (ret)
return ret;
return ret;
}
int iwl5000_send_tx_power(struct iwl_priv *priv)
{
struct iwl5000_tx_power_dbm_cmd tx_power_cmd;
u8 tx_ant_cfg_cmd;
/* half dBm need to multiply */
tx_power_cmd.global_lmt = (s8)(2 * priv->tx_power_user_lmt);
if (priv->tx_power_lmt_in_half_dbm &&
priv->tx_power_lmt_in_half_dbm < tx_power_cmd.global_lmt) {
/*
* For the newer devices which using enhanced/extend tx power
* table in EEPROM, the format is in half dBm. driver need to
* convert to dBm format before report to mac80211.
* By doing so, there is a possibility of 1/2 dBm resolution
* lost. driver will perform "round-up" operation before
* reporting, but it will cause 1/2 dBm tx power over the
* regulatory limit. Perform the checking here, if the
* "tx_power_user_lmt" is higher than EEPROM value (in
* half-dBm format), lower the tx power based on EEPROM
*/
tx_power_cmd.global_lmt = priv->tx_power_lmt_in_half_dbm;
}
tx_power_cmd.flags = IWL50_TX_POWER_NO_CLOSED;
tx_power_cmd.srv_chan_lmt = IWL50_TX_POWER_AUTO;
if (IWL_UCODE_API(priv->ucode_ver) == 1)
tx_ant_cfg_cmd = REPLY_TX_POWER_DBM_CMD_V1;
else
tx_ant_cfg_cmd = REPLY_TX_POWER_DBM_CMD;
return iwl_send_cmd_pdu_async(priv, tx_ant_cfg_cmd,
sizeof(tx_power_cmd), &tx_power_cmd,
NULL);
}
void iwl5000_temperature(struct iwl_priv *priv)
{
/* store temperature from statistics (in Celsius) */
priv->temperature = le32_to_cpu(priv->statistics.general.temperature);
iwl_tt_handler(priv);
}
static void iwl5150_temperature(struct iwl_priv *priv)
{
u32 vt = 0;
s32 offset = iwl_temp_calib_to_offset(priv);
vt = le32_to_cpu(priv->statistics.general.temperature);
vt = vt / IWL_5150_VOLTAGE_TO_TEMPERATURE_COEFF + offset;
/* now vt hold the temperature in Kelvin */
priv->temperature = KELVIN_TO_CELSIUS(vt);
iwl_tt_handler(priv);
}
/* Calc max signal level (dBm) among 3 possible receivers */
int iwl5000_calc_rssi(struct iwl_priv *priv,
struct iwl_rx_phy_res *rx_resp)
{
/* data from PHY/DSP regarding signal strength, etc.,
* contents are always there, not configurable by host
*/
struct iwl5000_non_cfg_phy *ncphy =
(struct iwl5000_non_cfg_phy *)rx_resp->non_cfg_phy_buf;
u32 val, rssi_a, rssi_b, rssi_c, max_rssi;
u8 agc;
val = le32_to_cpu(ncphy->non_cfg_phy[IWL50_RX_RES_AGC_IDX]);
agc = (val & IWL50_OFDM_AGC_MSK) >> IWL50_OFDM_AGC_BIT_POS;
/* Find max rssi among 3 possible receivers.
* These values are measured by the digital signal processor (DSP).
* They should stay fairly constant even as the signal strength varies,
* if the radio's automatic gain control (AGC) is working right.
* AGC value (see below) will provide the "interesting" info.
*/
val = le32_to_cpu(ncphy->non_cfg_phy[IWL50_RX_RES_RSSI_AB_IDX]);
rssi_a = (val & IWL50_OFDM_RSSI_A_MSK) >> IWL50_OFDM_RSSI_A_BIT_POS;
rssi_b = (val & IWL50_OFDM_RSSI_B_MSK) >> IWL50_OFDM_RSSI_B_BIT_POS;
val = le32_to_cpu(ncphy->non_cfg_phy[IWL50_RX_RES_RSSI_C_IDX]);
rssi_c = (val & IWL50_OFDM_RSSI_C_MSK) >> IWL50_OFDM_RSSI_C_BIT_POS;
max_rssi = max_t(u32, rssi_a, rssi_b);
max_rssi = max_t(u32, max_rssi, rssi_c);
IWL_DEBUG_STATS(priv, "Rssi In A %d B %d C %d Max %d AGC dB %d\n",
rssi_a, rssi_b, rssi_c, max_rssi, agc);
/* dBm = max_rssi dB - agc dB - constant.
* Higher AGC (higher radio gain) means lower signal. */
return max_rssi - agc - IWL49_RSSI_OFFSET;
}
static int iwl5000_send_tx_ant_config(struct iwl_priv *priv, u8 valid_tx_ant)
{
struct iwl_tx_ant_config_cmd tx_ant_cmd = {
.valid = cpu_to_le32(valid_tx_ant),
};
if (IWL_UCODE_API(priv->ucode_ver) > 1) {
IWL_DEBUG_HC(priv, "select valid tx ant: %u\n", valid_tx_ant);
return iwl_send_cmd_pdu(priv, TX_ANT_CONFIGURATION_CMD,
sizeof(struct iwl_tx_ant_config_cmd),
&tx_ant_cmd);
} else {
IWL_DEBUG_HC(priv, "TX_ANT_CONFIGURATION_CMD not supported\n");
return -EOPNOTSUPP;
}
}
#define IWL5000_UCODE_GET(item) \
static u32 iwl5000_ucode_get_##item(const struct iwl_ucode_header *ucode,\
u32 api_ver) \
{ \
if (api_ver <= 2) \
return le32_to_cpu(ucode->u.v1.item); \
return le32_to_cpu(ucode->u.v2.item); \
}
static u32 iwl5000_ucode_get_header_size(u32 api_ver)
{
if (api_ver <= 2)
return UCODE_HEADER_SIZE(1);
return UCODE_HEADER_SIZE(2);
}
static u32 iwl5000_ucode_get_build(const struct iwl_ucode_header *ucode,
u32 api_ver)
{
if (api_ver <= 2)
return 0;
return le32_to_cpu(ucode->u.v2.build);
}
static u8 *iwl5000_ucode_get_data(const struct iwl_ucode_header *ucode,
u32 api_ver)
{
if (api_ver <= 2)
return (u8 *) ucode->u.v1.data;
return (u8 *) ucode->u.v2.data;
}
IWL5000_UCODE_GET(inst_size);
IWL5000_UCODE_GET(data_size);
IWL5000_UCODE_GET(init_size);
IWL5000_UCODE_GET(init_data_size);
IWL5000_UCODE_GET(boot_size);
static int iwl5000_hw_channel_switch(struct iwl_priv *priv, u16 channel)
{
struct iwl5000_channel_switch_cmd cmd;
const struct iwl_channel_info *ch_info;
struct iwl_host_cmd hcmd = {
.id = REPLY_CHANNEL_SWITCH,
.len = sizeof(cmd),
.flags = CMD_SIZE_HUGE,
.data = &cmd,
};
IWL_DEBUG_11H(priv, "channel switch from %d to %d\n",
priv->active_rxon.channel, channel);
cmd.band = priv->band == IEEE80211_BAND_2GHZ;
cmd.channel = cpu_to_le16(channel);
cmd.rxon_flags = priv->staging_rxon.flags;
cmd.rxon_filter_flags = priv->staging_rxon.filter_flags;
cmd.switch_time = cpu_to_le32(priv->ucode_beacon_time);
ch_info = iwl_get_channel_info(priv, priv->band, channel);
if (ch_info)
cmd.expect_beacon = is_channel_radar(ch_info);
else {
IWL_ERR(priv, "invalid channel switch from %u to %u\n",
priv->active_rxon.channel, channel);
return -EFAULT;
}
priv->switch_rxon.channel = cpu_to_le16(channel);
priv->switch_rxon.switch_in_progress = true;
return iwl_send_cmd_sync(priv, &hcmd);
}
struct iwl_hcmd_ops iwl5000_hcmd = {
.rxon_assoc = iwl5000_send_rxon_assoc,
.commit_rxon = iwl_commit_rxon,
.set_rxon_chain = iwl_set_rxon_chain,
.set_tx_ant = iwl5000_send_tx_ant_config,
};
struct iwl_hcmd_utils_ops iwl5000_hcmd_utils = {
.get_hcmd_size = iwl5000_get_hcmd_size,
.build_addsta_hcmd = iwl5000_build_addsta_hcmd,
.gain_computation = iwl5000_gain_computation,
.chain_noise_reset = iwl5000_chain_noise_reset,
.rts_tx_cmd_flag = iwl5000_rts_tx_cmd_flag,
.calc_rssi = iwl5000_calc_rssi,
};
struct iwl_ucode_ops iwl5000_ucode = {
.get_header_size = iwl5000_ucode_get_header_size,
.get_build = iwl5000_ucode_get_build,
.get_inst_size = iwl5000_ucode_get_inst_size,
.get_data_size = iwl5000_ucode_get_data_size,
.get_init_size = iwl5000_ucode_get_init_size,
.get_init_data_size = iwl5000_ucode_get_init_data_size,
.get_boot_size = iwl5000_ucode_get_boot_size,
.get_data = iwl5000_ucode_get_data,
};
struct iwl_lib_ops iwl5000_lib = {
.set_hw_params = iwl5000_hw_set_hw_params,
.txq_update_byte_cnt_tbl = iwl5000_txq_update_byte_cnt_tbl,
.txq_inval_byte_cnt_tbl = iwl5000_txq_inval_byte_cnt_tbl,
.txq_set_sched = iwl5000_txq_set_sched,
.txq_agg_enable = iwl5000_txq_agg_enable,
.txq_agg_disable = iwl5000_txq_agg_disable,
.txq_attach_buf_to_tfd = iwl_hw_txq_attach_buf_to_tfd,
.txq_free_tfd = iwl_hw_txq_free_tfd,
.txq_init = iwl_hw_tx_queue_init,
.rx_handler_setup = iwl5000_rx_handler_setup,
.setup_deferred_work = iwl5000_setup_deferred_work,
.is_valid_rtc_data_addr = iwl5000_hw_valid_rtc_data_addr,
.dump_nic_event_log = iwl_dump_nic_event_log,
.dump_nic_error_log = iwl_dump_nic_error_log,
.load_ucode = iwl5000_load_ucode,
.init_alive_start = iwl5000_init_alive_start,
.alive_notify = iwl5000_alive_notify,
.send_tx_power = iwl5000_send_tx_power,
.update_chain_flags = iwl_update_chain_flags,
.set_channel_switch = iwl5000_hw_channel_switch,
.apm_ops = {
.init = iwl_apm_init,
.stop = iwl_apm_stop,
.config = iwl5000_nic_config,
.set_pwr_src = iwl_set_pwr_src,
},
.eeprom_ops = {
.regulatory_bands = {
EEPROM_5000_REG_BAND_1_CHANNELS,
EEPROM_5000_REG_BAND_2_CHANNELS,
EEPROM_5000_REG_BAND_3_CHANNELS,
EEPROM_5000_REG_BAND_4_CHANNELS,
EEPROM_5000_REG_BAND_5_CHANNELS,
EEPROM_5000_REG_BAND_24_HT40_CHANNELS,
EEPROM_5000_REG_BAND_52_HT40_CHANNELS
},
.verify_signature = iwlcore_eeprom_verify_signature,
.acquire_semaphore = iwlcore_eeprom_acquire_semaphore,
.release_semaphore = iwlcore_eeprom_release_semaphore,
.calib_version = iwl5000_eeprom_calib_version,
.query_addr = iwl5000_eeprom_query_addr,
},
.post_associate = iwl_post_associate,
.isr = iwl_isr_ict,
.config_ap = iwl_config_ap,
.temp_ops = {
.temperature = iwl5000_temperature,
.set_ct_kill = iwl5000_set_ct_threshold,
},
};
static struct iwl_lib_ops iwl5150_lib = {
.set_hw_params = iwl5000_hw_set_hw_params,
.txq_update_byte_cnt_tbl = iwl5000_txq_update_byte_cnt_tbl,
.txq_inval_byte_cnt_tbl = iwl5000_txq_inval_byte_cnt_tbl,
.txq_set_sched = iwl5000_txq_set_sched,
.txq_agg_enable = iwl5000_txq_agg_enable,
.txq_agg_disable = iwl5000_txq_agg_disable,
.txq_attach_buf_to_tfd = iwl_hw_txq_attach_buf_to_tfd,
.txq_free_tfd = iwl_hw_txq_free_tfd,
.txq_init = iwl_hw_tx_queue_init,
.rx_handler_setup = iwl5000_rx_handler_setup,
.setup_deferred_work = iwl5000_setup_deferred_work,
.is_valid_rtc_data_addr = iwl5000_hw_valid_rtc_data_addr,
.dump_nic_event_log = iwl_dump_nic_event_log,
.dump_nic_error_log = iwl_dump_nic_error_log,
.load_ucode = iwl5000_load_ucode,
.init_alive_start = iwl5000_init_alive_start,
.alive_notify = iwl5000_alive_notify,
.send_tx_power = iwl5000_send_tx_power,
.update_chain_flags = iwl_update_chain_flags,
.set_channel_switch = iwl5000_hw_channel_switch,
.apm_ops = {
.init = iwl_apm_init,
.stop = iwl_apm_stop,
.config = iwl5000_nic_config,
.set_pwr_src = iwl_set_pwr_src,
},
.eeprom_ops = {
.regulatory_bands = {
EEPROM_5000_REG_BAND_1_CHANNELS,
EEPROM_5000_REG_BAND_2_CHANNELS,
EEPROM_5000_REG_BAND_3_CHANNELS,
EEPROM_5000_REG_BAND_4_CHANNELS,
EEPROM_5000_REG_BAND_5_CHANNELS,
EEPROM_5000_REG_BAND_24_HT40_CHANNELS,
EEPROM_5000_REG_BAND_52_HT40_CHANNELS
},
.verify_signature = iwlcore_eeprom_verify_signature,
.acquire_semaphore = iwlcore_eeprom_acquire_semaphore,
.release_semaphore = iwlcore_eeprom_release_semaphore,
.calib_version = iwl5000_eeprom_calib_version,
.query_addr = iwl5000_eeprom_query_addr,
},
.post_associate = iwl_post_associate,
.isr = iwl_isr_ict,
.config_ap = iwl_config_ap,
.temp_ops = {
.temperature = iwl5150_temperature,
.set_ct_kill = iwl5150_set_ct_threshold,
},
};
static struct iwl_ops iwl5000_ops = {
.ucode = &iwl5000_ucode,
.lib = &iwl5000_lib,
.hcmd = &iwl5000_hcmd,
.utils = &iwl5000_hcmd_utils,
.led = &iwlagn_led_ops,
};
static struct iwl_ops iwl5150_ops = {
.ucode = &iwl5000_ucode,
.lib = &iwl5150_lib,
.hcmd = &iwl5000_hcmd,
.utils = &iwl5000_hcmd_utils,
.led = &iwlagn_led_ops,
};
struct iwl_mod_params iwl50_mod_params = {
.amsdu_size_8K = 1,
.restart_fw = 1,
/* the rest are 0 by default */
};
struct iwl_cfg iwl5300_agn_cfg = {
.name = "5300AGN",
.fw_name_pre = IWL5000_FW_PRE,
.ucode_api_max = IWL5000_UCODE_API_MAX,
.ucode_api_min = IWL5000_UCODE_API_MIN,
.sku = IWL_SKU_A|IWL_SKU_G|IWL_SKU_N,
.ops = &iwl5000_ops,
.eeprom_size = IWL_5000_EEPROM_IMG_SIZE,
.eeprom_ver = EEPROM_5000_EEPROM_VERSION,
.eeprom_calib_ver = EEPROM_5000_TX_POWER_VERSION,
.num_of_queues = IWL50_NUM_QUEUES,
.num_of_ampdu_queues = IWL50_NUM_AMPDU_QUEUES,
.mod_params = &iwl50_mod_params,
.valid_tx_ant = ANT_ABC,
.valid_rx_ant = ANT_ABC,
.pll_cfg_val = CSR50_ANA_PLL_CFG_VAL,
.set_l0s = true,
.use_bsm = false,
.ht_greenfield_support = true,
.led_compensation = 51,
.chain_noise_num_beacons = IWL_CAL_NUM_BEACONS,
.sm_ps_mode = WLAN_HT_CAP_SM_PS_DISABLED,
};
struct iwl_cfg iwl5100_bgn_cfg = {
.name = "5100BGN",
.fw_name_pre = IWL5000_FW_PRE,
.ucode_api_max = IWL5000_UCODE_API_MAX,
.ucode_api_min = IWL5000_UCODE_API_MIN,
.sku = IWL_SKU_G|IWL_SKU_N,
.ops = &iwl5000_ops,
.eeprom_size = IWL_5000_EEPROM_IMG_SIZE,
.eeprom_ver = EEPROM_5000_EEPROM_VERSION,
.eeprom_calib_ver = EEPROM_5000_TX_POWER_VERSION,
.num_of_queues = IWL50_NUM_QUEUES,
.num_of_ampdu_queues = IWL50_NUM_AMPDU_QUEUES,
.mod_params = &iwl50_mod_params,
.valid_tx_ant = ANT_B,
.valid_rx_ant = ANT_AB,
.pll_cfg_val = CSR50_ANA_PLL_CFG_VAL,
.set_l0s = true,
.use_bsm = false,
.ht_greenfield_support = true,
.led_compensation = 51,
.chain_noise_num_beacons = IWL_CAL_NUM_BEACONS,
};
struct iwl_cfg iwl5100_abg_cfg = {
.name = "5100ABG",
.fw_name_pre = IWL5000_FW_PRE,
.ucode_api_max = IWL5000_UCODE_API_MAX,
.ucode_api_min = IWL5000_UCODE_API_MIN,
.sku = IWL_SKU_A|IWL_SKU_G,
.ops = &iwl5000_ops,
.eeprom_size = IWL_5000_EEPROM_IMG_SIZE,
.eeprom_ver = EEPROM_5000_EEPROM_VERSION,
.eeprom_calib_ver = EEPROM_5000_TX_POWER_VERSION,
.num_of_queues = IWL50_NUM_QUEUES,
.num_of_ampdu_queues = IWL50_NUM_AMPDU_QUEUES,
.mod_params = &iwl50_mod_params,
.valid_tx_ant = ANT_B,
.valid_rx_ant = ANT_AB,
.pll_cfg_val = CSR50_ANA_PLL_CFG_VAL,
.set_l0s = true,
.use_bsm = false,
.led_compensation = 51,
.chain_noise_num_beacons = IWL_CAL_NUM_BEACONS,
};
struct iwl_cfg iwl5100_agn_cfg = {
.name = "5100AGN",
.fw_name_pre = IWL5000_FW_PRE,
.ucode_api_max = IWL5000_UCODE_API_MAX,
.ucode_api_min = IWL5000_UCODE_API_MIN,
.sku = IWL_SKU_A|IWL_SKU_G|IWL_SKU_N,
.ops = &iwl5000_ops,
.eeprom_size = IWL_5000_EEPROM_IMG_SIZE,
.eeprom_ver = EEPROM_5000_EEPROM_VERSION,
.eeprom_calib_ver = EEPROM_5000_TX_POWER_VERSION,
.num_of_queues = IWL50_NUM_QUEUES,
.num_of_ampdu_queues = IWL50_NUM_AMPDU_QUEUES,
.mod_params = &iwl50_mod_params,
.valid_tx_ant = ANT_B,
.valid_rx_ant = ANT_AB,
.pll_cfg_val = CSR50_ANA_PLL_CFG_VAL,
.set_l0s = true,
.use_bsm = false,
.ht_greenfield_support = true,
.led_compensation = 51,
.chain_noise_num_beacons = IWL_CAL_NUM_BEACONS,
.sm_ps_mode = WLAN_HT_CAP_SM_PS_DISABLED,
};
struct iwl_cfg iwl5350_agn_cfg = {
.name = "5350AGN",
.fw_name_pre = IWL5000_FW_PRE,
.ucode_api_max = IWL5000_UCODE_API_MAX,
.ucode_api_min = IWL5000_UCODE_API_MIN,
.sku = IWL_SKU_A|IWL_SKU_G|IWL_SKU_N,
.ops = &iwl5000_ops,
.eeprom_size = IWL_5000_EEPROM_IMG_SIZE,
.eeprom_ver = EEPROM_5050_EEPROM_VERSION,
.eeprom_calib_ver = EEPROM_5050_TX_POWER_VERSION,
.num_of_queues = IWL50_NUM_QUEUES,
.num_of_ampdu_queues = IWL50_NUM_AMPDU_QUEUES,
.mod_params = &iwl50_mod_params,
.valid_tx_ant = ANT_ABC,
.valid_rx_ant = ANT_ABC,
.pll_cfg_val = CSR50_ANA_PLL_CFG_VAL,
.set_l0s = true,
.use_bsm = false,
.ht_greenfield_support = true,
.led_compensation = 51,
.chain_noise_num_beacons = IWL_CAL_NUM_BEACONS,
.sm_ps_mode = WLAN_HT_CAP_SM_PS_DISABLED,
};
struct iwl_cfg iwl5150_agn_cfg = {
.name = "5150AGN",
.fw_name_pre = IWL5150_FW_PRE,
.ucode_api_max = IWL5150_UCODE_API_MAX,
.ucode_api_min = IWL5150_UCODE_API_MIN,
.sku = IWL_SKU_A|IWL_SKU_G|IWL_SKU_N,
.ops = &iwl5150_ops,
.eeprom_size = IWL_5000_EEPROM_IMG_SIZE,
.eeprom_ver = EEPROM_5050_EEPROM_VERSION,
.eeprom_calib_ver = EEPROM_5050_TX_POWER_VERSION,
.num_of_queues = IWL50_NUM_QUEUES,
.num_of_ampdu_queues = IWL50_NUM_AMPDU_QUEUES,
.mod_params = &iwl50_mod_params,
.valid_tx_ant = ANT_A,
.valid_rx_ant = ANT_AB,
.pll_cfg_val = CSR50_ANA_PLL_CFG_VAL,
.set_l0s = true,
.use_bsm = false,
.ht_greenfield_support = true,
.led_compensation = 51,
.chain_noise_num_beacons = IWL_CAL_NUM_BEACONS,
.sm_ps_mode = WLAN_HT_CAP_SM_PS_DISABLED,
};
struct iwl_cfg iwl5150_abg_cfg = {
.name = "5150ABG",
.fw_name_pre = IWL5150_FW_PRE,
.ucode_api_max = IWL5150_UCODE_API_MAX,
.ucode_api_min = IWL5150_UCODE_API_MIN,
.sku = IWL_SKU_A|IWL_SKU_G,
.ops = &iwl5150_ops,
.eeprom_size = IWL_5000_EEPROM_IMG_SIZE,
.eeprom_ver = EEPROM_5050_EEPROM_VERSION,
.eeprom_calib_ver = EEPROM_5050_TX_POWER_VERSION,
.num_of_queues = IWL50_NUM_QUEUES,
.num_of_ampdu_queues = IWL50_NUM_AMPDU_QUEUES,
.mod_params = &iwl50_mod_params,
.valid_tx_ant = ANT_A,
.valid_rx_ant = ANT_AB,
.pll_cfg_val = CSR50_ANA_PLL_CFG_VAL,
.set_l0s = true,
.use_bsm = false,
.led_compensation = 51,
.chain_noise_num_beacons = IWL_CAL_NUM_BEACONS,
};
MODULE_FIRMWARE(IWL5000_MODULE_FIRMWARE(IWL5000_UCODE_API_MAX));
MODULE_FIRMWARE(IWL5150_MODULE_FIRMWARE(IWL5150_UCODE_API_MAX));
module_param_named(swcrypto50, iwl50_mod_params.sw_crypto, bool, S_IRUGO);
MODULE_PARM_DESC(swcrypto50,
"using software crypto engine (default 0 [hardware])\n");
module_param_named(queues_num50, iwl50_mod_params.num_of_queues, int, S_IRUGO);
MODULE_PARM_DESC(queues_num50, "number of hw queues in 50xx series");
module_param_named(11n_disable50, iwl50_mod_params.disable_11n, int, S_IRUGO);
MODULE_PARM_DESC(11n_disable50, "disable 50XX 11n functionality");
module_param_named(amsdu_size_8K50, iwl50_mod_params.amsdu_size_8K,
int, S_IRUGO);
MODULE_PARM_DESC(amsdu_size_8K50, "enable 8K amsdu size in 50XX series");
module_param_named(fw_restart50, iwl50_mod_params.restart_fw, int, S_IRUGO);
MODULE_PARM_DESC(fw_restart50, "restart firmware in case of error");