mirror of https://gitee.com/openkylin/linux.git
1435 lines
34 KiB
C
1435 lines
34 KiB
C
/* smp.c: Sparc64 SMP support.
|
|
*
|
|
* Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/threads.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/smp_lock.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/init.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/cache.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/profile.h>
|
|
#include <linux/bootmem.h>
|
|
|
|
#include <asm/head.h>
|
|
#include <asm/ptrace.h>
|
|
#include <asm/atomic.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/cpudata.h>
|
|
|
|
#include <asm/irq.h>
|
|
#include <asm/page.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/oplib.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/timer.h>
|
|
#include <asm/starfire.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/sections.h>
|
|
|
|
extern void calibrate_delay(void);
|
|
|
|
/* Please don't make this stuff initdata!!! --DaveM */
|
|
static unsigned char boot_cpu_id;
|
|
|
|
cpumask_t cpu_online_map __read_mostly = CPU_MASK_NONE;
|
|
cpumask_t phys_cpu_present_map __read_mostly = CPU_MASK_NONE;
|
|
cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly =
|
|
{ [0 ... NR_CPUS-1] = CPU_MASK_NONE };
|
|
static cpumask_t smp_commenced_mask;
|
|
static cpumask_t cpu_callout_map;
|
|
|
|
void smp_info(struct seq_file *m)
|
|
{
|
|
int i;
|
|
|
|
seq_printf(m, "State:\n");
|
|
for_each_online_cpu(i)
|
|
seq_printf(m, "CPU%d:\t\tonline\n", i);
|
|
}
|
|
|
|
void smp_bogo(struct seq_file *m)
|
|
{
|
|
int i;
|
|
|
|
for_each_online_cpu(i)
|
|
seq_printf(m,
|
|
"Cpu%dBogo\t: %lu.%02lu\n"
|
|
"Cpu%dClkTck\t: %016lx\n",
|
|
i, cpu_data(i).udelay_val / (500000/HZ),
|
|
(cpu_data(i).udelay_val / (5000/HZ)) % 100,
|
|
i, cpu_data(i).clock_tick);
|
|
}
|
|
|
|
void __init smp_store_cpu_info(int id)
|
|
{
|
|
int cpu_node, def;
|
|
|
|
/* multiplier and counter set by
|
|
smp_setup_percpu_timer() */
|
|
cpu_data(id).udelay_val = loops_per_jiffy;
|
|
|
|
cpu_find_by_mid(id, &cpu_node);
|
|
cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
|
|
"clock-frequency", 0);
|
|
|
|
def = ((tlb_type == hypervisor) ? (8 * 1024) : (16 * 1024));
|
|
cpu_data(id).dcache_size = prom_getintdefault(cpu_node, "dcache-size",
|
|
def);
|
|
|
|
def = 32;
|
|
cpu_data(id).dcache_line_size =
|
|
prom_getintdefault(cpu_node, "dcache-line-size", def);
|
|
|
|
def = 16 * 1024;
|
|
cpu_data(id).icache_size = prom_getintdefault(cpu_node, "icache-size",
|
|
def);
|
|
|
|
def = 32;
|
|
cpu_data(id).icache_line_size =
|
|
prom_getintdefault(cpu_node, "icache-line-size", def);
|
|
|
|
def = ((tlb_type == hypervisor) ?
|
|
(3 * 1024 * 1024) :
|
|
(4 * 1024 * 1024));
|
|
cpu_data(id).ecache_size = prom_getintdefault(cpu_node, "ecache-size",
|
|
def);
|
|
|
|
def = 64;
|
|
cpu_data(id).ecache_line_size =
|
|
prom_getintdefault(cpu_node, "ecache-line-size", def);
|
|
|
|
printk("CPU[%d]: Caches "
|
|
"D[sz(%d):line_sz(%d)] "
|
|
"I[sz(%d):line_sz(%d)] "
|
|
"E[sz(%d):line_sz(%d)]\n",
|
|
id,
|
|
cpu_data(id).dcache_size, cpu_data(id).dcache_line_size,
|
|
cpu_data(id).icache_size, cpu_data(id).icache_line_size,
|
|
cpu_data(id).ecache_size, cpu_data(id).ecache_line_size);
|
|
}
|
|
|
|
static void smp_setup_percpu_timer(void);
|
|
|
|
static volatile unsigned long callin_flag = 0;
|
|
|
|
void __init smp_callin(void)
|
|
{
|
|
int cpuid = hard_smp_processor_id();
|
|
|
|
__local_per_cpu_offset = __per_cpu_offset(cpuid);
|
|
|
|
if (tlb_type == hypervisor)
|
|
sun4v_ktsb_register();
|
|
|
|
__flush_tlb_all();
|
|
|
|
smp_setup_percpu_timer();
|
|
|
|
if (cheetah_pcache_forced_on)
|
|
cheetah_enable_pcache();
|
|
|
|
local_irq_enable();
|
|
|
|
calibrate_delay();
|
|
smp_store_cpu_info(cpuid);
|
|
callin_flag = 1;
|
|
__asm__ __volatile__("membar #Sync\n\t"
|
|
"flush %%g6" : : : "memory");
|
|
|
|
/* Clear this or we will die instantly when we
|
|
* schedule back to this idler...
|
|
*/
|
|
current_thread_info()->new_child = 0;
|
|
|
|
/* Attach to the address space of init_task. */
|
|
atomic_inc(&init_mm.mm_count);
|
|
current->active_mm = &init_mm;
|
|
|
|
while (!cpu_isset(cpuid, smp_commenced_mask))
|
|
rmb();
|
|
|
|
cpu_set(cpuid, cpu_online_map);
|
|
|
|
/* idle thread is expected to have preempt disabled */
|
|
preempt_disable();
|
|
}
|
|
|
|
void cpu_panic(void)
|
|
{
|
|
printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
|
|
panic("SMP bolixed\n");
|
|
}
|
|
|
|
static unsigned long current_tick_offset __read_mostly;
|
|
|
|
/* This tick register synchronization scheme is taken entirely from
|
|
* the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
|
|
*
|
|
* The only change I've made is to rework it so that the master
|
|
* initiates the synchonization instead of the slave. -DaveM
|
|
*/
|
|
|
|
#define MASTER 0
|
|
#define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
|
|
|
|
#define NUM_ROUNDS 64 /* magic value */
|
|
#define NUM_ITERS 5 /* likewise */
|
|
|
|
static DEFINE_SPINLOCK(itc_sync_lock);
|
|
static unsigned long go[SLAVE + 1];
|
|
|
|
#define DEBUG_TICK_SYNC 0
|
|
|
|
static inline long get_delta (long *rt, long *master)
|
|
{
|
|
unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
|
|
unsigned long tcenter, t0, t1, tm;
|
|
unsigned long i;
|
|
|
|
for (i = 0; i < NUM_ITERS; i++) {
|
|
t0 = tick_ops->get_tick();
|
|
go[MASTER] = 1;
|
|
membar_storeload();
|
|
while (!(tm = go[SLAVE]))
|
|
rmb();
|
|
go[SLAVE] = 0;
|
|
wmb();
|
|
t1 = tick_ops->get_tick();
|
|
|
|
if (t1 - t0 < best_t1 - best_t0)
|
|
best_t0 = t0, best_t1 = t1, best_tm = tm;
|
|
}
|
|
|
|
*rt = best_t1 - best_t0;
|
|
*master = best_tm - best_t0;
|
|
|
|
/* average best_t0 and best_t1 without overflow: */
|
|
tcenter = (best_t0/2 + best_t1/2);
|
|
if (best_t0 % 2 + best_t1 % 2 == 2)
|
|
tcenter++;
|
|
return tcenter - best_tm;
|
|
}
|
|
|
|
void smp_synchronize_tick_client(void)
|
|
{
|
|
long i, delta, adj, adjust_latency = 0, done = 0;
|
|
unsigned long flags, rt, master_time_stamp, bound;
|
|
#if DEBUG_TICK_SYNC
|
|
struct {
|
|
long rt; /* roundtrip time */
|
|
long master; /* master's timestamp */
|
|
long diff; /* difference between midpoint and master's timestamp */
|
|
long lat; /* estimate of itc adjustment latency */
|
|
} t[NUM_ROUNDS];
|
|
#endif
|
|
|
|
go[MASTER] = 1;
|
|
|
|
while (go[MASTER])
|
|
rmb();
|
|
|
|
local_irq_save(flags);
|
|
{
|
|
for (i = 0; i < NUM_ROUNDS; i++) {
|
|
delta = get_delta(&rt, &master_time_stamp);
|
|
if (delta == 0) {
|
|
done = 1; /* let's lock on to this... */
|
|
bound = rt;
|
|
}
|
|
|
|
if (!done) {
|
|
if (i > 0) {
|
|
adjust_latency += -delta;
|
|
adj = -delta + adjust_latency/4;
|
|
} else
|
|
adj = -delta;
|
|
|
|
tick_ops->add_tick(adj, current_tick_offset);
|
|
}
|
|
#if DEBUG_TICK_SYNC
|
|
t[i].rt = rt;
|
|
t[i].master = master_time_stamp;
|
|
t[i].diff = delta;
|
|
t[i].lat = adjust_latency/4;
|
|
#endif
|
|
}
|
|
}
|
|
local_irq_restore(flags);
|
|
|
|
#if DEBUG_TICK_SYNC
|
|
for (i = 0; i < NUM_ROUNDS; i++)
|
|
printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
|
|
t[i].rt, t[i].master, t[i].diff, t[i].lat);
|
|
#endif
|
|
|
|
printk(KERN_INFO "CPU %d: synchronized TICK with master CPU (last diff %ld cycles,"
|
|
"maxerr %lu cycles)\n", smp_processor_id(), delta, rt);
|
|
}
|
|
|
|
static void smp_start_sync_tick_client(int cpu);
|
|
|
|
static void smp_synchronize_one_tick(int cpu)
|
|
{
|
|
unsigned long flags, i;
|
|
|
|
go[MASTER] = 0;
|
|
|
|
smp_start_sync_tick_client(cpu);
|
|
|
|
/* wait for client to be ready */
|
|
while (!go[MASTER])
|
|
rmb();
|
|
|
|
/* now let the client proceed into his loop */
|
|
go[MASTER] = 0;
|
|
membar_storeload();
|
|
|
|
spin_lock_irqsave(&itc_sync_lock, flags);
|
|
{
|
|
for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
|
|
while (!go[MASTER])
|
|
rmb();
|
|
go[MASTER] = 0;
|
|
wmb();
|
|
go[SLAVE] = tick_ops->get_tick();
|
|
membar_storeload();
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&itc_sync_lock, flags);
|
|
}
|
|
|
|
extern void sun4v_init_mondo_queues(int use_bootmem, int cpu, int alloc, int load);
|
|
|
|
extern unsigned long sparc64_cpu_startup;
|
|
|
|
/* The OBP cpu startup callback truncates the 3rd arg cookie to
|
|
* 32-bits (I think) so to be safe we have it read the pointer
|
|
* contained here so we work on >4GB machines. -DaveM
|
|
*/
|
|
static struct thread_info *cpu_new_thread = NULL;
|
|
|
|
static int __devinit smp_boot_one_cpu(unsigned int cpu)
|
|
{
|
|
unsigned long entry =
|
|
(unsigned long)(&sparc64_cpu_startup);
|
|
unsigned long cookie =
|
|
(unsigned long)(&cpu_new_thread);
|
|
struct task_struct *p;
|
|
int timeout, ret;
|
|
|
|
p = fork_idle(cpu);
|
|
callin_flag = 0;
|
|
cpu_new_thread = task_thread_info(p);
|
|
cpu_set(cpu, cpu_callout_map);
|
|
|
|
if (tlb_type == hypervisor) {
|
|
/* Alloc the mondo queues, cpu will load them. */
|
|
sun4v_init_mondo_queues(0, cpu, 1, 0);
|
|
|
|
prom_startcpu_cpuid(cpu, entry, cookie);
|
|
} else {
|
|
int cpu_node;
|
|
|
|
cpu_find_by_mid(cpu, &cpu_node);
|
|
prom_startcpu(cpu_node, entry, cookie);
|
|
}
|
|
|
|
for (timeout = 0; timeout < 5000000; timeout++) {
|
|
if (callin_flag)
|
|
break;
|
|
udelay(100);
|
|
}
|
|
|
|
if (callin_flag) {
|
|
ret = 0;
|
|
} else {
|
|
printk("Processor %d is stuck.\n", cpu);
|
|
cpu_clear(cpu, cpu_callout_map);
|
|
ret = -ENODEV;
|
|
}
|
|
cpu_new_thread = NULL;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
|
|
{
|
|
u64 result, target;
|
|
int stuck, tmp;
|
|
|
|
if (this_is_starfire) {
|
|
/* map to real upaid */
|
|
cpu = (((cpu & 0x3c) << 1) |
|
|
((cpu & 0x40) >> 4) |
|
|
(cpu & 0x3));
|
|
}
|
|
|
|
target = (cpu << 14) | 0x70;
|
|
again:
|
|
/* Ok, this is the real Spitfire Errata #54.
|
|
* One must read back from a UDB internal register
|
|
* after writes to the UDB interrupt dispatch, but
|
|
* before the membar Sync for that write.
|
|
* So we use the high UDB control register (ASI 0x7f,
|
|
* ADDR 0x20) for the dummy read. -DaveM
|
|
*/
|
|
tmp = 0x40;
|
|
__asm__ __volatile__(
|
|
"wrpr %1, %2, %%pstate\n\t"
|
|
"stxa %4, [%0] %3\n\t"
|
|
"stxa %5, [%0+%8] %3\n\t"
|
|
"add %0, %8, %0\n\t"
|
|
"stxa %6, [%0+%8] %3\n\t"
|
|
"membar #Sync\n\t"
|
|
"stxa %%g0, [%7] %3\n\t"
|
|
"membar #Sync\n\t"
|
|
"mov 0x20, %%g1\n\t"
|
|
"ldxa [%%g1] 0x7f, %%g0\n\t"
|
|
"membar #Sync"
|
|
: "=r" (tmp)
|
|
: "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
|
|
"r" (data0), "r" (data1), "r" (data2), "r" (target),
|
|
"r" (0x10), "0" (tmp)
|
|
: "g1");
|
|
|
|
/* NOTE: PSTATE_IE is still clear. */
|
|
stuck = 100000;
|
|
do {
|
|
__asm__ __volatile__("ldxa [%%g0] %1, %0"
|
|
: "=r" (result)
|
|
: "i" (ASI_INTR_DISPATCH_STAT));
|
|
if (result == 0) {
|
|
__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
|
|
: : "r" (pstate));
|
|
return;
|
|
}
|
|
stuck -= 1;
|
|
if (stuck == 0)
|
|
break;
|
|
} while (result & 0x1);
|
|
__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
|
|
: : "r" (pstate));
|
|
if (stuck == 0) {
|
|
printk("CPU[%d]: mondo stuckage result[%016lx]\n",
|
|
smp_processor_id(), result);
|
|
} else {
|
|
udelay(2);
|
|
goto again;
|
|
}
|
|
}
|
|
|
|
static __inline__ void spitfire_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
|
|
{
|
|
u64 pstate;
|
|
int i;
|
|
|
|
__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
|
|
for_each_cpu_mask(i, mask)
|
|
spitfire_xcall_helper(data0, data1, data2, pstate, i);
|
|
}
|
|
|
|
/* Cheetah now allows to send the whole 64-bytes of data in the interrupt
|
|
* packet, but we have no use for that. However we do take advantage of
|
|
* the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
|
|
*/
|
|
static void cheetah_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
|
|
{
|
|
u64 pstate, ver;
|
|
int nack_busy_id, is_jbus;
|
|
|
|
if (cpus_empty(mask))
|
|
return;
|
|
|
|
/* Unfortunately, someone at Sun had the brilliant idea to make the
|
|
* busy/nack fields hard-coded by ITID number for this Ultra-III
|
|
* derivative processor.
|
|
*/
|
|
__asm__ ("rdpr %%ver, %0" : "=r" (ver));
|
|
is_jbus = ((ver >> 32) == __JALAPENO_ID ||
|
|
(ver >> 32) == __SERRANO_ID);
|
|
|
|
__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
|
|
|
|
retry:
|
|
__asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
|
|
: : "r" (pstate), "i" (PSTATE_IE));
|
|
|
|
/* Setup the dispatch data registers. */
|
|
__asm__ __volatile__("stxa %0, [%3] %6\n\t"
|
|
"stxa %1, [%4] %6\n\t"
|
|
"stxa %2, [%5] %6\n\t"
|
|
"membar #Sync\n\t"
|
|
: /* no outputs */
|
|
: "r" (data0), "r" (data1), "r" (data2),
|
|
"r" (0x40), "r" (0x50), "r" (0x60),
|
|
"i" (ASI_INTR_W));
|
|
|
|
nack_busy_id = 0;
|
|
{
|
|
int i;
|
|
|
|
for_each_cpu_mask(i, mask) {
|
|
u64 target = (i << 14) | 0x70;
|
|
|
|
if (!is_jbus)
|
|
target |= (nack_busy_id << 24);
|
|
__asm__ __volatile__(
|
|
"stxa %%g0, [%0] %1\n\t"
|
|
"membar #Sync\n\t"
|
|
: /* no outputs */
|
|
: "r" (target), "i" (ASI_INTR_W));
|
|
nack_busy_id++;
|
|
}
|
|
}
|
|
|
|
/* Now, poll for completion. */
|
|
{
|
|
u64 dispatch_stat;
|
|
long stuck;
|
|
|
|
stuck = 100000 * nack_busy_id;
|
|
do {
|
|
__asm__ __volatile__("ldxa [%%g0] %1, %0"
|
|
: "=r" (dispatch_stat)
|
|
: "i" (ASI_INTR_DISPATCH_STAT));
|
|
if (dispatch_stat == 0UL) {
|
|
__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
|
|
: : "r" (pstate));
|
|
return;
|
|
}
|
|
if (!--stuck)
|
|
break;
|
|
} while (dispatch_stat & 0x5555555555555555UL);
|
|
|
|
__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
|
|
: : "r" (pstate));
|
|
|
|
if ((dispatch_stat & ~(0x5555555555555555UL)) == 0) {
|
|
/* Busy bits will not clear, continue instead
|
|
* of freezing up on this cpu.
|
|
*/
|
|
printk("CPU[%d]: mondo stuckage result[%016lx]\n",
|
|
smp_processor_id(), dispatch_stat);
|
|
} else {
|
|
int i, this_busy_nack = 0;
|
|
|
|
/* Delay some random time with interrupts enabled
|
|
* to prevent deadlock.
|
|
*/
|
|
udelay(2 * nack_busy_id);
|
|
|
|
/* Clear out the mask bits for cpus which did not
|
|
* NACK us.
|
|
*/
|
|
for_each_cpu_mask(i, mask) {
|
|
u64 check_mask;
|
|
|
|
if (is_jbus)
|
|
check_mask = (0x2UL << (2*i));
|
|
else
|
|
check_mask = (0x2UL <<
|
|
this_busy_nack);
|
|
if ((dispatch_stat & check_mask) == 0)
|
|
cpu_clear(i, mask);
|
|
this_busy_nack += 2;
|
|
}
|
|
|
|
goto retry;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Multi-cpu list version. */
|
|
static void hypervisor_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
|
|
{
|
|
struct trap_per_cpu *tb;
|
|
u16 *cpu_list;
|
|
u64 *mondo;
|
|
cpumask_t error_mask;
|
|
unsigned long flags, status;
|
|
int cnt, retries, this_cpu, prev_sent, i;
|
|
|
|
/* We have to do this whole thing with interrupts fully disabled.
|
|
* Otherwise if we send an xcall from interrupt context it will
|
|
* corrupt both our mondo block and cpu list state.
|
|
*
|
|
* One consequence of this is that we cannot use timeout mechanisms
|
|
* that depend upon interrupts being delivered locally. So, for
|
|
* example, we cannot sample jiffies and expect it to advance.
|
|
*
|
|
* Fortunately, udelay() uses %stick/%tick so we can use that.
|
|
*/
|
|
local_irq_save(flags);
|
|
|
|
this_cpu = smp_processor_id();
|
|
tb = &trap_block[this_cpu];
|
|
|
|
mondo = __va(tb->cpu_mondo_block_pa);
|
|
mondo[0] = data0;
|
|
mondo[1] = data1;
|
|
mondo[2] = data2;
|
|
wmb();
|
|
|
|
cpu_list = __va(tb->cpu_list_pa);
|
|
|
|
/* Setup the initial cpu list. */
|
|
cnt = 0;
|
|
for_each_cpu_mask(i, mask)
|
|
cpu_list[cnt++] = i;
|
|
|
|
cpus_clear(error_mask);
|
|
retries = 0;
|
|
prev_sent = 0;
|
|
do {
|
|
int forward_progress, n_sent;
|
|
|
|
status = sun4v_cpu_mondo_send(cnt,
|
|
tb->cpu_list_pa,
|
|
tb->cpu_mondo_block_pa);
|
|
|
|
/* HV_EOK means all cpus received the xcall, we're done. */
|
|
if (likely(status == HV_EOK))
|
|
break;
|
|
|
|
/* First, see if we made any forward progress.
|
|
*
|
|
* The hypervisor indicates successful sends by setting
|
|
* cpu list entries to the value 0xffff.
|
|
*/
|
|
n_sent = 0;
|
|
for (i = 0; i < cnt; i++) {
|
|
if (likely(cpu_list[i] == 0xffff))
|
|
n_sent++;
|
|
}
|
|
|
|
forward_progress = 0;
|
|
if (n_sent > prev_sent)
|
|
forward_progress = 1;
|
|
|
|
prev_sent = n_sent;
|
|
|
|
/* If we get a HV_ECPUERROR, then one or more of the cpus
|
|
* in the list are in error state. Use the cpu_state()
|
|
* hypervisor call to find out which cpus are in error state.
|
|
*/
|
|
if (unlikely(status == HV_ECPUERROR)) {
|
|
for (i = 0; i < cnt; i++) {
|
|
long err;
|
|
u16 cpu;
|
|
|
|
cpu = cpu_list[i];
|
|
if (cpu == 0xffff)
|
|
continue;
|
|
|
|
err = sun4v_cpu_state(cpu);
|
|
if (err >= 0 &&
|
|
err == HV_CPU_STATE_ERROR) {
|
|
cpu_list[i] = 0xffff;
|
|
cpu_set(cpu, error_mask);
|
|
}
|
|
}
|
|
} else if (unlikely(status != HV_EWOULDBLOCK))
|
|
goto fatal_mondo_error;
|
|
|
|
/* Don't bother rewriting the CPU list, just leave the
|
|
* 0xffff and non-0xffff entries in there and the
|
|
* hypervisor will do the right thing.
|
|
*
|
|
* Only advance timeout state if we didn't make any
|
|
* forward progress.
|
|
*/
|
|
if (unlikely(!forward_progress)) {
|
|
if (unlikely(++retries > 10000))
|
|
goto fatal_mondo_timeout;
|
|
|
|
/* Delay a little bit to let other cpus catch up
|
|
* on their cpu mondo queue work.
|
|
*/
|
|
udelay(2 * cnt);
|
|
}
|
|
} while (1);
|
|
|
|
local_irq_restore(flags);
|
|
|
|
if (unlikely(!cpus_empty(error_mask)))
|
|
goto fatal_mondo_cpu_error;
|
|
|
|
return;
|
|
|
|
fatal_mondo_cpu_error:
|
|
printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
|
|
"were in error state\n",
|
|
this_cpu);
|
|
printk(KERN_CRIT "CPU[%d]: Error mask [ ", this_cpu);
|
|
for_each_cpu_mask(i, error_mask)
|
|
printk("%d ", i);
|
|
printk("]\n");
|
|
return;
|
|
|
|
fatal_mondo_timeout:
|
|
local_irq_restore(flags);
|
|
printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
|
|
" progress after %d retries.\n",
|
|
this_cpu, retries);
|
|
goto dump_cpu_list_and_out;
|
|
|
|
fatal_mondo_error:
|
|
local_irq_restore(flags);
|
|
printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
|
|
this_cpu, status);
|
|
printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
|
|
"mondo_block_pa(%lx)\n",
|
|
this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
|
|
|
|
dump_cpu_list_and_out:
|
|
printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
|
|
for (i = 0; i < cnt; i++)
|
|
printk("%u ", cpu_list[i]);
|
|
printk("]\n");
|
|
}
|
|
|
|
/* Send cross call to all processors mentioned in MASK
|
|
* except self.
|
|
*/
|
|
static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, cpumask_t mask)
|
|
{
|
|
u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
|
|
int this_cpu = get_cpu();
|
|
|
|
cpus_and(mask, mask, cpu_online_map);
|
|
cpu_clear(this_cpu, mask);
|
|
|
|
if (tlb_type == spitfire)
|
|
spitfire_xcall_deliver(data0, data1, data2, mask);
|
|
else if (tlb_type == cheetah || tlb_type == cheetah_plus)
|
|
cheetah_xcall_deliver(data0, data1, data2, mask);
|
|
else
|
|
hypervisor_xcall_deliver(data0, data1, data2, mask);
|
|
/* NOTE: Caller runs local copy on master. */
|
|
|
|
put_cpu();
|
|
}
|
|
|
|
extern unsigned long xcall_sync_tick;
|
|
|
|
static void smp_start_sync_tick_client(int cpu)
|
|
{
|
|
cpumask_t mask = cpumask_of_cpu(cpu);
|
|
|
|
smp_cross_call_masked(&xcall_sync_tick,
|
|
0, 0, 0, mask);
|
|
}
|
|
|
|
/* Send cross call to all processors except self. */
|
|
#define smp_cross_call(func, ctx, data1, data2) \
|
|
smp_cross_call_masked(func, ctx, data1, data2, cpu_online_map)
|
|
|
|
struct call_data_struct {
|
|
void (*func) (void *info);
|
|
void *info;
|
|
atomic_t finished;
|
|
int wait;
|
|
};
|
|
|
|
static DEFINE_SPINLOCK(call_lock);
|
|
static struct call_data_struct *call_data;
|
|
|
|
extern unsigned long xcall_call_function;
|
|
|
|
/*
|
|
* You must not call this function with disabled interrupts or from a
|
|
* hardware interrupt handler or from a bottom half handler.
|
|
*/
|
|
static int smp_call_function_mask(void (*func)(void *info), void *info,
|
|
int nonatomic, int wait, cpumask_t mask)
|
|
{
|
|
struct call_data_struct data;
|
|
int cpus;
|
|
long timeout;
|
|
|
|
/* Can deadlock when called with interrupts disabled */
|
|
WARN_ON(irqs_disabled());
|
|
|
|
data.func = func;
|
|
data.info = info;
|
|
atomic_set(&data.finished, 0);
|
|
data.wait = wait;
|
|
|
|
spin_lock(&call_lock);
|
|
|
|
cpu_clear(smp_processor_id(), mask);
|
|
cpus = cpus_weight(mask);
|
|
if (!cpus)
|
|
goto out_unlock;
|
|
|
|
call_data = &data;
|
|
|
|
smp_cross_call_masked(&xcall_call_function, 0, 0, 0, mask);
|
|
|
|
/*
|
|
* Wait for other cpus to complete function or at
|
|
* least snap the call data.
|
|
*/
|
|
timeout = 1000000;
|
|
while (atomic_read(&data.finished) != cpus) {
|
|
if (--timeout <= 0)
|
|
goto out_timeout;
|
|
barrier();
|
|
udelay(1);
|
|
}
|
|
|
|
out_unlock:
|
|
spin_unlock(&call_lock);
|
|
|
|
return 0;
|
|
|
|
out_timeout:
|
|
spin_unlock(&call_lock);
|
|
printk("XCALL: Remote cpus not responding, ncpus=%d finished=%d\n",
|
|
cpus, atomic_read(&data.finished));
|
|
return 0;
|
|
}
|
|
|
|
int smp_call_function(void (*func)(void *info), void *info,
|
|
int nonatomic, int wait)
|
|
{
|
|
return smp_call_function_mask(func, info, nonatomic, wait,
|
|
cpu_online_map);
|
|
}
|
|
|
|
void smp_call_function_client(int irq, struct pt_regs *regs)
|
|
{
|
|
void (*func) (void *info) = call_data->func;
|
|
void *info = call_data->info;
|
|
|
|
clear_softint(1 << irq);
|
|
if (call_data->wait) {
|
|
/* let initiator proceed only after completion */
|
|
func(info);
|
|
atomic_inc(&call_data->finished);
|
|
} else {
|
|
/* let initiator proceed after getting data */
|
|
atomic_inc(&call_data->finished);
|
|
func(info);
|
|
}
|
|
}
|
|
|
|
static void tsb_sync(void *info)
|
|
{
|
|
struct mm_struct *mm = info;
|
|
|
|
if (current->active_mm == mm)
|
|
tsb_context_switch(mm);
|
|
}
|
|
|
|
void smp_tsb_sync(struct mm_struct *mm)
|
|
{
|
|
smp_call_function_mask(tsb_sync, mm, 0, 1, mm->cpu_vm_mask);
|
|
}
|
|
|
|
extern unsigned long xcall_flush_tlb_mm;
|
|
extern unsigned long xcall_flush_tlb_pending;
|
|
extern unsigned long xcall_flush_tlb_kernel_range;
|
|
extern unsigned long xcall_report_regs;
|
|
extern unsigned long xcall_receive_signal;
|
|
extern unsigned long xcall_new_mmu_context_version;
|
|
|
|
#ifdef DCACHE_ALIASING_POSSIBLE
|
|
extern unsigned long xcall_flush_dcache_page_cheetah;
|
|
#endif
|
|
extern unsigned long xcall_flush_dcache_page_spitfire;
|
|
|
|
#ifdef CONFIG_DEBUG_DCFLUSH
|
|
extern atomic_t dcpage_flushes;
|
|
extern atomic_t dcpage_flushes_xcall;
|
|
#endif
|
|
|
|
static __inline__ void __local_flush_dcache_page(struct page *page)
|
|
{
|
|
#ifdef DCACHE_ALIASING_POSSIBLE
|
|
__flush_dcache_page(page_address(page),
|
|
((tlb_type == spitfire) &&
|
|
page_mapping(page) != NULL));
|
|
#else
|
|
if (page_mapping(page) != NULL &&
|
|
tlb_type == spitfire)
|
|
__flush_icache_page(__pa(page_address(page)));
|
|
#endif
|
|
}
|
|
|
|
void smp_flush_dcache_page_impl(struct page *page, int cpu)
|
|
{
|
|
cpumask_t mask = cpumask_of_cpu(cpu);
|
|
int this_cpu;
|
|
|
|
if (tlb_type == hypervisor)
|
|
return;
|
|
|
|
#ifdef CONFIG_DEBUG_DCFLUSH
|
|
atomic_inc(&dcpage_flushes);
|
|
#endif
|
|
|
|
this_cpu = get_cpu();
|
|
|
|
if (cpu == this_cpu) {
|
|
__local_flush_dcache_page(page);
|
|
} else if (cpu_online(cpu)) {
|
|
void *pg_addr = page_address(page);
|
|
u64 data0;
|
|
|
|
if (tlb_type == spitfire) {
|
|
data0 =
|
|
((u64)&xcall_flush_dcache_page_spitfire);
|
|
if (page_mapping(page) != NULL)
|
|
data0 |= ((u64)1 << 32);
|
|
spitfire_xcall_deliver(data0,
|
|
__pa(pg_addr),
|
|
(u64) pg_addr,
|
|
mask);
|
|
} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
|
|
#ifdef DCACHE_ALIASING_POSSIBLE
|
|
data0 =
|
|
((u64)&xcall_flush_dcache_page_cheetah);
|
|
cheetah_xcall_deliver(data0,
|
|
__pa(pg_addr),
|
|
0, mask);
|
|
#endif
|
|
}
|
|
#ifdef CONFIG_DEBUG_DCFLUSH
|
|
atomic_inc(&dcpage_flushes_xcall);
|
|
#endif
|
|
}
|
|
|
|
put_cpu();
|
|
}
|
|
|
|
void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
|
|
{
|
|
void *pg_addr = page_address(page);
|
|
cpumask_t mask = cpu_online_map;
|
|
u64 data0;
|
|
int this_cpu;
|
|
|
|
if (tlb_type == hypervisor)
|
|
return;
|
|
|
|
this_cpu = get_cpu();
|
|
|
|
cpu_clear(this_cpu, mask);
|
|
|
|
#ifdef CONFIG_DEBUG_DCFLUSH
|
|
atomic_inc(&dcpage_flushes);
|
|
#endif
|
|
if (cpus_empty(mask))
|
|
goto flush_self;
|
|
if (tlb_type == spitfire) {
|
|
data0 = ((u64)&xcall_flush_dcache_page_spitfire);
|
|
if (page_mapping(page) != NULL)
|
|
data0 |= ((u64)1 << 32);
|
|
spitfire_xcall_deliver(data0,
|
|
__pa(pg_addr),
|
|
(u64) pg_addr,
|
|
mask);
|
|
} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
|
|
#ifdef DCACHE_ALIASING_POSSIBLE
|
|
data0 = ((u64)&xcall_flush_dcache_page_cheetah);
|
|
cheetah_xcall_deliver(data0,
|
|
__pa(pg_addr),
|
|
0, mask);
|
|
#endif
|
|
}
|
|
#ifdef CONFIG_DEBUG_DCFLUSH
|
|
atomic_inc(&dcpage_flushes_xcall);
|
|
#endif
|
|
flush_self:
|
|
__local_flush_dcache_page(page);
|
|
|
|
put_cpu();
|
|
}
|
|
|
|
static void __smp_receive_signal_mask(cpumask_t mask)
|
|
{
|
|
smp_cross_call_masked(&xcall_receive_signal, 0, 0, 0, mask);
|
|
}
|
|
|
|
void smp_receive_signal(int cpu)
|
|
{
|
|
cpumask_t mask = cpumask_of_cpu(cpu);
|
|
|
|
if (cpu_online(cpu))
|
|
__smp_receive_signal_mask(mask);
|
|
}
|
|
|
|
void smp_receive_signal_client(int irq, struct pt_regs *regs)
|
|
{
|
|
clear_softint(1 << irq);
|
|
}
|
|
|
|
void smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
|
|
{
|
|
struct mm_struct *mm;
|
|
unsigned long flags;
|
|
|
|
clear_softint(1 << irq);
|
|
|
|
/* See if we need to allocate a new TLB context because
|
|
* the version of the one we are using is now out of date.
|
|
*/
|
|
mm = current->active_mm;
|
|
if (unlikely(!mm || (mm == &init_mm)))
|
|
return;
|
|
|
|
spin_lock_irqsave(&mm->context.lock, flags);
|
|
|
|
if (unlikely(!CTX_VALID(mm->context)))
|
|
get_new_mmu_context(mm);
|
|
|
|
spin_unlock_irqrestore(&mm->context.lock, flags);
|
|
|
|
load_secondary_context(mm);
|
|
__flush_tlb_mm(CTX_HWBITS(mm->context),
|
|
SECONDARY_CONTEXT);
|
|
}
|
|
|
|
void smp_new_mmu_context_version(void)
|
|
{
|
|
smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
|
|
}
|
|
|
|
void smp_report_regs(void)
|
|
{
|
|
smp_cross_call(&xcall_report_regs, 0, 0, 0);
|
|
}
|
|
|
|
/* We know that the window frames of the user have been flushed
|
|
* to the stack before we get here because all callers of us
|
|
* are flush_tlb_*() routines, and these run after flush_cache_*()
|
|
* which performs the flushw.
|
|
*
|
|
* The SMP TLB coherency scheme we use works as follows:
|
|
*
|
|
* 1) mm->cpu_vm_mask is a bit mask of which cpus an address
|
|
* space has (potentially) executed on, this is the heuristic
|
|
* we use to avoid doing cross calls.
|
|
*
|
|
* Also, for flushing from kswapd and also for clones, we
|
|
* use cpu_vm_mask as the list of cpus to make run the TLB.
|
|
*
|
|
* 2) TLB context numbers are shared globally across all processors
|
|
* in the system, this allows us to play several games to avoid
|
|
* cross calls.
|
|
*
|
|
* One invariant is that when a cpu switches to a process, and
|
|
* that processes tsk->active_mm->cpu_vm_mask does not have the
|
|
* current cpu's bit set, that tlb context is flushed locally.
|
|
*
|
|
* If the address space is non-shared (ie. mm->count == 1) we avoid
|
|
* cross calls when we want to flush the currently running process's
|
|
* tlb state. This is done by clearing all cpu bits except the current
|
|
* processor's in current->active_mm->cpu_vm_mask and performing the
|
|
* flush locally only. This will force any subsequent cpus which run
|
|
* this task to flush the context from the local tlb if the process
|
|
* migrates to another cpu (again).
|
|
*
|
|
* 3) For shared address spaces (threads) and swapping we bite the
|
|
* bullet for most cases and perform the cross call (but only to
|
|
* the cpus listed in cpu_vm_mask).
|
|
*
|
|
* The performance gain from "optimizing" away the cross call for threads is
|
|
* questionable (in theory the big win for threads is the massive sharing of
|
|
* address space state across processors).
|
|
*/
|
|
|
|
/* This currently is only used by the hugetlb arch pre-fault
|
|
* hook on UltraSPARC-III+ and later when changing the pagesize
|
|
* bits of the context register for an address space.
|
|
*/
|
|
void smp_flush_tlb_mm(struct mm_struct *mm)
|
|
{
|
|
u32 ctx = CTX_HWBITS(mm->context);
|
|
int cpu = get_cpu();
|
|
|
|
if (atomic_read(&mm->mm_users) == 1) {
|
|
mm->cpu_vm_mask = cpumask_of_cpu(cpu);
|
|
goto local_flush_and_out;
|
|
}
|
|
|
|
smp_cross_call_masked(&xcall_flush_tlb_mm,
|
|
ctx, 0, 0,
|
|
mm->cpu_vm_mask);
|
|
|
|
local_flush_and_out:
|
|
__flush_tlb_mm(ctx, SECONDARY_CONTEXT);
|
|
|
|
put_cpu();
|
|
}
|
|
|
|
void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
|
|
{
|
|
u32 ctx = CTX_HWBITS(mm->context);
|
|
int cpu = get_cpu();
|
|
|
|
if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1)
|
|
mm->cpu_vm_mask = cpumask_of_cpu(cpu);
|
|
else
|
|
smp_cross_call_masked(&xcall_flush_tlb_pending,
|
|
ctx, nr, (unsigned long) vaddrs,
|
|
mm->cpu_vm_mask);
|
|
|
|
__flush_tlb_pending(ctx, nr, vaddrs);
|
|
|
|
put_cpu();
|
|
}
|
|
|
|
void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
|
|
{
|
|
start &= PAGE_MASK;
|
|
end = PAGE_ALIGN(end);
|
|
if (start != end) {
|
|
smp_cross_call(&xcall_flush_tlb_kernel_range,
|
|
0, start, end);
|
|
|
|
__flush_tlb_kernel_range(start, end);
|
|
}
|
|
}
|
|
|
|
/* CPU capture. */
|
|
/* #define CAPTURE_DEBUG */
|
|
extern unsigned long xcall_capture;
|
|
|
|
static atomic_t smp_capture_depth = ATOMIC_INIT(0);
|
|
static atomic_t smp_capture_registry = ATOMIC_INIT(0);
|
|
static unsigned long penguins_are_doing_time;
|
|
|
|
void smp_capture(void)
|
|
{
|
|
int result = atomic_add_ret(1, &smp_capture_depth);
|
|
|
|
if (result == 1) {
|
|
int ncpus = num_online_cpus();
|
|
|
|
#ifdef CAPTURE_DEBUG
|
|
printk("CPU[%d]: Sending penguins to jail...",
|
|
smp_processor_id());
|
|
#endif
|
|
penguins_are_doing_time = 1;
|
|
membar_storestore_loadstore();
|
|
atomic_inc(&smp_capture_registry);
|
|
smp_cross_call(&xcall_capture, 0, 0, 0);
|
|
while (atomic_read(&smp_capture_registry) != ncpus)
|
|
rmb();
|
|
#ifdef CAPTURE_DEBUG
|
|
printk("done\n");
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void smp_release(void)
|
|
{
|
|
if (atomic_dec_and_test(&smp_capture_depth)) {
|
|
#ifdef CAPTURE_DEBUG
|
|
printk("CPU[%d]: Giving pardon to "
|
|
"imprisoned penguins\n",
|
|
smp_processor_id());
|
|
#endif
|
|
penguins_are_doing_time = 0;
|
|
membar_storeload_storestore();
|
|
atomic_dec(&smp_capture_registry);
|
|
}
|
|
}
|
|
|
|
/* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they
|
|
* can service tlb flush xcalls...
|
|
*/
|
|
extern void prom_world(int);
|
|
|
|
void smp_penguin_jailcell(int irq, struct pt_regs *regs)
|
|
{
|
|
clear_softint(1 << irq);
|
|
|
|
preempt_disable();
|
|
|
|
__asm__ __volatile__("flushw");
|
|
prom_world(1);
|
|
atomic_inc(&smp_capture_registry);
|
|
membar_storeload_storestore();
|
|
while (penguins_are_doing_time)
|
|
rmb();
|
|
atomic_dec(&smp_capture_registry);
|
|
prom_world(0);
|
|
|
|
preempt_enable();
|
|
}
|
|
|
|
#define prof_multiplier(__cpu) cpu_data(__cpu).multiplier
|
|
#define prof_counter(__cpu) cpu_data(__cpu).counter
|
|
|
|
void smp_percpu_timer_interrupt(struct pt_regs *regs)
|
|
{
|
|
unsigned long compare, tick, pstate;
|
|
int cpu = smp_processor_id();
|
|
int user = user_mode(regs);
|
|
|
|
/*
|
|
* Check for level 14 softint.
|
|
*/
|
|
{
|
|
unsigned long tick_mask = tick_ops->softint_mask;
|
|
|
|
if (!(get_softint() & tick_mask)) {
|
|
extern void handler_irq(int, struct pt_regs *);
|
|
|
|
handler_irq(14, regs);
|
|
return;
|
|
}
|
|
clear_softint(tick_mask);
|
|
}
|
|
|
|
do {
|
|
profile_tick(CPU_PROFILING, regs);
|
|
if (!--prof_counter(cpu)) {
|
|
irq_enter();
|
|
|
|
if (cpu == boot_cpu_id) {
|
|
kstat_this_cpu.irqs[0]++;
|
|
timer_tick_interrupt(regs);
|
|
}
|
|
|
|
update_process_times(user);
|
|
|
|
irq_exit();
|
|
|
|
prof_counter(cpu) = prof_multiplier(cpu);
|
|
}
|
|
|
|
/* Guarantee that the following sequences execute
|
|
* uninterrupted.
|
|
*/
|
|
__asm__ __volatile__("rdpr %%pstate, %0\n\t"
|
|
"wrpr %0, %1, %%pstate"
|
|
: "=r" (pstate)
|
|
: "i" (PSTATE_IE));
|
|
|
|
compare = tick_ops->add_compare(current_tick_offset);
|
|
tick = tick_ops->get_tick();
|
|
|
|
/* Restore PSTATE_IE. */
|
|
__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
|
|
: /* no outputs */
|
|
: "r" (pstate));
|
|
} while (time_after_eq(tick, compare));
|
|
}
|
|
|
|
static void __init smp_setup_percpu_timer(void)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
unsigned long pstate;
|
|
|
|
prof_counter(cpu) = prof_multiplier(cpu) = 1;
|
|
|
|
/* Guarantee that the following sequences execute
|
|
* uninterrupted.
|
|
*/
|
|
__asm__ __volatile__("rdpr %%pstate, %0\n\t"
|
|
"wrpr %0, %1, %%pstate"
|
|
: "=r" (pstate)
|
|
: "i" (PSTATE_IE));
|
|
|
|
tick_ops->init_tick(current_tick_offset);
|
|
|
|
/* Restore PSTATE_IE. */
|
|
__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
|
|
: /* no outputs */
|
|
: "r" (pstate));
|
|
}
|
|
|
|
void __init smp_tick_init(void)
|
|
{
|
|
boot_cpu_id = hard_smp_processor_id();
|
|
current_tick_offset = timer_tick_offset;
|
|
|
|
cpu_set(boot_cpu_id, cpu_online_map);
|
|
prof_counter(boot_cpu_id) = prof_multiplier(boot_cpu_id) = 1;
|
|
}
|
|
|
|
/* /proc/profile writes can call this, don't __init it please. */
|
|
static DEFINE_SPINLOCK(prof_setup_lock);
|
|
|
|
int setup_profiling_timer(unsigned int multiplier)
|
|
{
|
|
unsigned long flags;
|
|
int i;
|
|
|
|
if ((!multiplier) || (timer_tick_offset / multiplier) < 1000)
|
|
return -EINVAL;
|
|
|
|
spin_lock_irqsave(&prof_setup_lock, flags);
|
|
for_each_cpu(i)
|
|
prof_multiplier(i) = multiplier;
|
|
current_tick_offset = (timer_tick_offset / multiplier);
|
|
spin_unlock_irqrestore(&prof_setup_lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Constrain the number of cpus to max_cpus. */
|
|
void __init smp_prepare_cpus(unsigned int max_cpus)
|
|
{
|
|
int i;
|
|
|
|
if (num_possible_cpus() > max_cpus) {
|
|
int instance, mid;
|
|
|
|
instance = 0;
|
|
while (!cpu_find_by_instance(instance, NULL, &mid)) {
|
|
if (mid != boot_cpu_id) {
|
|
cpu_clear(mid, phys_cpu_present_map);
|
|
cpu_clear(mid, cpu_present_map);
|
|
if (num_possible_cpus() <= max_cpus)
|
|
break;
|
|
}
|
|
instance++;
|
|
}
|
|
}
|
|
|
|
for_each_cpu(i) {
|
|
if (tlb_type == hypervisor) {
|
|
int j;
|
|
|
|
/* XXX get this mapping from machine description */
|
|
for_each_cpu(j) {
|
|
if ((j >> 2) == (i >> 2))
|
|
cpu_set(j, cpu_sibling_map[i]);
|
|
}
|
|
} else {
|
|
cpu_set(i, cpu_sibling_map[i]);
|
|
}
|
|
}
|
|
|
|
smp_store_cpu_info(boot_cpu_id);
|
|
}
|
|
|
|
/* Set this up early so that things like the scheduler can init
|
|
* properly. We use the same cpu mask for both the present and
|
|
* possible cpu map.
|
|
*/
|
|
void __init smp_setup_cpu_possible_map(void)
|
|
{
|
|
int instance, mid;
|
|
|
|
instance = 0;
|
|
while (!cpu_find_by_instance(instance, NULL, &mid)) {
|
|
if (mid < NR_CPUS) {
|
|
cpu_set(mid, phys_cpu_present_map);
|
|
cpu_set(mid, cpu_present_map);
|
|
}
|
|
instance++;
|
|
}
|
|
}
|
|
|
|
void __devinit smp_prepare_boot_cpu(void)
|
|
{
|
|
int cpu = hard_smp_processor_id();
|
|
|
|
if (cpu >= NR_CPUS) {
|
|
prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
|
|
prom_halt();
|
|
}
|
|
|
|
current_thread_info()->cpu = cpu;
|
|
__local_per_cpu_offset = __per_cpu_offset(cpu);
|
|
|
|
cpu_set(smp_processor_id(), cpu_online_map);
|
|
cpu_set(smp_processor_id(), phys_cpu_present_map);
|
|
}
|
|
|
|
int __devinit __cpu_up(unsigned int cpu)
|
|
{
|
|
int ret = smp_boot_one_cpu(cpu);
|
|
|
|
if (!ret) {
|
|
cpu_set(cpu, smp_commenced_mask);
|
|
while (!cpu_isset(cpu, cpu_online_map))
|
|
mb();
|
|
if (!cpu_isset(cpu, cpu_online_map)) {
|
|
ret = -ENODEV;
|
|
} else {
|
|
/* On SUN4V, writes to %tick and %stick are
|
|
* not allowed.
|
|
*/
|
|
if (tlb_type != hypervisor)
|
|
smp_synchronize_one_tick(cpu);
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
void __init smp_cpus_done(unsigned int max_cpus)
|
|
{
|
|
unsigned long bogosum = 0;
|
|
int i;
|
|
|
|
for_each_online_cpu(i)
|
|
bogosum += cpu_data(i).udelay_val;
|
|
printk("Total of %ld processors activated "
|
|
"(%lu.%02lu BogoMIPS).\n",
|
|
(long) num_online_cpus(),
|
|
bogosum/(500000/HZ),
|
|
(bogosum/(5000/HZ))%100);
|
|
}
|
|
|
|
void smp_send_reschedule(int cpu)
|
|
{
|
|
smp_receive_signal(cpu);
|
|
}
|
|
|
|
/* This is a nop because we capture all other cpus
|
|
* anyways when making the PROM active.
|
|
*/
|
|
void smp_send_stop(void)
|
|
{
|
|
}
|
|
|
|
unsigned long __per_cpu_base __read_mostly;
|
|
unsigned long __per_cpu_shift __read_mostly;
|
|
|
|
EXPORT_SYMBOL(__per_cpu_base);
|
|
EXPORT_SYMBOL(__per_cpu_shift);
|
|
|
|
void __init setup_per_cpu_areas(void)
|
|
{
|
|
unsigned long goal, size, i;
|
|
char *ptr;
|
|
|
|
/* Copy section for each CPU (we discard the original) */
|
|
goal = ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES);
|
|
#ifdef CONFIG_MODULES
|
|
if (goal < PERCPU_ENOUGH_ROOM)
|
|
goal = PERCPU_ENOUGH_ROOM;
|
|
#endif
|
|
__per_cpu_shift = 0;
|
|
for (size = 1UL; size < goal; size <<= 1UL)
|
|
__per_cpu_shift++;
|
|
|
|
ptr = alloc_bootmem(size * NR_CPUS);
|
|
|
|
__per_cpu_base = ptr - __per_cpu_start;
|
|
|
|
for (i = 0; i < NR_CPUS; i++, ptr += size)
|
|
memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
|
|
}
|