linux/drivers/net/can/usb/kvaser_usb/kvaser_usb_leaf.c

1359 lines
33 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Parts of this driver are based on the following:
* - Kvaser linux leaf driver (version 4.78)
* - CAN driver for esd CAN-USB/2
* - Kvaser linux usbcanII driver (version 5.3)
*
* Copyright (C) 2002-2018 KVASER AB, Sweden. All rights reserved.
* Copyright (C) 2010 Matthias Fuchs <matthias.fuchs@esd.eu>, esd gmbh
* Copyright (C) 2012 Olivier Sobrie <olivier@sobrie.be>
* Copyright (C) 2015 Valeo S.A.
*/
#include <linux/completion.h>
#include <linux/device.h>
#include <linux/gfp.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/usb.h>
#include <linux/can.h>
#include <linux/can/dev.h>
#include <linux/can/error.h>
#include <linux/can/netlink.h>
#include "kvaser_usb.h"
/* Forward declaration */
static const struct kvaser_usb_dev_cfg kvaser_usb_leaf_dev_cfg;
#define CAN_USB_CLOCK 8000000
#define MAX_USBCAN_NET_DEVICES 2
/* Command header size */
#define CMD_HEADER_LEN 2
/* Kvaser CAN message flags */
#define MSG_FLAG_ERROR_FRAME BIT(0)
#define MSG_FLAG_OVERRUN BIT(1)
#define MSG_FLAG_NERR BIT(2)
#define MSG_FLAG_WAKEUP BIT(3)
#define MSG_FLAG_REMOTE_FRAME BIT(4)
#define MSG_FLAG_RESERVED BIT(5)
#define MSG_FLAG_TX_ACK BIT(6)
#define MSG_FLAG_TX_REQUEST BIT(7)
/* CAN states (M16C CxSTRH register) */
#define M16C_STATE_BUS_RESET BIT(0)
#define M16C_STATE_BUS_ERROR BIT(4)
#define M16C_STATE_BUS_PASSIVE BIT(5)
#define M16C_STATE_BUS_OFF BIT(6)
/* Leaf/usbcan command ids */
#define CMD_RX_STD_MESSAGE 12
#define CMD_TX_STD_MESSAGE 13
#define CMD_RX_EXT_MESSAGE 14
#define CMD_TX_EXT_MESSAGE 15
#define CMD_SET_BUS_PARAMS 16
#define CMD_CHIP_STATE_EVENT 20
#define CMD_SET_CTRL_MODE 21
#define CMD_RESET_CHIP 24
#define CMD_START_CHIP 26
#define CMD_START_CHIP_REPLY 27
#define CMD_STOP_CHIP 28
#define CMD_STOP_CHIP_REPLY 29
#define CMD_USBCAN_CLOCK_OVERFLOW_EVENT 33
#define CMD_GET_CARD_INFO 34
#define CMD_GET_CARD_INFO_REPLY 35
#define CMD_GET_SOFTWARE_INFO 38
#define CMD_GET_SOFTWARE_INFO_REPLY 39
#define CMD_FLUSH_QUEUE 48
#define CMD_TX_ACKNOWLEDGE 50
#define CMD_CAN_ERROR_EVENT 51
#define CMD_FLUSH_QUEUE_REPLY 68
#define CMD_LEAF_LOG_MESSAGE 106
/* error factors */
#define M16C_EF_ACKE BIT(0)
#define M16C_EF_CRCE BIT(1)
#define M16C_EF_FORME BIT(2)
#define M16C_EF_STFE BIT(3)
#define M16C_EF_BITE0 BIT(4)
#define M16C_EF_BITE1 BIT(5)
#define M16C_EF_RCVE BIT(6)
#define M16C_EF_TRE BIT(7)
/* Only Leaf-based devices can report M16C error factors,
* thus define our own error status flags for USBCANII
*/
#define USBCAN_ERROR_STATE_NONE 0
#define USBCAN_ERROR_STATE_TX_ERROR BIT(0)
#define USBCAN_ERROR_STATE_RX_ERROR BIT(1)
#define USBCAN_ERROR_STATE_BUSERROR BIT(2)
/* bittiming parameters */
#define KVASER_USB_TSEG1_MIN 1
#define KVASER_USB_TSEG1_MAX 16
#define KVASER_USB_TSEG2_MIN 1
#define KVASER_USB_TSEG2_MAX 8
#define KVASER_USB_SJW_MAX 4
#define KVASER_USB_BRP_MIN 1
#define KVASER_USB_BRP_MAX 64
#define KVASER_USB_BRP_INC 1
/* ctrl modes */
#define KVASER_CTRL_MODE_NORMAL 1
#define KVASER_CTRL_MODE_SILENT 2
#define KVASER_CTRL_MODE_SELFRECEPTION 3
#define KVASER_CTRL_MODE_OFF 4
/* Extended CAN identifier flag */
#define KVASER_EXTENDED_FRAME BIT(31)
struct kvaser_cmd_simple {
u8 tid;
u8 channel;
} __packed;
struct kvaser_cmd_cardinfo {
u8 tid;
u8 nchannels;
__le32 serial_number;
__le32 padding0;
__le32 clock_resolution;
__le32 mfgdate;
u8 ean[8];
u8 hw_revision;
union {
struct {
u8 usb_hs_mode;
} __packed leaf1;
struct {
u8 padding;
} __packed usbcan1;
} __packed;
__le16 padding1;
} __packed;
struct leaf_cmd_softinfo {
u8 tid;
u8 padding0;
__le32 sw_options;
__le32 fw_version;
__le16 max_outstanding_tx;
__le16 padding1[9];
} __packed;
struct usbcan_cmd_softinfo {
u8 tid;
u8 fw_name[5];
__le16 max_outstanding_tx;
u8 padding[6];
__le32 fw_version;
__le16 checksum;
__le16 sw_options;
} __packed;
struct kvaser_cmd_busparams {
u8 tid;
u8 channel;
__le32 bitrate;
u8 tseg1;
u8 tseg2;
u8 sjw;
u8 no_samp;
} __packed;
struct kvaser_cmd_tx_can {
u8 channel;
u8 tid;
u8 data[14];
union {
struct {
u8 padding;
u8 flags;
} __packed leaf;
struct {
u8 flags;
u8 padding;
} __packed usbcan;
} __packed;
} __packed;
struct kvaser_cmd_rx_can_header {
u8 channel;
u8 flag;
} __packed;
struct leaf_cmd_rx_can {
u8 channel;
u8 flag;
__le16 time[3];
u8 data[14];
} __packed;
struct usbcan_cmd_rx_can {
u8 channel;
u8 flag;
u8 data[14];
__le16 time;
} __packed;
struct leaf_cmd_chip_state_event {
u8 tid;
u8 channel;
__le16 time[3];
u8 tx_errors_count;
u8 rx_errors_count;
u8 status;
u8 padding[3];
} __packed;
struct usbcan_cmd_chip_state_event {
u8 tid;
u8 channel;
u8 tx_errors_count;
u8 rx_errors_count;
__le16 time;
u8 status;
u8 padding[3];
} __packed;
struct kvaser_cmd_tx_acknowledge_header {
u8 channel;
u8 tid;
} __packed;
struct leaf_cmd_error_event {
u8 tid;
u8 flags;
__le16 time[3];
u8 channel;
u8 padding;
u8 tx_errors_count;
u8 rx_errors_count;
u8 status;
u8 error_factor;
} __packed;
struct usbcan_cmd_error_event {
u8 tid;
u8 padding;
u8 tx_errors_count_ch0;
u8 rx_errors_count_ch0;
u8 tx_errors_count_ch1;
u8 rx_errors_count_ch1;
u8 status_ch0;
u8 status_ch1;
__le16 time;
} __packed;
struct kvaser_cmd_ctrl_mode {
u8 tid;
u8 channel;
u8 ctrl_mode;
u8 padding[3];
} __packed;
struct kvaser_cmd_flush_queue {
u8 tid;
u8 channel;
u8 flags;
u8 padding[3];
} __packed;
struct leaf_cmd_log_message {
u8 channel;
u8 flags;
__le16 time[3];
u8 dlc;
u8 time_offset;
__le32 id;
u8 data[8];
} __packed;
struct kvaser_cmd {
u8 len;
u8 id;
union {
struct kvaser_cmd_simple simple;
struct kvaser_cmd_cardinfo cardinfo;
struct kvaser_cmd_busparams busparams;
struct kvaser_cmd_rx_can_header rx_can_header;
struct kvaser_cmd_tx_acknowledge_header tx_acknowledge_header;
union {
struct leaf_cmd_softinfo softinfo;
struct leaf_cmd_rx_can rx_can;
struct leaf_cmd_chip_state_event chip_state_event;
struct leaf_cmd_error_event error_event;
struct leaf_cmd_log_message log_message;
} __packed leaf;
union {
struct usbcan_cmd_softinfo softinfo;
struct usbcan_cmd_rx_can rx_can;
struct usbcan_cmd_chip_state_event chip_state_event;
struct usbcan_cmd_error_event error_event;
} __packed usbcan;
struct kvaser_cmd_tx_can tx_can;
struct kvaser_cmd_ctrl_mode ctrl_mode;
struct kvaser_cmd_flush_queue flush_queue;
} u;
} __packed;
/* Summary of a kvaser error event, for a unified Leaf/Usbcan error
* handling. Some discrepancies between the two families exist:
*
* - USBCAN firmware does not report M16C "error factors"
* - USBCAN controllers has difficulties reporting if the raised error
* event is for ch0 or ch1. They leave such arbitration to the OS
* driver by letting it compare error counters with previous values
* and decide the error event's channel. Thus for USBCAN, the channel
* field is only advisory.
*/
struct kvaser_usb_err_summary {
u8 channel, status, txerr, rxerr;
union {
struct {
u8 error_factor;
} leaf;
struct {
u8 other_ch_status;
u8 error_state;
} usbcan;
};
};
static void *
kvaser_usb_leaf_frame_to_cmd(const struct kvaser_usb_net_priv *priv,
const struct sk_buff *skb, int *frame_len,
int *cmd_len, u16 transid)
{
struct kvaser_usb *dev = priv->dev;
struct kvaser_cmd *cmd;
u8 *cmd_tx_can_flags = NULL; /* GCC */
struct can_frame *cf = (struct can_frame *)skb->data;
*frame_len = cf->can_dlc;
cmd = kmalloc(sizeof(*cmd), GFP_ATOMIC);
if (cmd) {
cmd->u.tx_can.tid = transid & 0xff;
cmd->len = *cmd_len = CMD_HEADER_LEN +
sizeof(struct kvaser_cmd_tx_can);
cmd->u.tx_can.channel = priv->channel;
switch (dev->card_data.leaf.family) {
case KVASER_LEAF:
cmd_tx_can_flags = &cmd->u.tx_can.leaf.flags;
break;
case KVASER_USBCAN:
cmd_tx_can_flags = &cmd->u.tx_can.usbcan.flags;
break;
}
*cmd_tx_can_flags = 0;
if (cf->can_id & CAN_EFF_FLAG) {
cmd->id = CMD_TX_EXT_MESSAGE;
cmd->u.tx_can.data[0] = (cf->can_id >> 24) & 0x1f;
cmd->u.tx_can.data[1] = (cf->can_id >> 18) & 0x3f;
cmd->u.tx_can.data[2] = (cf->can_id >> 14) & 0x0f;
cmd->u.tx_can.data[3] = (cf->can_id >> 6) & 0xff;
cmd->u.tx_can.data[4] = cf->can_id & 0x3f;
} else {
cmd->id = CMD_TX_STD_MESSAGE;
cmd->u.tx_can.data[0] = (cf->can_id >> 6) & 0x1f;
cmd->u.tx_can.data[1] = cf->can_id & 0x3f;
}
cmd->u.tx_can.data[5] = cf->can_dlc;
memcpy(&cmd->u.tx_can.data[6], cf->data, cf->can_dlc);
if (cf->can_id & CAN_RTR_FLAG)
*cmd_tx_can_flags |= MSG_FLAG_REMOTE_FRAME;
}
return cmd;
}
static int kvaser_usb_leaf_wait_cmd(const struct kvaser_usb *dev, u8 id,
struct kvaser_cmd *cmd)
{
struct kvaser_cmd *tmp;
void *buf;
int actual_len;
int err;
int pos;
unsigned long to = jiffies + msecs_to_jiffies(KVASER_USB_TIMEOUT);
buf = kzalloc(KVASER_USB_RX_BUFFER_SIZE, GFP_KERNEL);
if (!buf)
return -ENOMEM;
do {
err = kvaser_usb_recv_cmd(dev, buf, KVASER_USB_RX_BUFFER_SIZE,
&actual_len);
if (err < 0)
goto end;
pos = 0;
while (pos <= actual_len - CMD_HEADER_LEN) {
tmp = buf + pos;
/* Handle commands crossing the USB endpoint max packet
* size boundary. Check kvaser_usb_read_bulk_callback()
* for further details.
*/
if (tmp->len == 0) {
pos = round_up(pos,
le16_to_cpu
(dev->bulk_in->wMaxPacketSize));
continue;
}
if (pos + tmp->len > actual_len) {
dev_err_ratelimited(&dev->intf->dev,
"Format error\n");
break;
}
if (tmp->id == id) {
memcpy(cmd, tmp, tmp->len);
goto end;
}
pos += tmp->len;
}
} while (time_before(jiffies, to));
err = -EINVAL;
end:
kfree(buf);
return err;
}
static int kvaser_usb_leaf_send_simple_cmd(const struct kvaser_usb *dev,
u8 cmd_id, int channel)
{
struct kvaser_cmd *cmd;
int rc;
cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
if (!cmd)
return -ENOMEM;
cmd->id = cmd_id;
cmd->len = CMD_HEADER_LEN + sizeof(struct kvaser_cmd_simple);
cmd->u.simple.channel = channel;
cmd->u.simple.tid = 0xff;
rc = kvaser_usb_send_cmd(dev, cmd, cmd->len);
kfree(cmd);
return rc;
}
static int kvaser_usb_leaf_get_software_info_inner(struct kvaser_usb *dev)
{
struct kvaser_cmd cmd;
int err;
err = kvaser_usb_leaf_send_simple_cmd(dev, CMD_GET_SOFTWARE_INFO, 0);
if (err)
return err;
err = kvaser_usb_leaf_wait_cmd(dev, CMD_GET_SOFTWARE_INFO_REPLY, &cmd);
if (err)
return err;
switch (dev->card_data.leaf.family) {
case KVASER_LEAF:
dev->fw_version = le32_to_cpu(cmd.u.leaf.softinfo.fw_version);
dev->max_tx_urbs =
le16_to_cpu(cmd.u.leaf.softinfo.max_outstanding_tx);
break;
case KVASER_USBCAN:
dev->fw_version = le32_to_cpu(cmd.u.usbcan.softinfo.fw_version);
dev->max_tx_urbs =
le16_to_cpu(cmd.u.usbcan.softinfo.max_outstanding_tx);
break;
}
return 0;
}
static int kvaser_usb_leaf_get_software_info(struct kvaser_usb *dev)
{
int err;
int retry = 3;
/* On some x86 laptops, plugging a Kvaser device again after
* an unplug makes the firmware always ignore the very first
* command. For such a case, provide some room for retries
* instead of completely exiting the driver.
*/
do {
err = kvaser_usb_leaf_get_software_info_inner(dev);
} while (--retry && err == -ETIMEDOUT);
return err;
}
static int kvaser_usb_leaf_get_card_info(struct kvaser_usb *dev)
{
struct kvaser_cmd cmd;
int err;
err = kvaser_usb_leaf_send_simple_cmd(dev, CMD_GET_CARD_INFO, 0);
if (err)
return err;
err = kvaser_usb_leaf_wait_cmd(dev, CMD_GET_CARD_INFO_REPLY, &cmd);
if (err)
return err;
dev->nchannels = cmd.u.cardinfo.nchannels;
if (dev->nchannels > KVASER_USB_MAX_NET_DEVICES ||
(dev->card_data.leaf.family == KVASER_USBCAN &&
dev->nchannels > MAX_USBCAN_NET_DEVICES))
return -EINVAL;
return 0;
}
static void kvaser_usb_leaf_tx_acknowledge(const struct kvaser_usb *dev,
const struct kvaser_cmd *cmd)
{
struct net_device_stats *stats;
struct kvaser_usb_tx_urb_context *context;
struct kvaser_usb_net_priv *priv;
unsigned long flags;
u8 channel, tid;
channel = cmd->u.tx_acknowledge_header.channel;
tid = cmd->u.tx_acknowledge_header.tid;
if (channel >= dev->nchannels) {
dev_err(&dev->intf->dev,
"Invalid channel number (%d)\n", channel);
return;
}
priv = dev->nets[channel];
if (!netif_device_present(priv->netdev))
return;
stats = &priv->netdev->stats;
context = &priv->tx_contexts[tid % dev->max_tx_urbs];
/* Sometimes the state change doesn't come after a bus-off event */
if (priv->can.restart_ms && priv->can.state >= CAN_STATE_BUS_OFF) {
struct sk_buff *skb;
struct can_frame *cf;
skb = alloc_can_err_skb(priv->netdev, &cf);
if (skb) {
cf->can_id |= CAN_ERR_RESTARTED;
stats->rx_packets++;
stats->rx_bytes += cf->can_dlc;
netif_rx(skb);
} else {
netdev_err(priv->netdev,
"No memory left for err_skb\n");
}
priv->can.can_stats.restarts++;
netif_carrier_on(priv->netdev);
priv->can.state = CAN_STATE_ERROR_ACTIVE;
}
stats->tx_packets++;
stats->tx_bytes += context->dlc;
spin_lock_irqsave(&priv->tx_contexts_lock, flags);
can_get_echo_skb(priv->netdev, context->echo_index);
context->echo_index = dev->max_tx_urbs;
--priv->active_tx_contexts;
netif_wake_queue(priv->netdev);
spin_unlock_irqrestore(&priv->tx_contexts_lock, flags);
}
static int kvaser_usb_leaf_simple_cmd_async(struct kvaser_usb_net_priv *priv,
u8 cmd_id)
{
struct kvaser_cmd *cmd;
int err;
cmd = kmalloc(sizeof(*cmd), GFP_ATOMIC);
if (!cmd)
return -ENOMEM;
cmd->len = CMD_HEADER_LEN + sizeof(struct kvaser_cmd_simple);
cmd->id = cmd_id;
cmd->u.simple.channel = priv->channel;
err = kvaser_usb_send_cmd_async(priv, cmd, cmd->len);
if (err)
kfree(cmd);
return err;
}
static void
kvaser_usb_leaf_rx_error_update_can_state(struct kvaser_usb_net_priv *priv,
const struct kvaser_usb_err_summary *es,
struct can_frame *cf)
{
struct kvaser_usb *dev = priv->dev;
struct net_device_stats *stats = &priv->netdev->stats;
enum can_state cur_state, new_state, tx_state, rx_state;
netdev_dbg(priv->netdev, "Error status: 0x%02x\n", es->status);
new_state = priv->can.state;
cur_state = priv->can.state;
if (es->status & (M16C_STATE_BUS_OFF | M16C_STATE_BUS_RESET)) {
new_state = CAN_STATE_BUS_OFF;
} else if (es->status & M16C_STATE_BUS_PASSIVE) {
new_state = CAN_STATE_ERROR_PASSIVE;
} else if (es->status & M16C_STATE_BUS_ERROR) {
/* Guard against spurious error events after a busoff */
if (cur_state < CAN_STATE_BUS_OFF) {
if (es->txerr >= 128 || es->rxerr >= 128)
new_state = CAN_STATE_ERROR_PASSIVE;
else if (es->txerr >= 96 || es->rxerr >= 96)
new_state = CAN_STATE_ERROR_WARNING;
else if (cur_state > CAN_STATE_ERROR_ACTIVE)
new_state = CAN_STATE_ERROR_ACTIVE;
}
}
if (!es->status)
new_state = CAN_STATE_ERROR_ACTIVE;
if (new_state != cur_state) {
tx_state = (es->txerr >= es->rxerr) ? new_state : 0;
rx_state = (es->txerr <= es->rxerr) ? new_state : 0;
can_change_state(priv->netdev, cf, tx_state, rx_state);
}
if (priv->can.restart_ms &&
cur_state >= CAN_STATE_BUS_OFF &&
new_state < CAN_STATE_BUS_OFF)
priv->can.can_stats.restarts++;
switch (dev->card_data.leaf.family) {
case KVASER_LEAF:
if (es->leaf.error_factor) {
priv->can.can_stats.bus_error++;
stats->rx_errors++;
}
break;
case KVASER_USBCAN:
if (es->usbcan.error_state & USBCAN_ERROR_STATE_TX_ERROR)
stats->tx_errors++;
if (es->usbcan.error_state & USBCAN_ERROR_STATE_RX_ERROR)
stats->rx_errors++;
if (es->usbcan.error_state & USBCAN_ERROR_STATE_BUSERROR)
priv->can.can_stats.bus_error++;
break;
}
priv->bec.txerr = es->txerr;
priv->bec.rxerr = es->rxerr;
}
static void kvaser_usb_leaf_rx_error(const struct kvaser_usb *dev,
const struct kvaser_usb_err_summary *es)
{
struct can_frame *cf;
struct can_frame tmp_cf = { .can_id = CAN_ERR_FLAG,
.can_dlc = CAN_ERR_DLC };
struct sk_buff *skb;
struct net_device_stats *stats;
struct kvaser_usb_net_priv *priv;
enum can_state old_state, new_state;
if (es->channel >= dev->nchannels) {
dev_err(&dev->intf->dev,
"Invalid channel number (%d)\n", es->channel);
return;
}
priv = dev->nets[es->channel];
stats = &priv->netdev->stats;
/* Update all of the CAN interface's state and error counters before
* trying any memory allocation that can actually fail with -ENOMEM.
*
* We send a temporary stack-allocated error CAN frame to
* can_change_state() for the very same reason.
*
* TODO: Split can_change_state() responsibility between updating the
* CAN interface's state and counters, and the setting up of CAN error
* frame ID and data to userspace. Remove stack allocation afterwards.
*/
old_state = priv->can.state;
kvaser_usb_leaf_rx_error_update_can_state(priv, es, &tmp_cf);
new_state = priv->can.state;
skb = alloc_can_err_skb(priv->netdev, &cf);
if (!skb) {
stats->rx_dropped++;
return;
}
memcpy(cf, &tmp_cf, sizeof(*cf));
if (new_state != old_state) {
if (es->status &
(M16C_STATE_BUS_OFF | M16C_STATE_BUS_RESET)) {
if (!priv->can.restart_ms)
kvaser_usb_leaf_simple_cmd_async(priv,
CMD_STOP_CHIP);
netif_carrier_off(priv->netdev);
}
if (priv->can.restart_ms &&
old_state >= CAN_STATE_BUS_OFF &&
new_state < CAN_STATE_BUS_OFF) {
cf->can_id |= CAN_ERR_RESTARTED;
netif_carrier_on(priv->netdev);
}
}
switch (dev->card_data.leaf.family) {
case KVASER_LEAF:
if (es->leaf.error_factor) {
cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT;
if (es->leaf.error_factor & M16C_EF_ACKE)
cf->data[3] = CAN_ERR_PROT_LOC_ACK;
if (es->leaf.error_factor & M16C_EF_CRCE)
cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
if (es->leaf.error_factor & M16C_EF_FORME)
cf->data[2] |= CAN_ERR_PROT_FORM;
if (es->leaf.error_factor & M16C_EF_STFE)
cf->data[2] |= CAN_ERR_PROT_STUFF;
if (es->leaf.error_factor & M16C_EF_BITE0)
cf->data[2] |= CAN_ERR_PROT_BIT0;
if (es->leaf.error_factor & M16C_EF_BITE1)
cf->data[2] |= CAN_ERR_PROT_BIT1;
if (es->leaf.error_factor & M16C_EF_TRE)
cf->data[2] |= CAN_ERR_PROT_TX;
}
break;
case KVASER_USBCAN:
if (es->usbcan.error_state & USBCAN_ERROR_STATE_BUSERROR)
cf->can_id |= CAN_ERR_BUSERROR;
break;
}
cf->data[6] = es->txerr;
cf->data[7] = es->rxerr;
stats->rx_packets++;
stats->rx_bytes += cf->can_dlc;
netif_rx(skb);
}
/* For USBCAN, report error to userspace if the channels's errors counter
* has changed, or we're the only channel seeing a bus error state.
*/
static void
kvaser_usb_leaf_usbcan_conditionally_rx_error(const struct kvaser_usb *dev,
struct kvaser_usb_err_summary *es)
{
struct kvaser_usb_net_priv *priv;
unsigned int channel;
bool report_error;
channel = es->channel;
if (channel >= dev->nchannels) {
dev_err(&dev->intf->dev,
"Invalid channel number (%d)\n", channel);
return;
}
priv = dev->nets[channel];
report_error = false;
if (es->txerr != priv->bec.txerr) {
es->usbcan.error_state |= USBCAN_ERROR_STATE_TX_ERROR;
report_error = true;
}
if (es->rxerr != priv->bec.rxerr) {
es->usbcan.error_state |= USBCAN_ERROR_STATE_RX_ERROR;
report_error = true;
}
if ((es->status & M16C_STATE_BUS_ERROR) &&
!(es->usbcan.other_ch_status & M16C_STATE_BUS_ERROR)) {
es->usbcan.error_state |= USBCAN_ERROR_STATE_BUSERROR;
report_error = true;
}
if (report_error)
kvaser_usb_leaf_rx_error(dev, es);
}
static void kvaser_usb_leaf_usbcan_rx_error(const struct kvaser_usb *dev,
const struct kvaser_cmd *cmd)
{
struct kvaser_usb_err_summary es = { };
switch (cmd->id) {
/* Sometimes errors are sent as unsolicited chip state events */
case CMD_CHIP_STATE_EVENT:
es.channel = cmd->u.usbcan.chip_state_event.channel;
es.status = cmd->u.usbcan.chip_state_event.status;
es.txerr = cmd->u.usbcan.chip_state_event.tx_errors_count;
es.rxerr = cmd->u.usbcan.chip_state_event.rx_errors_count;
kvaser_usb_leaf_usbcan_conditionally_rx_error(dev, &es);
break;
case CMD_CAN_ERROR_EVENT:
es.channel = 0;
es.status = cmd->u.usbcan.error_event.status_ch0;
es.txerr = cmd->u.usbcan.error_event.tx_errors_count_ch0;
es.rxerr = cmd->u.usbcan.error_event.rx_errors_count_ch0;
es.usbcan.other_ch_status =
cmd->u.usbcan.error_event.status_ch1;
kvaser_usb_leaf_usbcan_conditionally_rx_error(dev, &es);
/* The USBCAN firmware supports up to 2 channels.
* Now that ch0 was checked, check if ch1 has any errors.
*/
if (dev->nchannels == MAX_USBCAN_NET_DEVICES) {
es.channel = 1;
es.status = cmd->u.usbcan.error_event.status_ch1;
es.txerr =
cmd->u.usbcan.error_event.tx_errors_count_ch1;
es.rxerr =
cmd->u.usbcan.error_event.rx_errors_count_ch1;
es.usbcan.other_ch_status =
cmd->u.usbcan.error_event.status_ch0;
kvaser_usb_leaf_usbcan_conditionally_rx_error(dev, &es);
}
break;
default:
dev_err(&dev->intf->dev, "Invalid cmd id (%d)\n", cmd->id);
}
}
static void kvaser_usb_leaf_leaf_rx_error(const struct kvaser_usb *dev,
const struct kvaser_cmd *cmd)
{
struct kvaser_usb_err_summary es = { };
switch (cmd->id) {
case CMD_CAN_ERROR_EVENT:
es.channel = cmd->u.leaf.error_event.channel;
es.status = cmd->u.leaf.error_event.status;
es.txerr = cmd->u.leaf.error_event.tx_errors_count;
es.rxerr = cmd->u.leaf.error_event.rx_errors_count;
es.leaf.error_factor = cmd->u.leaf.error_event.error_factor;
break;
case CMD_LEAF_LOG_MESSAGE:
es.channel = cmd->u.leaf.log_message.channel;
es.status = cmd->u.leaf.log_message.data[0];
es.txerr = cmd->u.leaf.log_message.data[2];
es.rxerr = cmd->u.leaf.log_message.data[3];
es.leaf.error_factor = cmd->u.leaf.log_message.data[1];
break;
case CMD_CHIP_STATE_EVENT:
es.channel = cmd->u.leaf.chip_state_event.channel;
es.status = cmd->u.leaf.chip_state_event.status;
es.txerr = cmd->u.leaf.chip_state_event.tx_errors_count;
es.rxerr = cmd->u.leaf.chip_state_event.rx_errors_count;
es.leaf.error_factor = 0;
break;
default:
dev_err(&dev->intf->dev, "Invalid cmd id (%d)\n", cmd->id);
return;
}
kvaser_usb_leaf_rx_error(dev, &es);
}
static void kvaser_usb_leaf_rx_can_err(const struct kvaser_usb_net_priv *priv,
const struct kvaser_cmd *cmd)
{
if (cmd->u.rx_can_header.flag & (MSG_FLAG_ERROR_FRAME |
MSG_FLAG_NERR)) {
struct net_device_stats *stats = &priv->netdev->stats;
netdev_err(priv->netdev, "Unknown error (flags: 0x%02x)\n",
cmd->u.rx_can_header.flag);
stats->rx_errors++;
return;
}
if (cmd->u.rx_can_header.flag & MSG_FLAG_OVERRUN)
kvaser_usb_can_rx_over_error(priv->netdev);
}
static void kvaser_usb_leaf_rx_can_msg(const struct kvaser_usb *dev,
const struct kvaser_cmd *cmd)
{
struct kvaser_usb_net_priv *priv;
struct can_frame *cf;
struct sk_buff *skb;
struct net_device_stats *stats;
u8 channel = cmd->u.rx_can_header.channel;
const u8 *rx_data = NULL; /* GCC */
if (channel >= dev->nchannels) {
dev_err(&dev->intf->dev,
"Invalid channel number (%d)\n", channel);
return;
}
priv = dev->nets[channel];
stats = &priv->netdev->stats;
if ((cmd->u.rx_can_header.flag & MSG_FLAG_ERROR_FRAME) &&
(dev->card_data.leaf.family == KVASER_LEAF &&
cmd->id == CMD_LEAF_LOG_MESSAGE)) {
kvaser_usb_leaf_leaf_rx_error(dev, cmd);
return;
} else if (cmd->u.rx_can_header.flag & (MSG_FLAG_ERROR_FRAME |
MSG_FLAG_NERR |
MSG_FLAG_OVERRUN)) {
kvaser_usb_leaf_rx_can_err(priv, cmd);
return;
} else if (cmd->u.rx_can_header.flag & ~MSG_FLAG_REMOTE_FRAME) {
netdev_warn(priv->netdev,
"Unhandled frame (flags: 0x%02x)\n",
cmd->u.rx_can_header.flag);
return;
}
switch (dev->card_data.leaf.family) {
case KVASER_LEAF:
rx_data = cmd->u.leaf.rx_can.data;
break;
case KVASER_USBCAN:
rx_data = cmd->u.usbcan.rx_can.data;
break;
}
skb = alloc_can_skb(priv->netdev, &cf);
if (!skb) {
stats->rx_dropped++;
return;
}
if (dev->card_data.leaf.family == KVASER_LEAF && cmd->id ==
CMD_LEAF_LOG_MESSAGE) {
cf->can_id = le32_to_cpu(cmd->u.leaf.log_message.id);
if (cf->can_id & KVASER_EXTENDED_FRAME)
cf->can_id &= CAN_EFF_MASK | CAN_EFF_FLAG;
else
cf->can_id &= CAN_SFF_MASK;
cf->can_dlc = get_can_dlc(cmd->u.leaf.log_message.dlc);
if (cmd->u.leaf.log_message.flags & MSG_FLAG_REMOTE_FRAME)
cf->can_id |= CAN_RTR_FLAG;
else
memcpy(cf->data, &cmd->u.leaf.log_message.data,
cf->can_dlc);
} else {
cf->can_id = ((rx_data[0] & 0x1f) << 6) | (rx_data[1] & 0x3f);
if (cmd->id == CMD_RX_EXT_MESSAGE) {
cf->can_id <<= 18;
cf->can_id |= ((rx_data[2] & 0x0f) << 14) |
((rx_data[3] & 0xff) << 6) |
(rx_data[4] & 0x3f);
cf->can_id |= CAN_EFF_FLAG;
}
cf->can_dlc = get_can_dlc(rx_data[5]);
if (cmd->u.rx_can_header.flag & MSG_FLAG_REMOTE_FRAME)
cf->can_id |= CAN_RTR_FLAG;
else
memcpy(cf->data, &rx_data[6], cf->can_dlc);
}
stats->rx_packets++;
stats->rx_bytes += cf->can_dlc;
netif_rx(skb);
}
static void kvaser_usb_leaf_start_chip_reply(const struct kvaser_usb *dev,
const struct kvaser_cmd *cmd)
{
struct kvaser_usb_net_priv *priv;
u8 channel = cmd->u.simple.channel;
if (channel >= dev->nchannels) {
dev_err(&dev->intf->dev,
"Invalid channel number (%d)\n", channel);
return;
}
priv = dev->nets[channel];
if (completion_done(&priv->start_comp) &&
netif_queue_stopped(priv->netdev)) {
netif_wake_queue(priv->netdev);
} else {
netif_start_queue(priv->netdev);
complete(&priv->start_comp);
}
}
static void kvaser_usb_leaf_stop_chip_reply(const struct kvaser_usb *dev,
const struct kvaser_cmd *cmd)
{
struct kvaser_usb_net_priv *priv;
u8 channel = cmd->u.simple.channel;
if (channel >= dev->nchannels) {
dev_err(&dev->intf->dev,
"Invalid channel number (%d)\n", channel);
return;
}
priv = dev->nets[channel];
complete(&priv->stop_comp);
}
static void kvaser_usb_leaf_handle_command(const struct kvaser_usb *dev,
const struct kvaser_cmd *cmd)
{
switch (cmd->id) {
case CMD_START_CHIP_REPLY:
kvaser_usb_leaf_start_chip_reply(dev, cmd);
break;
case CMD_STOP_CHIP_REPLY:
kvaser_usb_leaf_stop_chip_reply(dev, cmd);
break;
case CMD_RX_STD_MESSAGE:
case CMD_RX_EXT_MESSAGE:
kvaser_usb_leaf_rx_can_msg(dev, cmd);
break;
case CMD_LEAF_LOG_MESSAGE:
if (dev->card_data.leaf.family != KVASER_LEAF)
goto warn;
kvaser_usb_leaf_rx_can_msg(dev, cmd);
break;
case CMD_CHIP_STATE_EVENT:
case CMD_CAN_ERROR_EVENT:
if (dev->card_data.leaf.family == KVASER_LEAF)
kvaser_usb_leaf_leaf_rx_error(dev, cmd);
else
kvaser_usb_leaf_usbcan_rx_error(dev, cmd);
break;
case CMD_TX_ACKNOWLEDGE:
kvaser_usb_leaf_tx_acknowledge(dev, cmd);
break;
/* Ignored commands */
case CMD_USBCAN_CLOCK_OVERFLOW_EVENT:
if (dev->card_data.leaf.family != KVASER_USBCAN)
goto warn;
break;
case CMD_FLUSH_QUEUE_REPLY:
if (dev->card_data.leaf.family != KVASER_LEAF)
goto warn;
break;
default:
warn: dev_warn(&dev->intf->dev, "Unhandled command (%d)\n", cmd->id);
break;
}
}
static void kvaser_usb_leaf_read_bulk_callback(struct kvaser_usb *dev,
void *buf, int len)
{
struct kvaser_cmd *cmd;
int pos = 0;
while (pos <= len - CMD_HEADER_LEN) {
cmd = buf + pos;
/* The Kvaser firmware can only read and write commands that
* does not cross the USB's endpoint wMaxPacketSize boundary.
* If a follow-up command crosses such boundary, firmware puts
* a placeholder zero-length command in its place then aligns
* the real command to the next max packet size.
*
* Handle such cases or we're going to miss a significant
* number of events in case of a heavy rx load on the bus.
*/
if (cmd->len == 0) {
pos = round_up(pos, le16_to_cpu
(dev->bulk_in->wMaxPacketSize));
continue;
}
if (pos + cmd->len > len) {
dev_err_ratelimited(&dev->intf->dev, "Format error\n");
break;
}
kvaser_usb_leaf_handle_command(dev, cmd);
pos += cmd->len;
}
}
static int kvaser_usb_leaf_set_opt_mode(const struct kvaser_usb_net_priv *priv)
{
struct kvaser_cmd *cmd;
int rc;
cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
if (!cmd)
return -ENOMEM;
cmd->id = CMD_SET_CTRL_MODE;
cmd->len = CMD_HEADER_LEN + sizeof(struct kvaser_cmd_ctrl_mode);
cmd->u.ctrl_mode.tid = 0xff;
cmd->u.ctrl_mode.channel = priv->channel;
if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
cmd->u.ctrl_mode.ctrl_mode = KVASER_CTRL_MODE_SILENT;
else
cmd->u.ctrl_mode.ctrl_mode = KVASER_CTRL_MODE_NORMAL;
rc = kvaser_usb_send_cmd(priv->dev, cmd, cmd->len);
kfree(cmd);
return rc;
}
static int kvaser_usb_leaf_start_chip(struct kvaser_usb_net_priv *priv)
{
int err;
init_completion(&priv->start_comp);
err = kvaser_usb_leaf_send_simple_cmd(priv->dev, CMD_START_CHIP,
priv->channel);
if (err)
return err;
if (!wait_for_completion_timeout(&priv->start_comp,
msecs_to_jiffies(KVASER_USB_TIMEOUT)))
return -ETIMEDOUT;
return 0;
}
static int kvaser_usb_leaf_stop_chip(struct kvaser_usb_net_priv *priv)
{
int err;
init_completion(&priv->stop_comp);
err = kvaser_usb_leaf_send_simple_cmd(priv->dev, CMD_STOP_CHIP,
priv->channel);
if (err)
return err;
if (!wait_for_completion_timeout(&priv->stop_comp,
msecs_to_jiffies(KVASER_USB_TIMEOUT)))
return -ETIMEDOUT;
return 0;
}
static int kvaser_usb_leaf_reset_chip(struct kvaser_usb *dev, int channel)
{
return kvaser_usb_leaf_send_simple_cmd(dev, CMD_RESET_CHIP, channel);
}
static int kvaser_usb_leaf_flush_queue(struct kvaser_usb_net_priv *priv)
{
struct kvaser_cmd *cmd;
int rc;
cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
if (!cmd)
return -ENOMEM;
cmd->id = CMD_FLUSH_QUEUE;
cmd->len = CMD_HEADER_LEN + sizeof(struct kvaser_cmd_flush_queue);
cmd->u.flush_queue.channel = priv->channel;
cmd->u.flush_queue.flags = 0x00;
rc = kvaser_usb_send_cmd(priv->dev, cmd, cmd->len);
kfree(cmd);
return rc;
}
static int kvaser_usb_leaf_init_card(struct kvaser_usb *dev)
{
struct kvaser_usb_dev_card_data *card_data = &dev->card_data;
dev->cfg = &kvaser_usb_leaf_dev_cfg;
card_data->ctrlmode_supported |= CAN_CTRLMODE_3_SAMPLES;
return 0;
}
static const struct can_bittiming_const kvaser_usb_leaf_bittiming_const = {
.name = "kvaser_usb",
.tseg1_min = KVASER_USB_TSEG1_MIN,
.tseg1_max = KVASER_USB_TSEG1_MAX,
.tseg2_min = KVASER_USB_TSEG2_MIN,
.tseg2_max = KVASER_USB_TSEG2_MAX,
.sjw_max = KVASER_USB_SJW_MAX,
.brp_min = KVASER_USB_BRP_MIN,
.brp_max = KVASER_USB_BRP_MAX,
.brp_inc = KVASER_USB_BRP_INC,
};
static int kvaser_usb_leaf_set_bittiming(struct net_device *netdev)
{
struct kvaser_usb_net_priv *priv = netdev_priv(netdev);
struct can_bittiming *bt = &priv->can.bittiming;
struct kvaser_usb *dev = priv->dev;
struct kvaser_cmd *cmd;
int rc;
cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
if (!cmd)
return -ENOMEM;
cmd->id = CMD_SET_BUS_PARAMS;
cmd->len = CMD_HEADER_LEN + sizeof(struct kvaser_cmd_busparams);
cmd->u.busparams.channel = priv->channel;
cmd->u.busparams.tid = 0xff;
cmd->u.busparams.bitrate = cpu_to_le32(bt->bitrate);
cmd->u.busparams.sjw = bt->sjw;
cmd->u.busparams.tseg1 = bt->prop_seg + bt->phase_seg1;
cmd->u.busparams.tseg2 = bt->phase_seg2;
if (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES)
cmd->u.busparams.no_samp = 3;
else
cmd->u.busparams.no_samp = 1;
rc = kvaser_usb_send_cmd(dev, cmd, cmd->len);
kfree(cmd);
return rc;
}
static int kvaser_usb_leaf_set_mode(struct net_device *netdev,
enum can_mode mode)
{
struct kvaser_usb_net_priv *priv = netdev_priv(netdev);
int err;
switch (mode) {
case CAN_MODE_START:
err = kvaser_usb_leaf_simple_cmd_async(priv, CMD_START_CHIP);
if (err)
return err;
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
static int kvaser_usb_leaf_get_berr_counter(const struct net_device *netdev,
struct can_berr_counter *bec)
{
struct kvaser_usb_net_priv *priv = netdev_priv(netdev);
*bec = priv->bec;
return 0;
}
static int kvaser_usb_leaf_setup_endpoints(struct kvaser_usb *dev)
{
const struct usb_host_interface *iface_desc;
struct usb_endpoint_descriptor *endpoint;
int i;
iface_desc = &dev->intf->altsetting[0];
for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {
endpoint = &iface_desc->endpoint[i].desc;
if (!dev->bulk_in && usb_endpoint_is_bulk_in(endpoint))
dev->bulk_in = endpoint;
if (!dev->bulk_out && usb_endpoint_is_bulk_out(endpoint))
dev->bulk_out = endpoint;
/* use first bulk endpoint for in and out */
if (dev->bulk_in && dev->bulk_out)
return 0;
}
return -ENODEV;
}
const struct kvaser_usb_dev_ops kvaser_usb_leaf_dev_ops = {
.dev_set_mode = kvaser_usb_leaf_set_mode,
.dev_set_bittiming = kvaser_usb_leaf_set_bittiming,
.dev_set_data_bittiming = NULL,
.dev_get_berr_counter = kvaser_usb_leaf_get_berr_counter,
.dev_setup_endpoints = kvaser_usb_leaf_setup_endpoints,
.dev_init_card = kvaser_usb_leaf_init_card,
.dev_get_software_info = kvaser_usb_leaf_get_software_info,
.dev_get_software_details = NULL,
.dev_get_card_info = kvaser_usb_leaf_get_card_info,
.dev_get_capabilities = NULL,
.dev_set_opt_mode = kvaser_usb_leaf_set_opt_mode,
.dev_start_chip = kvaser_usb_leaf_start_chip,
.dev_stop_chip = kvaser_usb_leaf_stop_chip,
.dev_reset_chip = kvaser_usb_leaf_reset_chip,
.dev_flush_queue = kvaser_usb_leaf_flush_queue,
.dev_read_bulk_callback = kvaser_usb_leaf_read_bulk_callback,
.dev_frame_to_cmd = kvaser_usb_leaf_frame_to_cmd,
};
static const struct kvaser_usb_dev_cfg kvaser_usb_leaf_dev_cfg = {
.clock = {
.freq = CAN_USB_CLOCK,
},
.timestamp_freq = 1,
.bittiming_const = &kvaser_usb_leaf_bittiming_const,
};