linux/drivers/net/ethernet/intel/i40e/i40e_txrx.c

3739 lines
105 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 2013 - 2018 Intel Corporation. */
#include <linux/prefetch.h>
#include <net/busy_poll.h>
#include <linux/bpf_trace.h>
#include <net/xdp.h>
#include "i40e.h"
#include "i40e_trace.h"
#include "i40e_prototype.h"
static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
u32 td_tag)
{
return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
((u64)td_cmd << I40E_TXD_QW1_CMD_SHIFT) |
((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
((u64)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
((u64)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT));
}
#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
/**
* i40e_fdir - Generate a Flow Director descriptor based on fdata
* @tx_ring: Tx ring to send buffer on
* @fdata: Flow director filter data
* @add: Indicate if we are adding a rule or deleting one
*
**/
static void i40e_fdir(struct i40e_ring *tx_ring,
struct i40e_fdir_filter *fdata, bool add)
{
struct i40e_filter_program_desc *fdir_desc;
struct i40e_pf *pf = tx_ring->vsi->back;
u32 flex_ptype, dtype_cmd;
u16 i;
/* grab the next descriptor */
i = tx_ring->next_to_use;
fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
i++;
tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
(fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
(fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
(fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
(fdata->flex_offset << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
/* Use LAN VSI Id if not programmed by user */
flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
dtype_cmd |= add ?
I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
I40E_TXD_FLTR_QW1_PCMD_SHIFT :
I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
I40E_TXD_FLTR_QW1_PCMD_SHIFT;
dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
(fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
(fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
if (fdata->cnt_index) {
dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
((u32)fdata->cnt_index <<
I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
}
fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
fdir_desc->rsvd = cpu_to_le32(0);
fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
}
#define I40E_FD_CLEAN_DELAY 10
/**
* i40e_program_fdir_filter - Program a Flow Director filter
* @fdir_data: Packet data that will be filter parameters
* @raw_packet: the pre-allocated packet buffer for FDir
* @pf: The PF pointer
* @add: True for add/update, False for remove
**/
static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
u8 *raw_packet, struct i40e_pf *pf,
bool add)
{
struct i40e_tx_buffer *tx_buf, *first;
struct i40e_tx_desc *tx_desc;
struct i40e_ring *tx_ring;
struct i40e_vsi *vsi;
struct device *dev;
dma_addr_t dma;
u32 td_cmd = 0;
u16 i;
/* find existing FDIR VSI */
vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
if (!vsi)
return -ENOENT;
tx_ring = vsi->tx_rings[0];
dev = tx_ring->dev;
/* we need two descriptors to add/del a filter and we can wait */
for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
if (!i)
return -EAGAIN;
msleep_interruptible(1);
}
dma = dma_map_single(dev, raw_packet,
I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
if (dma_mapping_error(dev, dma))
goto dma_fail;
/* grab the next descriptor */
i = tx_ring->next_to_use;
first = &tx_ring->tx_bi[i];
i40e_fdir(tx_ring, fdir_data, add);
/* Now program a dummy descriptor */
i = tx_ring->next_to_use;
tx_desc = I40E_TX_DESC(tx_ring, i);
tx_buf = &tx_ring->tx_bi[i];
tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
/* record length, and DMA address */
dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
dma_unmap_addr_set(tx_buf, dma, dma);
tx_desc->buffer_addr = cpu_to_le64(dma);
td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
tx_buf->raw_buf = (void *)raw_packet;
tx_desc->cmd_type_offset_bsz =
build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
/* Force memory writes to complete before letting h/w
* know there are new descriptors to fetch.
*/
wmb();
/* Mark the data descriptor to be watched */
first->next_to_watch = tx_desc;
writel(tx_ring->next_to_use, tx_ring->tail);
return 0;
dma_fail:
return -1;
}
#define IP_HEADER_OFFSET 14
#define I40E_UDPIP_DUMMY_PACKET_LEN 42
/**
* i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
* @vsi: pointer to the targeted VSI
* @fd_data: the flow director data required for the FDir descriptor
* @add: true adds a filter, false removes it
*
* Returns 0 if the filters were successfully added or removed
**/
static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
struct i40e_fdir_filter *fd_data,
bool add)
{
struct i40e_pf *pf = vsi->back;
struct udphdr *udp;
struct iphdr *ip;
u8 *raw_packet;
int ret;
static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
if (!raw_packet)
return -ENOMEM;
memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
+ sizeof(struct iphdr));
ip->daddr = fd_data->dst_ip;
udp->dest = fd_data->dst_port;
ip->saddr = fd_data->src_ip;
udp->source = fd_data->src_port;
if (fd_data->flex_filter) {
u8 *payload = raw_packet + I40E_UDPIP_DUMMY_PACKET_LEN;
__be16 pattern = fd_data->flex_word;
u16 off = fd_data->flex_offset;
*((__force __be16 *)(payload + off)) = pattern;
}
fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
if (ret) {
dev_info(&pf->pdev->dev,
"PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
fd_data->pctype, fd_data->fd_id, ret);
/* Free the packet buffer since it wasn't added to the ring */
kfree(raw_packet);
return -EOPNOTSUPP;
} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
if (add)
dev_info(&pf->pdev->dev,
"Filter OK for PCTYPE %d loc = %d\n",
fd_data->pctype, fd_data->fd_id);
else
dev_info(&pf->pdev->dev,
"Filter deleted for PCTYPE %d loc = %d\n",
fd_data->pctype, fd_data->fd_id);
}
if (add)
pf->fd_udp4_filter_cnt++;
else
pf->fd_udp4_filter_cnt--;
return 0;
}
#define I40E_TCPIP_DUMMY_PACKET_LEN 54
/**
* i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
* @vsi: pointer to the targeted VSI
* @fd_data: the flow director data required for the FDir descriptor
* @add: true adds a filter, false removes it
*
* Returns 0 if the filters were successfully added or removed
**/
static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
struct i40e_fdir_filter *fd_data,
bool add)
{
struct i40e_pf *pf = vsi->back;
struct tcphdr *tcp;
struct iphdr *ip;
u8 *raw_packet;
int ret;
/* Dummy packet */
static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
0x0, 0x72, 0, 0, 0, 0};
raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
if (!raw_packet)
return -ENOMEM;
memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
+ sizeof(struct iphdr));
ip->daddr = fd_data->dst_ip;
tcp->dest = fd_data->dst_port;
ip->saddr = fd_data->src_ip;
tcp->source = fd_data->src_port;
if (fd_data->flex_filter) {
u8 *payload = raw_packet + I40E_TCPIP_DUMMY_PACKET_LEN;
__be16 pattern = fd_data->flex_word;
u16 off = fd_data->flex_offset;
*((__force __be16 *)(payload + off)) = pattern;
}
fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
if (ret) {
dev_info(&pf->pdev->dev,
"PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
fd_data->pctype, fd_data->fd_id, ret);
/* Free the packet buffer since it wasn't added to the ring */
kfree(raw_packet);
return -EOPNOTSUPP;
} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
if (add)
dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
fd_data->pctype, fd_data->fd_id);
else
dev_info(&pf->pdev->dev,
"Filter deleted for PCTYPE %d loc = %d\n",
fd_data->pctype, fd_data->fd_id);
}
if (add) {
pf->fd_tcp4_filter_cnt++;
if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
I40E_DEBUG_FD & pf->hw.debug_mask)
dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
} else {
pf->fd_tcp4_filter_cnt--;
}
return 0;
}
#define I40E_SCTPIP_DUMMY_PACKET_LEN 46
/**
* i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
* a specific flow spec
* @vsi: pointer to the targeted VSI
* @fd_data: the flow director data required for the FDir descriptor
* @add: true adds a filter, false removes it
*
* Returns 0 if the filters were successfully added or removed
**/
static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
struct i40e_fdir_filter *fd_data,
bool add)
{
struct i40e_pf *pf = vsi->back;
struct sctphdr *sctp;
struct iphdr *ip;
u8 *raw_packet;
int ret;
/* Dummy packet */
static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
0x45, 0, 0, 0x20, 0, 0, 0x40, 0, 0x40, 0x84, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
if (!raw_packet)
return -ENOMEM;
memcpy(raw_packet, packet, I40E_SCTPIP_DUMMY_PACKET_LEN);
ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
sctp = (struct sctphdr *)(raw_packet + IP_HEADER_OFFSET
+ sizeof(struct iphdr));
ip->daddr = fd_data->dst_ip;
sctp->dest = fd_data->dst_port;
ip->saddr = fd_data->src_ip;
sctp->source = fd_data->src_port;
if (fd_data->flex_filter) {
u8 *payload = raw_packet + I40E_SCTPIP_DUMMY_PACKET_LEN;
__be16 pattern = fd_data->flex_word;
u16 off = fd_data->flex_offset;
*((__force __be16 *)(payload + off)) = pattern;
}
fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_SCTP;
ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
if (ret) {
dev_info(&pf->pdev->dev,
"PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
fd_data->pctype, fd_data->fd_id, ret);
/* Free the packet buffer since it wasn't added to the ring */
kfree(raw_packet);
return -EOPNOTSUPP;
} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
if (add)
dev_info(&pf->pdev->dev,
"Filter OK for PCTYPE %d loc = %d\n",
fd_data->pctype, fd_data->fd_id);
else
dev_info(&pf->pdev->dev,
"Filter deleted for PCTYPE %d loc = %d\n",
fd_data->pctype, fd_data->fd_id);
}
if (add)
pf->fd_sctp4_filter_cnt++;
else
pf->fd_sctp4_filter_cnt--;
return 0;
}
#define I40E_IP_DUMMY_PACKET_LEN 34
/**
* i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
* a specific flow spec
* @vsi: pointer to the targeted VSI
* @fd_data: the flow director data required for the FDir descriptor
* @add: true adds a filter, false removes it
*
* Returns 0 if the filters were successfully added or removed
**/
static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
struct i40e_fdir_filter *fd_data,
bool add)
{
struct i40e_pf *pf = vsi->back;
struct iphdr *ip;
u8 *raw_packet;
int ret;
int i;
static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0};
for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
i <= I40E_FILTER_PCTYPE_FRAG_IPV4; i++) {
raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
if (!raw_packet)
return -ENOMEM;
memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
ip->saddr = fd_data->src_ip;
ip->daddr = fd_data->dst_ip;
ip->protocol = 0;
if (fd_data->flex_filter) {
u8 *payload = raw_packet + I40E_IP_DUMMY_PACKET_LEN;
__be16 pattern = fd_data->flex_word;
u16 off = fd_data->flex_offset;
*((__force __be16 *)(payload + off)) = pattern;
}
fd_data->pctype = i;
ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
if (ret) {
dev_info(&pf->pdev->dev,
"PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
fd_data->pctype, fd_data->fd_id, ret);
/* The packet buffer wasn't added to the ring so we
* need to free it now.
*/
kfree(raw_packet);
return -EOPNOTSUPP;
} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
if (add)
dev_info(&pf->pdev->dev,
"Filter OK for PCTYPE %d loc = %d\n",
fd_data->pctype, fd_data->fd_id);
else
dev_info(&pf->pdev->dev,
"Filter deleted for PCTYPE %d loc = %d\n",
fd_data->pctype, fd_data->fd_id);
}
}
if (add)
pf->fd_ip4_filter_cnt++;
else
pf->fd_ip4_filter_cnt--;
return 0;
}
/**
* i40e_add_del_fdir - Build raw packets to add/del fdir filter
* @vsi: pointer to the targeted VSI
* @input: filter to add or delete
* @add: true adds a filter, false removes it
*
**/
int i40e_add_del_fdir(struct i40e_vsi *vsi,
struct i40e_fdir_filter *input, bool add)
{
struct i40e_pf *pf = vsi->back;
int ret;
switch (input->flow_type & ~FLOW_EXT) {
case TCP_V4_FLOW:
ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
break;
case UDP_V4_FLOW:
ret = i40e_add_del_fdir_udpv4(vsi, input, add);
break;
case SCTP_V4_FLOW:
ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
break;
case IP_USER_FLOW:
switch (input->ip4_proto) {
case IPPROTO_TCP:
ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
break;
case IPPROTO_UDP:
ret = i40e_add_del_fdir_udpv4(vsi, input, add);
break;
case IPPROTO_SCTP:
ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
break;
case IPPROTO_IP:
ret = i40e_add_del_fdir_ipv4(vsi, input, add);
break;
default:
/* We cannot support masking based on protocol */
dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
input->ip4_proto);
return -EINVAL;
}
break;
default:
dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
input->flow_type);
return -EINVAL;
}
/* The buffer allocated here will be normally be freed by
* i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
* completion. In the event of an error adding the buffer to the FDIR
* ring, it will immediately be freed. It may also be freed by
* i40e_clean_tx_ring() when closing the VSI.
*/
return ret;
}
/**
* i40e_fd_handle_status - check the Programming Status for FD
* @rx_ring: the Rx ring for this descriptor
* @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
* @prog_id: the id originally used for programming
*
* This is used to verify if the FD programming or invalidation
* requested by SW to the HW is successful or not and take actions accordingly.
**/
static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
union i40e_rx_desc *rx_desc, u8 prog_id)
{
struct i40e_pf *pf = rx_ring->vsi->back;
struct pci_dev *pdev = pf->pdev;
u32 fcnt_prog, fcnt_avail;
u32 error;
u64 qw;
qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
(I40E_DEBUG_FD & pf->hw.debug_mask))
dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
pf->fd_inv);
/* Check if the programming error is for ATR.
* If so, auto disable ATR and set a state for
* flush in progress. Next time we come here if flush is in
* progress do nothing, once flush is complete the state will
* be cleared.
*/
if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
return;
pf->fd_add_err++;
/* store the current atr filter count */
pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
/* These set_bit() calls aren't atomic with the
* test_bit() here, but worse case we potentially
* disable ATR and queue a flush right after SB
* support is re-enabled. That shouldn't cause an
* issue in practice
*/
set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
}
/* filter programming failed most likely due to table full */
fcnt_prog = i40e_get_global_fd_count(pf);
fcnt_avail = pf->fdir_pf_filter_count;
/* If ATR is running fcnt_prog can quickly change,
* if we are very close to full, it makes sense to disable
* FD ATR/SB and then re-enable it when there is room.
*/
if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
!test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
pf->state))
if (I40E_DEBUG_FD & pf->hw.debug_mask)
dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
}
} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
if (I40E_DEBUG_FD & pf->hw.debug_mask)
dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
rx_desc->wb.qword0.hi_dword.fd_id);
}
}
/**
* i40e_unmap_and_free_tx_resource - Release a Tx buffer
* @ring: the ring that owns the buffer
* @tx_buffer: the buffer to free
**/
static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
struct i40e_tx_buffer *tx_buffer)
{
if (tx_buffer->skb) {
if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
kfree(tx_buffer->raw_buf);
else if (ring_is_xdp(ring))
xdp_return_frame(tx_buffer->xdpf);
else
dev_kfree_skb_any(tx_buffer->skb);
if (dma_unmap_len(tx_buffer, len))
dma_unmap_single(ring->dev,
dma_unmap_addr(tx_buffer, dma),
dma_unmap_len(tx_buffer, len),
DMA_TO_DEVICE);
} else if (dma_unmap_len(tx_buffer, len)) {
dma_unmap_page(ring->dev,
dma_unmap_addr(tx_buffer, dma),
dma_unmap_len(tx_buffer, len),
DMA_TO_DEVICE);
}
tx_buffer->next_to_watch = NULL;
tx_buffer->skb = NULL;
dma_unmap_len_set(tx_buffer, len, 0);
/* tx_buffer must be completely set up in the transmit path */
}
/**
* i40e_clean_tx_ring - Free any empty Tx buffers
* @tx_ring: ring to be cleaned
**/
void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
{
unsigned long bi_size;
u16 i;
/* ring already cleared, nothing to do */
if (!tx_ring->tx_bi)
return;
/* Free all the Tx ring sk_buffs */
for (i = 0; i < tx_ring->count; i++)
i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
memset(tx_ring->tx_bi, 0, bi_size);
/* Zero out the descriptor ring */
memset(tx_ring->desc, 0, tx_ring->size);
tx_ring->next_to_use = 0;
tx_ring->next_to_clean = 0;
if (!tx_ring->netdev)
return;
/* cleanup Tx queue statistics */
netdev_tx_reset_queue(txring_txq(tx_ring));
}
/**
* i40e_free_tx_resources - Free Tx resources per queue
* @tx_ring: Tx descriptor ring for a specific queue
*
* Free all transmit software resources
**/
void i40e_free_tx_resources(struct i40e_ring *tx_ring)
{
i40e_clean_tx_ring(tx_ring);
kfree(tx_ring->tx_bi);
tx_ring->tx_bi = NULL;
if (tx_ring->desc) {
dma_free_coherent(tx_ring->dev, tx_ring->size,
tx_ring->desc, tx_ring->dma);
tx_ring->desc = NULL;
}
}
/**
* i40e_get_tx_pending - how many tx descriptors not processed
* @ring: the ring of descriptors
* @in_sw: use SW variables
*
* Since there is no access to the ring head register
* in XL710, we need to use our local copies
**/
u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
{
u32 head, tail;
if (!in_sw) {
head = i40e_get_head(ring);
tail = readl(ring->tail);
} else {
head = ring->next_to_clean;
tail = ring->next_to_use;
}
if (head != tail)
return (head < tail) ?
tail - head : (tail + ring->count - head);
return 0;
}
/**
* i40e_detect_recover_hung - Function to detect and recover hung_queues
* @vsi: pointer to vsi struct with tx queues
*
* VSI has netdev and netdev has TX queues. This function is to check each of
* those TX queues if they are hung, trigger recovery by issuing SW interrupt.
**/
void i40e_detect_recover_hung(struct i40e_vsi *vsi)
{
struct i40e_ring *tx_ring = NULL;
struct net_device *netdev;
unsigned int i;
int packets;
if (!vsi)
return;
if (test_bit(__I40E_VSI_DOWN, vsi->state))
return;
netdev = vsi->netdev;
if (!netdev)
return;
if (!netif_carrier_ok(netdev))
return;
for (i = 0; i < vsi->num_queue_pairs; i++) {
tx_ring = vsi->tx_rings[i];
if (tx_ring && tx_ring->desc) {
/* If packet counter has not changed the queue is
* likely stalled, so force an interrupt for this
* queue.
*
* prev_pkt_ctr would be negative if there was no
* pending work.
*/
packets = tx_ring->stats.packets & INT_MAX;
if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
i40e_force_wb(vsi, tx_ring->q_vector);
continue;
}
/* Memory barrier between read of packet count and call
* to i40e_get_tx_pending()
*/
smp_rmb();
tx_ring->tx_stats.prev_pkt_ctr =
i40e_get_tx_pending(tx_ring, true) ? packets : -1;
}
}
}
#define WB_STRIDE 4
/**
* i40e_clean_tx_irq - Reclaim resources after transmit completes
* @vsi: the VSI we care about
* @tx_ring: Tx ring to clean
* @napi_budget: Used to determine if we are in netpoll
*
* Returns true if there's any budget left (e.g. the clean is finished)
**/
static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
struct i40e_ring *tx_ring, int napi_budget)
{
u16 i = tx_ring->next_to_clean;
struct i40e_tx_buffer *tx_buf;
struct i40e_tx_desc *tx_head;
struct i40e_tx_desc *tx_desc;
unsigned int total_bytes = 0, total_packets = 0;
unsigned int budget = vsi->work_limit;
tx_buf = &tx_ring->tx_bi[i];
tx_desc = I40E_TX_DESC(tx_ring, i);
i -= tx_ring->count;
tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
do {
struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
/* if next_to_watch is not set then there is no work pending */
if (!eop_desc)
break;
/* prevent any other reads prior to eop_desc */
smp_rmb();
i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
/* we have caught up to head, no work left to do */
if (tx_head == tx_desc)
break;
/* clear next_to_watch to prevent false hangs */
tx_buf->next_to_watch = NULL;
/* update the statistics for this packet */
total_bytes += tx_buf->bytecount;
total_packets += tx_buf->gso_segs;
/* free the skb/XDP data */
if (ring_is_xdp(tx_ring))
xdp_return_frame(tx_buf->xdpf);
else
napi_consume_skb(tx_buf->skb, napi_budget);
/* unmap skb header data */
dma_unmap_single(tx_ring->dev,
dma_unmap_addr(tx_buf, dma),
dma_unmap_len(tx_buf, len),
DMA_TO_DEVICE);
/* clear tx_buffer data */
tx_buf->skb = NULL;
dma_unmap_len_set(tx_buf, len, 0);
/* unmap remaining buffers */
while (tx_desc != eop_desc) {
i40e_trace(clean_tx_irq_unmap,
tx_ring, tx_desc, tx_buf);
tx_buf++;
tx_desc++;
i++;
if (unlikely(!i)) {
i -= tx_ring->count;
tx_buf = tx_ring->tx_bi;
tx_desc = I40E_TX_DESC(tx_ring, 0);
}
/* unmap any remaining paged data */
if (dma_unmap_len(tx_buf, len)) {
dma_unmap_page(tx_ring->dev,
dma_unmap_addr(tx_buf, dma),
dma_unmap_len(tx_buf, len),
DMA_TO_DEVICE);
dma_unmap_len_set(tx_buf, len, 0);
}
}
/* move us one more past the eop_desc for start of next pkt */
tx_buf++;
tx_desc++;
i++;
if (unlikely(!i)) {
i -= tx_ring->count;
tx_buf = tx_ring->tx_bi;
tx_desc = I40E_TX_DESC(tx_ring, 0);
}
prefetch(tx_desc);
/* update budget accounting */
budget--;
} while (likely(budget));
i += tx_ring->count;
tx_ring->next_to_clean = i;
u64_stats_update_begin(&tx_ring->syncp);
tx_ring->stats.bytes += total_bytes;
tx_ring->stats.packets += total_packets;
u64_stats_update_end(&tx_ring->syncp);
tx_ring->q_vector->tx.total_bytes += total_bytes;
tx_ring->q_vector->tx.total_packets += total_packets;
if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
/* check to see if there are < 4 descriptors
* waiting to be written back, then kick the hardware to force
* them to be written back in case we stay in NAPI.
* In this mode on X722 we do not enable Interrupt.
*/
unsigned int j = i40e_get_tx_pending(tx_ring, false);
if (budget &&
((j / WB_STRIDE) == 0) && (j > 0) &&
!test_bit(__I40E_VSI_DOWN, vsi->state) &&
(I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
tx_ring->arm_wb = true;
}
if (ring_is_xdp(tx_ring))
return !!budget;
/* notify netdev of completed buffers */
netdev_tx_completed_queue(txring_txq(tx_ring),
total_packets, total_bytes);
#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
(I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
/* Make sure that anybody stopping the queue after this
* sees the new next_to_clean.
*/
smp_mb();
if (__netif_subqueue_stopped(tx_ring->netdev,
tx_ring->queue_index) &&
!test_bit(__I40E_VSI_DOWN, vsi->state)) {
netif_wake_subqueue(tx_ring->netdev,
tx_ring->queue_index);
++tx_ring->tx_stats.restart_queue;
}
}
return !!budget;
}
/**
* i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
* @vsi: the VSI we care about
* @q_vector: the vector on which to enable writeback
*
**/
static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
struct i40e_q_vector *q_vector)
{
u16 flags = q_vector->tx.ring[0].flags;
u32 val;
if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
return;
if (q_vector->arm_wb_state)
return;
if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
wr32(&vsi->back->hw,
I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
val);
} else {
val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
}
q_vector->arm_wb_state = true;
}
/**
* i40e_force_wb - Issue SW Interrupt so HW does a wb
* @vsi: the VSI we care about
* @q_vector: the vector on which to force writeback
*
**/
void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
{
if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
/* allow 00 to be written to the index */
wr32(&vsi->back->hw,
I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
} else {
u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
/* allow 00 to be written to the index */
wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
}
}
static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
struct i40e_ring_container *rc)
{
return &q_vector->rx == rc;
}
static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
{
unsigned int divisor;
switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
case I40E_LINK_SPEED_40GB:
divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
break;
case I40E_LINK_SPEED_25GB:
case I40E_LINK_SPEED_20GB:
divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
break;
default:
case I40E_LINK_SPEED_10GB:
divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
break;
case I40E_LINK_SPEED_1GB:
case I40E_LINK_SPEED_100MB:
divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
break;
}
return divisor;
}
/**
* i40e_update_itr - update the dynamic ITR value based on statistics
* @q_vector: structure containing interrupt and ring information
* @rc: structure containing ring performance data
*
* Stores a new ITR value based on packets and byte
* counts during the last interrupt. The advantage of per interrupt
* computation is faster updates and more accurate ITR for the current
* traffic pattern. Constants in this function were computed
* based on theoretical maximum wire speed and thresholds were set based
* on testing data as well as attempting to minimize response time
* while increasing bulk throughput.
**/
static void i40e_update_itr(struct i40e_q_vector *q_vector,
struct i40e_ring_container *rc)
{
unsigned int avg_wire_size, packets, bytes, itr;
unsigned long next_update = jiffies;
/* If we don't have any rings just leave ourselves set for maximum
* possible latency so we take ourselves out of the equation.
*/
if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
return;
/* For Rx we want to push the delay up and default to low latency.
* for Tx we want to pull the delay down and default to high latency.
*/
itr = i40e_container_is_rx(q_vector, rc) ?
I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
/* If we didn't update within up to 1 - 2 jiffies we can assume
* that either packets are coming in so slow there hasn't been
* any work, or that there is so much work that NAPI is dealing
* with interrupt moderation and we don't need to do anything.
*/
if (time_after(next_update, rc->next_update))
goto clear_counts;
/* If itr_countdown is set it means we programmed an ITR within
* the last 4 interrupt cycles. This has a side effect of us
* potentially firing an early interrupt. In order to work around
* this we need to throw out any data received for a few
* interrupts following the update.
*/
if (q_vector->itr_countdown) {
itr = rc->target_itr;
goto clear_counts;
}
packets = rc->total_packets;
bytes = rc->total_bytes;
if (i40e_container_is_rx(q_vector, rc)) {
/* If Rx there are 1 to 4 packets and bytes are less than
* 9000 assume insufficient data to use bulk rate limiting
* approach unless Tx is already in bulk rate limiting. We
* are likely latency driven.
*/
if (packets && packets < 4 && bytes < 9000 &&
(q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
itr = I40E_ITR_ADAPTIVE_LATENCY;
goto adjust_by_size;
}
} else if (packets < 4) {
/* If we have Tx and Rx ITR maxed and Tx ITR is running in
* bulk mode and we are receiving 4 or fewer packets just
* reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
* that the Rx can relax.
*/
if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
(q_vector->rx.target_itr & I40E_ITR_MASK) ==
I40E_ITR_ADAPTIVE_MAX_USECS)
goto clear_counts;
} else if (packets > 32) {
/* If we have processed over 32 packets in a single interrupt
* for Tx assume we need to switch over to "bulk" mode.
*/
rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
}
/* We have no packets to actually measure against. This means
* either one of the other queues on this vector is active or
* we are a Tx queue doing TSO with too high of an interrupt rate.
*
* Between 4 and 56 we can assume that our current interrupt delay
* is only slightly too low. As such we should increase it by a small
* fixed amount.
*/
if (packets < 56) {
itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
itr &= I40E_ITR_ADAPTIVE_LATENCY;
itr += I40E_ITR_ADAPTIVE_MAX_USECS;
}
goto clear_counts;
}
if (packets <= 256) {
itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
itr &= I40E_ITR_MASK;
/* Between 56 and 112 is our "goldilocks" zone where we are
* working out "just right". Just report that our current
* ITR is good for us.
*/
if (packets <= 112)
goto clear_counts;
/* If packet count is 128 or greater we are likely looking
* at a slight overrun of the delay we want. Try halving
* our delay to see if that will cut the number of packets
* in half per interrupt.
*/
itr /= 2;
itr &= I40E_ITR_MASK;
if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
itr = I40E_ITR_ADAPTIVE_MIN_USECS;
goto clear_counts;
}
/* The paths below assume we are dealing with a bulk ITR since
* number of packets is greater than 256. We are just going to have
* to compute a value and try to bring the count under control,
* though for smaller packet sizes there isn't much we can do as
* NAPI polling will likely be kicking in sooner rather than later.
*/
itr = I40E_ITR_ADAPTIVE_BULK;
adjust_by_size:
/* If packet counts are 256 or greater we can assume we have a gross
* overestimation of what the rate should be. Instead of trying to fine
* tune it just use the formula below to try and dial in an exact value
* give the current packet size of the frame.
*/
avg_wire_size = bytes / packets;
/* The following is a crude approximation of:
* wmem_default / (size + overhead) = desired_pkts_per_int
* rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
* (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
*
* Assuming wmem_default is 212992 and overhead is 640 bytes per
* packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
* formula down to
*
* (170 * (size + 24)) / (size + 640) = ITR
*
* We first do some math on the packet size and then finally bitshift
* by 8 after rounding up. We also have to account for PCIe link speed
* difference as ITR scales based on this.
*/
if (avg_wire_size <= 60) {
/* Start at 250k ints/sec */
avg_wire_size = 4096;
} else if (avg_wire_size <= 380) {
/* 250K ints/sec to 60K ints/sec */
avg_wire_size *= 40;
avg_wire_size += 1696;
} else if (avg_wire_size <= 1084) {
/* 60K ints/sec to 36K ints/sec */
avg_wire_size *= 15;
avg_wire_size += 11452;
} else if (avg_wire_size <= 1980) {
/* 36K ints/sec to 30K ints/sec */
avg_wire_size *= 5;
avg_wire_size += 22420;
} else {
/* plateau at a limit of 30K ints/sec */
avg_wire_size = 32256;
}
/* If we are in low latency mode halve our delay which doubles the
* rate to somewhere between 100K to 16K ints/sec
*/
if (itr & I40E_ITR_ADAPTIVE_LATENCY)
avg_wire_size /= 2;
/* Resultant value is 256 times larger than it needs to be. This
* gives us room to adjust the value as needed to either increase
* or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
*
* Use addition as we have already recorded the new latency flag
* for the ITR value.
*/
itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
I40E_ITR_ADAPTIVE_MIN_INC;
if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
itr &= I40E_ITR_ADAPTIVE_LATENCY;
itr += I40E_ITR_ADAPTIVE_MAX_USECS;
}
clear_counts:
/* write back value */
rc->target_itr = itr;
/* next update should occur within next jiffy */
rc->next_update = next_update + 1;
rc->total_bytes = 0;
rc->total_packets = 0;
}
/**
* i40e_reuse_rx_page - page flip buffer and store it back on the ring
* @rx_ring: rx descriptor ring to store buffers on
* @old_buff: donor buffer to have page reused
*
* Synchronizes page for reuse by the adapter
**/
static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
struct i40e_rx_buffer *old_buff)
{
struct i40e_rx_buffer *new_buff;
u16 nta = rx_ring->next_to_alloc;
new_buff = &rx_ring->rx_bi[nta];
/* update, and store next to alloc */
nta++;
rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
/* transfer page from old buffer to new buffer */
new_buff->dma = old_buff->dma;
new_buff->page = old_buff->page;
new_buff->page_offset = old_buff->page_offset;
new_buff->pagecnt_bias = old_buff->pagecnt_bias;
}
/**
* i40e_rx_is_programming_status - check for programming status descriptor
* @qw: qword representing status_error_len in CPU ordering
*
* The value of in the descriptor length field indicate if this
* is a programming status descriptor for flow director or FCoE
* by the value of I40E_RX_PROG_STATUS_DESC_LENGTH, otherwise
* it is a packet descriptor.
**/
static inline bool i40e_rx_is_programming_status(u64 qw)
{
/* The Rx filter programming status and SPH bit occupy the same
* spot in the descriptor. Since we don't support packet split we
* can just reuse the bit as an indication that this is a
* programming status descriptor.
*/
return qw & I40E_RXD_QW1_LENGTH_SPH_MASK;
}
/**
* i40e_clean_programming_status - clean the programming status descriptor
* @rx_ring: the rx ring that has this descriptor
* @rx_desc: the rx descriptor written back by HW
* @qw: qword representing status_error_len in CPU ordering
*
* Flow director should handle FD_FILTER_STATUS to check its filter programming
* status being successful or not and take actions accordingly. FCoE should
* handle its context/filter programming/invalidation status and take actions.
*
**/
static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
union i40e_rx_desc *rx_desc,
u64 qw)
{
struct i40e_rx_buffer *rx_buffer;
u32 ntc = rx_ring->next_to_clean;
u8 id;
/* fetch, update, and store next to clean */
rx_buffer = &rx_ring->rx_bi[ntc++];
ntc = (ntc < rx_ring->count) ? ntc : 0;
rx_ring->next_to_clean = ntc;
prefetch(I40E_RX_DESC(rx_ring, ntc));
/* place unused page back on the ring */
i40e_reuse_rx_page(rx_ring, rx_buffer);
rx_ring->rx_stats.page_reuse_count++;
/* clear contents of buffer_info */
rx_buffer->page = NULL;
id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
i40e_fd_handle_status(rx_ring, rx_desc, id);
}
/**
* i40e_setup_tx_descriptors - Allocate the Tx descriptors
* @tx_ring: the tx ring to set up
*
* Return 0 on success, negative on error
**/
int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
{
struct device *dev = tx_ring->dev;
int bi_size;
if (!dev)
return -ENOMEM;
/* warn if we are about to overwrite the pointer */
WARN_ON(tx_ring->tx_bi);
bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
if (!tx_ring->tx_bi)
goto err;
u64_stats_init(&tx_ring->syncp);
/* round up to nearest 4K */
tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
/* add u32 for head writeback, align after this takes care of
* guaranteeing this is at least one cache line in size
*/
tx_ring->size += sizeof(u32);
tx_ring->size = ALIGN(tx_ring->size, 4096);
tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
&tx_ring->dma, GFP_KERNEL);
if (!tx_ring->desc) {
dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
tx_ring->size);
goto err;
}
tx_ring->next_to_use = 0;
tx_ring->next_to_clean = 0;
tx_ring->tx_stats.prev_pkt_ctr = -1;
return 0;
err:
kfree(tx_ring->tx_bi);
tx_ring->tx_bi = NULL;
return -ENOMEM;
}
/**
* i40e_clean_rx_ring - Free Rx buffers
* @rx_ring: ring to be cleaned
**/
void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
{
unsigned long bi_size;
u16 i;
/* ring already cleared, nothing to do */
if (!rx_ring->rx_bi)
return;
if (rx_ring->skb) {
dev_kfree_skb(rx_ring->skb);
rx_ring->skb = NULL;
}
/* Free all the Rx ring sk_buffs */
for (i = 0; i < rx_ring->count; i++) {
struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
if (!rx_bi->page)
continue;
/* Invalidate cache lines that may have been written to by
* device so that we avoid corrupting memory.
*/
dma_sync_single_range_for_cpu(rx_ring->dev,
rx_bi->dma,
rx_bi->page_offset,
rx_ring->rx_buf_len,
DMA_FROM_DEVICE);
/* free resources associated with mapping */
dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
i40e_rx_pg_size(rx_ring),
DMA_FROM_DEVICE,
I40E_RX_DMA_ATTR);
__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
rx_bi->page = NULL;
rx_bi->page_offset = 0;
}
bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
memset(rx_ring->rx_bi, 0, bi_size);
/* Zero out the descriptor ring */
memset(rx_ring->desc, 0, rx_ring->size);
rx_ring->next_to_alloc = 0;
rx_ring->next_to_clean = 0;
rx_ring->next_to_use = 0;
}
/**
* i40e_free_rx_resources - Free Rx resources
* @rx_ring: ring to clean the resources from
*
* Free all receive software resources
**/
void i40e_free_rx_resources(struct i40e_ring *rx_ring)
{
i40e_clean_rx_ring(rx_ring);
if (rx_ring->vsi->type == I40E_VSI_MAIN)
xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
rx_ring->xdp_prog = NULL;
kfree(rx_ring->rx_bi);
rx_ring->rx_bi = NULL;
if (rx_ring->desc) {
dma_free_coherent(rx_ring->dev, rx_ring->size,
rx_ring->desc, rx_ring->dma);
rx_ring->desc = NULL;
}
}
/**
* i40e_setup_rx_descriptors - Allocate Rx descriptors
* @rx_ring: Rx descriptor ring (for a specific queue) to setup
*
* Returns 0 on success, negative on failure
**/
int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
{
struct device *dev = rx_ring->dev;
int err = -ENOMEM;
int bi_size;
/* warn if we are about to overwrite the pointer */
WARN_ON(rx_ring->rx_bi);
bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
if (!rx_ring->rx_bi)
goto err;
u64_stats_init(&rx_ring->syncp);
/* Round up to nearest 4K */
rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
rx_ring->size = ALIGN(rx_ring->size, 4096);
rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
&rx_ring->dma, GFP_KERNEL);
if (!rx_ring->desc) {
dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
rx_ring->size);
goto err;
}
rx_ring->next_to_alloc = 0;
rx_ring->next_to_clean = 0;
rx_ring->next_to_use = 0;
/* XDP RX-queue info only needed for RX rings exposed to XDP */
if (rx_ring->vsi->type == I40E_VSI_MAIN) {
err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
rx_ring->queue_index);
if (err < 0)
goto err;
}
rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
return 0;
err:
kfree(rx_ring->rx_bi);
rx_ring->rx_bi = NULL;
return err;
}
/**
* i40e_release_rx_desc - Store the new tail and head values
* @rx_ring: ring to bump
* @val: new head index
**/
static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
{
rx_ring->next_to_use = val;
/* update next to alloc since we have filled the ring */
rx_ring->next_to_alloc = val;
/* Force memory writes to complete before letting h/w
* know there are new descriptors to fetch. (Only
* applicable for weak-ordered memory model archs,
* such as IA-64).
*/
wmb();
writel(val, rx_ring->tail);
}
/**
* i40e_rx_offset - Return expected offset into page to access data
* @rx_ring: Ring we are requesting offset of
*
* Returns the offset value for ring into the data buffer.
*/
static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
{
return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
}
/**
* i40e_alloc_mapped_page - recycle or make a new page
* @rx_ring: ring to use
* @bi: rx_buffer struct to modify
*
* Returns true if the page was successfully allocated or
* reused.
**/
static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
struct i40e_rx_buffer *bi)
{
struct page *page = bi->page;
dma_addr_t dma;
/* since we are recycling buffers we should seldom need to alloc */
if (likely(page)) {
rx_ring->rx_stats.page_reuse_count++;
return true;
}
/* alloc new page for storage */
page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
if (unlikely(!page)) {
rx_ring->rx_stats.alloc_page_failed++;
return false;
}
/* map page for use */
dma = dma_map_page_attrs(rx_ring->dev, page, 0,
i40e_rx_pg_size(rx_ring),
DMA_FROM_DEVICE,
I40E_RX_DMA_ATTR);
/* if mapping failed free memory back to system since
* there isn't much point in holding memory we can't use
*/
if (dma_mapping_error(rx_ring->dev, dma)) {
__free_pages(page, i40e_rx_pg_order(rx_ring));
rx_ring->rx_stats.alloc_page_failed++;
return false;
}
bi->dma = dma;
bi->page = page;
bi->page_offset = i40e_rx_offset(rx_ring);
page_ref_add(page, USHRT_MAX - 1);
bi->pagecnt_bias = USHRT_MAX;
return true;
}
/**
* i40e_receive_skb - Send a completed packet up the stack
* @rx_ring: rx ring in play
* @skb: packet to send up
* @vlan_tag: vlan tag for packet
**/
static void i40e_receive_skb(struct i40e_ring *rx_ring,
struct sk_buff *skb, u16 vlan_tag)
{
struct i40e_q_vector *q_vector = rx_ring->q_vector;
if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
(vlan_tag & VLAN_VID_MASK))
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
napi_gro_receive(&q_vector->napi, skb);
}
/**
* i40e_alloc_rx_buffers - Replace used receive buffers
* @rx_ring: ring to place buffers on
* @cleaned_count: number of buffers to replace
*
* Returns false if all allocations were successful, true if any fail
**/
bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
{
u16 ntu = rx_ring->next_to_use;
union i40e_rx_desc *rx_desc;
struct i40e_rx_buffer *bi;
/* do nothing if no valid netdev defined */
if (!rx_ring->netdev || !cleaned_count)
return false;
rx_desc = I40E_RX_DESC(rx_ring, ntu);
bi = &rx_ring->rx_bi[ntu];
do {
if (!i40e_alloc_mapped_page(rx_ring, bi))
goto no_buffers;
/* sync the buffer for use by the device */
dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
bi->page_offset,
rx_ring->rx_buf_len,
DMA_FROM_DEVICE);
/* Refresh the desc even if buffer_addrs didn't change
* because each write-back erases this info.
*/
rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
rx_desc++;
bi++;
ntu++;
if (unlikely(ntu == rx_ring->count)) {
rx_desc = I40E_RX_DESC(rx_ring, 0);
bi = rx_ring->rx_bi;
ntu = 0;
}
/* clear the status bits for the next_to_use descriptor */
rx_desc->wb.qword1.status_error_len = 0;
cleaned_count--;
} while (cleaned_count);
if (rx_ring->next_to_use != ntu)
i40e_release_rx_desc(rx_ring, ntu);
return false;
no_buffers:
if (rx_ring->next_to_use != ntu)
i40e_release_rx_desc(rx_ring, ntu);
/* make sure to come back via polling to try again after
* allocation failure
*/
return true;
}
/**
* i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
* @vsi: the VSI we care about
* @skb: skb currently being received and modified
* @rx_desc: the receive descriptor
**/
static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
struct sk_buff *skb,
union i40e_rx_desc *rx_desc)
{
struct i40e_rx_ptype_decoded decoded;
u32 rx_error, rx_status;
bool ipv4, ipv6;
u8 ptype;
u64 qword;
qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
I40E_RXD_QW1_ERROR_SHIFT;
rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
I40E_RXD_QW1_STATUS_SHIFT;
decoded = decode_rx_desc_ptype(ptype);
skb->ip_summed = CHECKSUM_NONE;
skb_checksum_none_assert(skb);
/* Rx csum enabled and ip headers found? */
if (!(vsi->netdev->features & NETIF_F_RXCSUM))
return;
/* did the hardware decode the packet and checksum? */
if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
return;
/* both known and outer_ip must be set for the below code to work */
if (!(decoded.known && decoded.outer_ip))
return;
ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
(decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
(decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
if (ipv4 &&
(rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
goto checksum_fail;
/* likely incorrect csum if alternate IP extension headers found */
if (ipv6 &&
rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
/* don't increment checksum err here, non-fatal err */
return;
/* there was some L4 error, count error and punt packet to the stack */
if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
goto checksum_fail;
/* handle packets that were not able to be checksummed due
* to arrival speed, in this case the stack can compute
* the csum.
*/
if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
return;
/* If there is an outer header present that might contain a checksum
* we need to bump the checksum level by 1 to reflect the fact that
* we are indicating we validated the inner checksum.
*/
if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
skb->csum_level = 1;
/* Only report checksum unnecessary for TCP, UDP, or SCTP */
switch (decoded.inner_prot) {
case I40E_RX_PTYPE_INNER_PROT_TCP:
case I40E_RX_PTYPE_INNER_PROT_UDP:
case I40E_RX_PTYPE_INNER_PROT_SCTP:
skb->ip_summed = CHECKSUM_UNNECESSARY;
/* fall though */
default:
break;
}
return;
checksum_fail:
vsi->back->hw_csum_rx_error++;
}
/**
* i40e_ptype_to_htype - get a hash type
* @ptype: the ptype value from the descriptor
*
* Returns a hash type to be used by skb_set_hash
**/
static inline int i40e_ptype_to_htype(u8 ptype)
{
struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
if (!decoded.known)
return PKT_HASH_TYPE_NONE;
if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
return PKT_HASH_TYPE_L4;
else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
return PKT_HASH_TYPE_L3;
else
return PKT_HASH_TYPE_L2;
}
/**
* i40e_rx_hash - set the hash value in the skb
* @ring: descriptor ring
* @rx_desc: specific descriptor
* @skb: skb currently being received and modified
* @rx_ptype: Rx packet type
**/
static inline void i40e_rx_hash(struct i40e_ring *ring,
union i40e_rx_desc *rx_desc,
struct sk_buff *skb,
u8 rx_ptype)
{
u32 hash;
const __le64 rss_mask =
cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
if (!(ring->netdev->features & NETIF_F_RXHASH))
return;
if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
}
}
/**
* i40e_process_skb_fields - Populate skb header fields from Rx descriptor
* @rx_ring: rx descriptor ring packet is being transacted on
* @rx_desc: pointer to the EOP Rx descriptor
* @skb: pointer to current skb being populated
* @rx_ptype: the packet type decoded by hardware
*
* This function checks the ring, descriptor, and packet information in
* order to populate the hash, checksum, VLAN, protocol, and
* other fields within the skb.
**/
static inline
void i40e_process_skb_fields(struct i40e_ring *rx_ring,
union i40e_rx_desc *rx_desc, struct sk_buff *skb,
u8 rx_ptype)
{
u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
I40E_RXD_QW1_STATUS_SHIFT;
u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
if (unlikely(tsynvalid))
i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
skb_record_rx_queue(skb, rx_ring->queue_index);
/* modifies the skb - consumes the enet header */
skb->protocol = eth_type_trans(skb, rx_ring->netdev);
}
/**
* i40e_cleanup_headers - Correct empty headers
* @rx_ring: rx descriptor ring packet is being transacted on
* @skb: pointer to current skb being fixed
* @rx_desc: pointer to the EOP Rx descriptor
*
* Also address the case where we are pulling data in on pages only
* and as such no data is present in the skb header.
*
* In addition if skb is not at least 60 bytes we need to pad it so that
* it is large enough to qualify as a valid Ethernet frame.
*
* Returns true if an error was encountered and skb was freed.
**/
static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
union i40e_rx_desc *rx_desc)
{
/* XDP packets use error pointer so abort at this point */
if (IS_ERR(skb))
return true;
/* ERR_MASK will only have valid bits if EOP set, and
* what we are doing here is actually checking
* I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
* the error field
*/
if (unlikely(i40e_test_staterr(rx_desc,
BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
dev_kfree_skb_any(skb);
return true;
}
/* if eth_skb_pad returns an error the skb was freed */
if (eth_skb_pad(skb))
return true;
return false;
}
/**
* i40e_page_is_reusable - check if any reuse is possible
* @page: page struct to check
*
* A page is not reusable if it was allocated under low memory
* conditions, or it's not in the same NUMA node as this CPU.
*/
static inline bool i40e_page_is_reusable(struct page *page)
{
return (page_to_nid(page) == numa_mem_id()) &&
!page_is_pfmemalloc(page);
}
/**
* i40e_can_reuse_rx_page - Determine if this page can be reused by
* the adapter for another receive
*
* @rx_buffer: buffer containing the page
*
* If page is reusable, rx_buffer->page_offset is adjusted to point to
* an unused region in the page.
*
* For small pages, @truesize will be a constant value, half the size
* of the memory at page. We'll attempt to alternate between high and
* low halves of the page, with one half ready for use by the hardware
* and the other half being consumed by the stack. We use the page
* ref count to determine whether the stack has finished consuming the
* portion of this page that was passed up with a previous packet. If
* the page ref count is >1, we'll assume the "other" half page is
* still busy, and this page cannot be reused.
*
* For larger pages, @truesize will be the actual space used by the
* received packet (adjusted upward to an even multiple of the cache
* line size). This will advance through the page by the amount
* actually consumed by the received packets while there is still
* space for a buffer. Each region of larger pages will be used at
* most once, after which the page will not be reused.
*
* In either case, if the page is reusable its refcount is increased.
**/
static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer)
{
unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
struct page *page = rx_buffer->page;
/* Is any reuse possible? */
if (unlikely(!i40e_page_is_reusable(page)))
return false;
#if (PAGE_SIZE < 8192)
/* if we are only owner of page we can reuse it */
if (unlikely((page_count(page) - pagecnt_bias) > 1))
return false;
#else
#define I40E_LAST_OFFSET \
(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
if (rx_buffer->page_offset > I40E_LAST_OFFSET)
return false;
#endif
/* If we have drained the page fragment pool we need to update
* the pagecnt_bias and page count so that we fully restock the
* number of references the driver holds.
*/
if (unlikely(pagecnt_bias == 1)) {
page_ref_add(page, USHRT_MAX - 1);
rx_buffer->pagecnt_bias = USHRT_MAX;
}
return true;
}
/**
* i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
* @rx_ring: rx descriptor ring to transact packets on
* @rx_buffer: buffer containing page to add
* @skb: sk_buff to place the data into
* @size: packet length from rx_desc
*
* This function will add the data contained in rx_buffer->page to the skb.
* It will just attach the page as a frag to the skb.
*
* The function will then update the page offset.
**/
static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
struct i40e_rx_buffer *rx_buffer,
struct sk_buff *skb,
unsigned int size)
{
#if (PAGE_SIZE < 8192)
unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
#else
unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring));
#endif
skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
rx_buffer->page_offset, size, truesize);
/* page is being used so we must update the page offset */
#if (PAGE_SIZE < 8192)
rx_buffer->page_offset ^= truesize;
#else
rx_buffer->page_offset += truesize;
#endif
}
/**
* i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
* @rx_ring: rx descriptor ring to transact packets on
* @size: size of buffer to add to skb
*
* This function will pull an Rx buffer from the ring and synchronize it
* for use by the CPU.
*/
static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
const unsigned int size)
{
struct i40e_rx_buffer *rx_buffer;
rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
prefetchw(rx_buffer->page);
/* we are reusing so sync this buffer for CPU use */
dma_sync_single_range_for_cpu(rx_ring->dev,
rx_buffer->dma,
rx_buffer->page_offset,
size,
DMA_FROM_DEVICE);
/* We have pulled a buffer for use, so decrement pagecnt_bias */
rx_buffer->pagecnt_bias--;
return rx_buffer;
}
/**
* i40e_construct_skb - Allocate skb and populate it
* @rx_ring: rx descriptor ring to transact packets on
* @rx_buffer: rx buffer to pull data from
* @xdp: xdp_buff pointing to the data
*
* This function allocates an skb. It then populates it with the page
* data from the current receive descriptor, taking care to set up the
* skb correctly.
*/
static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
struct i40e_rx_buffer *rx_buffer,
struct xdp_buff *xdp)
{
unsigned int size = xdp->data_end - xdp->data;
#if (PAGE_SIZE < 8192)
unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
#else
unsigned int truesize = SKB_DATA_ALIGN(size);
#endif
unsigned int headlen;
struct sk_buff *skb;
/* prefetch first cache line of first page */
prefetch(xdp->data);
#if L1_CACHE_BYTES < 128
prefetch(xdp->data + L1_CACHE_BYTES);
#endif
/* Note, we get here by enabling legacy-rx via:
*
* ethtool --set-priv-flags <dev> legacy-rx on
*
* In this mode, we currently get 0 extra XDP headroom as
* opposed to having legacy-rx off, where we process XDP
* packets going to stack via i40e_build_skb(). The latter
* provides us currently with 192 bytes of headroom.
*
* For i40e_construct_skb() mode it means that the
* xdp->data_meta will always point to xdp->data, since
* the helper cannot expand the head. Should this ever
* change in future for legacy-rx mode on, then lets also
* add xdp->data_meta handling here.
*/
/* allocate a skb to store the frags */
skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
I40E_RX_HDR_SIZE,
GFP_ATOMIC | __GFP_NOWARN);
if (unlikely(!skb))
return NULL;
/* Determine available headroom for copy */
headlen = size;
if (headlen > I40E_RX_HDR_SIZE)
headlen = eth_get_headlen(xdp->data, I40E_RX_HDR_SIZE);
/* align pull length to size of long to optimize memcpy performance */
memcpy(__skb_put(skb, headlen), xdp->data,
ALIGN(headlen, sizeof(long)));
/* update all of the pointers */
size -= headlen;
if (size) {
skb_add_rx_frag(skb, 0, rx_buffer->page,
rx_buffer->page_offset + headlen,
size, truesize);
/* buffer is used by skb, update page_offset */
#if (PAGE_SIZE < 8192)
rx_buffer->page_offset ^= truesize;
#else
rx_buffer->page_offset += truesize;
#endif
} else {
/* buffer is unused, reset bias back to rx_buffer */
rx_buffer->pagecnt_bias++;
}
return skb;
}
/**
* i40e_build_skb - Build skb around an existing buffer
* @rx_ring: Rx descriptor ring to transact packets on
* @rx_buffer: Rx buffer to pull data from
* @xdp: xdp_buff pointing to the data
*
* This function builds an skb around an existing Rx buffer, taking care
* to set up the skb correctly and avoid any memcpy overhead.
*/
static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
struct i40e_rx_buffer *rx_buffer,
struct xdp_buff *xdp)
{
unsigned int metasize = xdp->data - xdp->data_meta;
#if (PAGE_SIZE < 8192)
unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
#else
unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
SKB_DATA_ALIGN(xdp->data_end -
xdp->data_hard_start);
#endif
struct sk_buff *skb;
/* Prefetch first cache line of first page. If xdp->data_meta
* is unused, this points exactly as xdp->data, otherwise we
* likely have a consumer accessing first few bytes of meta
* data, and then actual data.
*/
prefetch(xdp->data_meta);
#if L1_CACHE_BYTES < 128
prefetch(xdp->data_meta + L1_CACHE_BYTES);
#endif
/* build an skb around the page buffer */
skb = build_skb(xdp->data_hard_start, truesize);
if (unlikely(!skb))
return NULL;
/* update pointers within the skb to store the data */
skb_reserve(skb, xdp->data - xdp->data_hard_start);
__skb_put(skb, xdp->data_end - xdp->data);
if (metasize)
skb_metadata_set(skb, metasize);
/* buffer is used by skb, update page_offset */
#if (PAGE_SIZE < 8192)
rx_buffer->page_offset ^= truesize;
#else
rx_buffer->page_offset += truesize;
#endif
return skb;
}
/**
* i40e_put_rx_buffer - Clean up used buffer and either recycle or free
* @rx_ring: rx descriptor ring to transact packets on
* @rx_buffer: rx buffer to pull data from
*
* This function will clean up the contents of the rx_buffer. It will
* either recycle the buffer or unmap it and free the associated resources.
*/
static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
struct i40e_rx_buffer *rx_buffer)
{
if (i40e_can_reuse_rx_page(rx_buffer)) {
/* hand second half of page back to the ring */
i40e_reuse_rx_page(rx_ring, rx_buffer);
rx_ring->rx_stats.page_reuse_count++;
} else {
/* we are not reusing the buffer so unmap it */
dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
i40e_rx_pg_size(rx_ring),
DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
__page_frag_cache_drain(rx_buffer->page,
rx_buffer->pagecnt_bias);
}
/* clear contents of buffer_info */
rx_buffer->page = NULL;
}
/**
* i40e_is_non_eop - process handling of non-EOP buffers
* @rx_ring: Rx ring being processed
* @rx_desc: Rx descriptor for current buffer
* @skb: Current socket buffer containing buffer in progress
*
* This function updates next to clean. If the buffer is an EOP buffer
* this function exits returning false, otherwise it will place the
* sk_buff in the next buffer to be chained and return true indicating
* that this is in fact a non-EOP buffer.
**/
static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
union i40e_rx_desc *rx_desc,
struct sk_buff *skb)
{
u32 ntc = rx_ring->next_to_clean + 1;
/* fetch, update, and store next to clean */
ntc = (ntc < rx_ring->count) ? ntc : 0;
rx_ring->next_to_clean = ntc;
prefetch(I40E_RX_DESC(rx_ring, ntc));
/* if we are the last buffer then there is nothing else to do */
#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
return false;
rx_ring->rx_stats.non_eop_descs++;
return true;
}
#define I40E_XDP_PASS 0
#define I40E_XDP_CONSUMED BIT(0)
#define I40E_XDP_TX BIT(1)
#define I40E_XDP_REDIR BIT(2)
static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
struct i40e_ring *xdp_ring);
static int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp,
struct i40e_ring *xdp_ring)
{
struct xdp_frame *xdpf = convert_to_xdp_frame(xdp);
if (unlikely(!xdpf))
return I40E_XDP_CONSUMED;
return i40e_xmit_xdp_ring(xdpf, xdp_ring);
}
/**
* i40e_run_xdp - run an XDP program
* @rx_ring: Rx ring being processed
* @xdp: XDP buffer containing the frame
**/
static struct sk_buff *i40e_run_xdp(struct i40e_ring *rx_ring,
struct xdp_buff *xdp)
{
int err, result = I40E_XDP_PASS;
struct i40e_ring *xdp_ring;
struct bpf_prog *xdp_prog;
u32 act;
rcu_read_lock();
xdp_prog = READ_ONCE(rx_ring->xdp_prog);
if (!xdp_prog)
goto xdp_out;
prefetchw(xdp->data_hard_start); /* xdp_frame write */
act = bpf_prog_run_xdp(xdp_prog, xdp);
switch (act) {
case XDP_PASS:
break;
case XDP_TX:
xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
break;
case XDP_REDIRECT:
err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
result = !err ? I40E_XDP_REDIR : I40E_XDP_CONSUMED;
break;
default:
bpf_warn_invalid_xdp_action(act);
/* fall through */
case XDP_ABORTED:
trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
/* fall through -- handle aborts by dropping packet */
case XDP_DROP:
result = I40E_XDP_CONSUMED;
break;
}
xdp_out:
rcu_read_unlock();
return ERR_PTR(-result);
}
/**
* i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
* @rx_ring: Rx ring
* @rx_buffer: Rx buffer to adjust
* @size: Size of adjustment
**/
static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring,
struct i40e_rx_buffer *rx_buffer,
unsigned int size)
{
#if (PAGE_SIZE < 8192)
unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
rx_buffer->page_offset ^= truesize;
#else
unsigned int truesize = SKB_DATA_ALIGN(i40e_rx_offset(rx_ring) + size);
rx_buffer->page_offset += truesize;
#endif
}
static inline void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
{
/* Force memory writes to complete before letting h/w
* know there are new descriptors to fetch.
*/
wmb();
writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
}
/**
* i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
* @rx_ring: rx descriptor ring to transact packets on
* @budget: Total limit on number of packets to process
*
* This function provides a "bounce buffer" approach to Rx interrupt
* processing. The advantage to this is that on systems that have
* expensive overhead for IOMMU access this provides a means of avoiding
* it by maintaining the mapping of the page to the system.
*
* Returns amount of work completed
**/
static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
{
unsigned int total_rx_bytes = 0, total_rx_packets = 0;
struct sk_buff *skb = rx_ring->skb;
u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
unsigned int xdp_xmit = 0;
bool failure = false;
struct xdp_buff xdp;
xdp.rxq = &rx_ring->xdp_rxq;
while (likely(total_rx_packets < (unsigned int)budget)) {
struct i40e_rx_buffer *rx_buffer;
union i40e_rx_desc *rx_desc;
unsigned int size;
u16 vlan_tag;
u8 rx_ptype;
u64 qword;
/* return some buffers to hardware, one at a time is too slow */
if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
failure = failure ||
i40e_alloc_rx_buffers(rx_ring, cleaned_count);
cleaned_count = 0;
}
rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
/* status_error_len will always be zero for unused descriptors
* because it's cleared in cleanup, and overlaps with hdr_addr
* which is always zero because packet split isn't used, if the
* hardware wrote DD then the length will be non-zero
*/
qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
/* This memory barrier is needed to keep us from reading
* any other fields out of the rx_desc until we have
* verified the descriptor has been written back.
*/
dma_rmb();
if (unlikely(i40e_rx_is_programming_status(qword))) {
i40e_clean_programming_status(rx_ring, rx_desc, qword);
cleaned_count++;
continue;
}
size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
if (!size)
break;
i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
rx_buffer = i40e_get_rx_buffer(rx_ring, size);
/* retrieve a buffer from the ring */
if (!skb) {
xdp.data = page_address(rx_buffer->page) +
rx_buffer->page_offset;
xdp.data_meta = xdp.data;
xdp.data_hard_start = xdp.data -
i40e_rx_offset(rx_ring);
xdp.data_end = xdp.data + size;
skb = i40e_run_xdp(rx_ring, &xdp);
}
if (IS_ERR(skb)) {
unsigned int xdp_res = -PTR_ERR(skb);
if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
xdp_xmit |= xdp_res;
i40e_rx_buffer_flip(rx_ring, rx_buffer, size);
} else {
rx_buffer->pagecnt_bias++;
}
total_rx_bytes += size;
total_rx_packets++;
} else if (skb) {
i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
} else if (ring_uses_build_skb(rx_ring)) {
skb = i40e_build_skb(rx_ring, rx_buffer, &xdp);
} else {
skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp);
}
/* exit if we failed to retrieve a buffer */
if (!skb) {
rx_ring->rx_stats.alloc_buff_failed++;
rx_buffer->pagecnt_bias++;
break;
}
i40e_put_rx_buffer(rx_ring, rx_buffer);
cleaned_count++;
if (i40e_is_non_eop(rx_ring, rx_desc, skb))
continue;
if (i40e_cleanup_headers(rx_ring, skb, rx_desc)) {
skb = NULL;
continue;
}
/* probably a little skewed due to removing CRC */
total_rx_bytes += skb->len;
qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
I40E_RXD_QW1_PTYPE_SHIFT;
/* populate checksum, VLAN, and protocol */
i40e_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;
i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
i40e_receive_skb(rx_ring, skb, vlan_tag);
skb = NULL;
/* update budget accounting */
total_rx_packets++;
}
if (xdp_xmit & I40E_XDP_REDIR)
xdp_do_flush_map();
if (xdp_xmit & I40E_XDP_TX) {
struct i40e_ring *xdp_ring =
rx_ring->vsi->xdp_rings[rx_ring->queue_index];
i40e_xdp_ring_update_tail(xdp_ring);
}
rx_ring->skb = skb;
u64_stats_update_begin(&rx_ring->syncp);
rx_ring->stats.packets += total_rx_packets;
rx_ring->stats.bytes += total_rx_bytes;
u64_stats_update_end(&rx_ring->syncp);
rx_ring->q_vector->rx.total_packets += total_rx_packets;
rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
/* guarantee a trip back through this routine if there was a failure */
return failure ? budget : (int)total_rx_packets;
}
static inline u32 i40e_buildreg_itr(const int type, u16 itr)
{
u32 val;
/* We don't bother with setting the CLEARPBA bit as the data sheet
* points out doing so is "meaningless since it was already
* auto-cleared". The auto-clearing happens when the interrupt is
* asserted.
*
* Hardware errata 28 for also indicates that writing to a
* xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
* an event in the PBA anyway so we need to rely on the automask
* to hold pending events for us until the interrupt is re-enabled
*
* The itr value is reported in microseconds, and the register
* value is recorded in 2 microsecond units. For this reason we
* only need to shift by the interval shift - 1 instead of the
* full value.
*/
itr &= I40E_ITR_MASK;
val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
(type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
(itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1));
return val;
}
/* a small macro to shorten up some long lines */
#define INTREG I40E_PFINT_DYN_CTLN
/* The act of updating the ITR will cause it to immediately trigger. In order
* to prevent this from throwing off adaptive update statistics we defer the
* update so that it can only happen so often. So after either Tx or Rx are
* updated we make the adaptive scheme wait until either the ITR completely
* expires via the next_update expiration or we have been through at least
* 3 interrupts.
*/
#define ITR_COUNTDOWN_START 3
/**
* i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
* @vsi: the VSI we care about
* @q_vector: q_vector for which itr is being updated and interrupt enabled
*
**/
static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
struct i40e_q_vector *q_vector)
{
struct i40e_hw *hw = &vsi->back->hw;
u32 intval;
/* If we don't have MSIX, then we only need to re-enable icr0 */
if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) {
i40e_irq_dynamic_enable_icr0(vsi->back);
return;
}
/* These will do nothing if dynamic updates are not enabled */
i40e_update_itr(q_vector, &q_vector->tx);
i40e_update_itr(q_vector, &q_vector->rx);
/* This block of logic allows us to get away with only updating
* one ITR value with each interrupt. The idea is to perform a
* pseudo-lazy update with the following criteria.
*
* 1. Rx is given higher priority than Tx if both are in same state
* 2. If we must reduce an ITR that is given highest priority.
* 3. We then give priority to increasing ITR based on amount.
*/
if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
/* Rx ITR needs to be reduced, this is highest priority */
intval = i40e_buildreg_itr(I40E_RX_ITR,
q_vector->rx.target_itr);
q_vector->rx.current_itr = q_vector->rx.target_itr;
q_vector->itr_countdown = ITR_COUNTDOWN_START;
} else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
((q_vector->rx.target_itr - q_vector->rx.current_itr) <
(q_vector->tx.target_itr - q_vector->tx.current_itr))) {
/* Tx ITR needs to be reduced, this is second priority
* Tx ITR needs to be increased more than Rx, fourth priority
*/
intval = i40e_buildreg_itr(I40E_TX_ITR,
q_vector->tx.target_itr);
q_vector->tx.current_itr = q_vector->tx.target_itr;
q_vector->itr_countdown = ITR_COUNTDOWN_START;
} else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
/* Rx ITR needs to be increased, third priority */
intval = i40e_buildreg_itr(I40E_RX_ITR,
q_vector->rx.target_itr);
q_vector->rx.current_itr = q_vector->rx.target_itr;
q_vector->itr_countdown = ITR_COUNTDOWN_START;
} else {
/* No ITR update, lowest priority */
intval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
if (q_vector->itr_countdown)
q_vector->itr_countdown--;
}
if (!test_bit(__I40E_VSI_DOWN, vsi->state))
wr32(hw, INTREG(q_vector->reg_idx), intval);
}
/**
* i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
* @napi: napi struct with our devices info in it
* @budget: amount of work driver is allowed to do this pass, in packets
*
* This function will clean all queues associated with a q_vector.
*
* Returns the amount of work done
**/
int i40e_napi_poll(struct napi_struct *napi, int budget)
{
struct i40e_q_vector *q_vector =
container_of(napi, struct i40e_q_vector, napi);
struct i40e_vsi *vsi = q_vector->vsi;
struct i40e_ring *ring;
bool clean_complete = true;
bool arm_wb = false;
int budget_per_ring;
int work_done = 0;
if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
napi_complete(napi);
return 0;
}
/* Since the actual Tx work is minimal, we can give the Tx a larger
* budget and be more aggressive about cleaning up the Tx descriptors.
*/
i40e_for_each_ring(ring, q_vector->tx) {
if (!i40e_clean_tx_irq(vsi, ring, budget)) {
clean_complete = false;
continue;
}
arm_wb |= ring->arm_wb;
ring->arm_wb = false;
}
/* Handle case where we are called by netpoll with a budget of 0 */
if (budget <= 0)
goto tx_only;
/* We attempt to distribute budget to each Rx queue fairly, but don't
* allow the budget to go below 1 because that would exit polling early.
*/
budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
i40e_for_each_ring(ring, q_vector->rx) {
int cleaned = i40e_clean_rx_irq(ring, budget_per_ring);
work_done += cleaned;
/* if we clean as many as budgeted, we must not be done */
if (cleaned >= budget_per_ring)
clean_complete = false;
}
/* If work not completed, return budget and polling will return */
if (!clean_complete) {
int cpu_id = smp_processor_id();
/* It is possible that the interrupt affinity has changed but,
* if the cpu is pegged at 100%, polling will never exit while
* traffic continues and the interrupt will be stuck on this
* cpu. We check to make sure affinity is correct before we
* continue to poll, otherwise we must stop polling so the
* interrupt can move to the correct cpu.
*/
if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
/* Tell napi that we are done polling */
napi_complete_done(napi, work_done);
/* Force an interrupt */
i40e_force_wb(vsi, q_vector);
/* Return budget-1 so that polling stops */
return budget - 1;
}
tx_only:
if (arm_wb) {
q_vector->tx.ring[0].tx_stats.tx_force_wb++;
i40e_enable_wb_on_itr(vsi, q_vector);
}
return budget;
}
if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
q_vector->arm_wb_state = false;
/* Work is done so exit the polling mode and re-enable the interrupt */
napi_complete_done(napi, work_done);
i40e_update_enable_itr(vsi, q_vector);
return min(work_done, budget - 1);
}
/**
* i40e_atr - Add a Flow Director ATR filter
* @tx_ring: ring to add programming descriptor to
* @skb: send buffer
* @tx_flags: send tx flags
**/
static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
u32 tx_flags)
{
struct i40e_filter_program_desc *fdir_desc;
struct i40e_pf *pf = tx_ring->vsi->back;
union {
unsigned char *network;
struct iphdr *ipv4;
struct ipv6hdr *ipv6;
} hdr;
struct tcphdr *th;
unsigned int hlen;
u32 flex_ptype, dtype_cmd;
int l4_proto;
u16 i;
/* make sure ATR is enabled */
if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
return;
if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
return;
/* if sampling is disabled do nothing */
if (!tx_ring->atr_sample_rate)
return;
/* Currently only IPv4/IPv6 with TCP is supported */
if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
return;
/* snag network header to get L4 type and address */
hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
skb_inner_network_header(skb) : skb_network_header(skb);
/* Note: tx_flags gets modified to reflect inner protocols in
* tx_enable_csum function if encap is enabled.
*/
if (tx_flags & I40E_TX_FLAGS_IPV4) {
/* access ihl as u8 to avoid unaligned access on ia64 */
hlen = (hdr.network[0] & 0x0F) << 2;
l4_proto = hdr.ipv4->protocol;
} else {
/* find the start of the innermost ipv6 header */
unsigned int inner_hlen = hdr.network - skb->data;
unsigned int h_offset = inner_hlen;
/* this function updates h_offset to the end of the header */
l4_proto =
ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
/* hlen will contain our best estimate of the tcp header */
hlen = h_offset - inner_hlen;
}
if (l4_proto != IPPROTO_TCP)
return;
th = (struct tcphdr *)(hdr.network + hlen);
/* Due to lack of space, no more new filters can be programmed */
if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
return;
if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
/* HW ATR eviction will take care of removing filters on FIN
* and RST packets.
*/
if (th->fin || th->rst)
return;
}
tx_ring->atr_count++;
/* sample on all syn/fin/rst packets or once every atr sample rate */
if (!th->fin &&
!th->syn &&
!th->rst &&
(tx_ring->atr_count < tx_ring->atr_sample_rate))
return;
tx_ring->atr_count = 0;
/* grab the next descriptor */
i = tx_ring->next_to_use;
fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
i++;
tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
I40E_TXD_FLTR_QW0_QINDEX_MASK;
flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
(I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
(I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
dtype_cmd |= (th->fin || th->rst) ?
(I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
(I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
I40E_TXD_FLTR_QW1_PCMD_SHIFT);
dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
I40E_TXD_FLTR_QW1_DEST_SHIFT;
dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
dtype_cmd |=
((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
else
dtype_cmd |=
((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
fdir_desc->rsvd = cpu_to_le32(0);
fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
fdir_desc->fd_id = cpu_to_le32(0);
}
/**
* i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
* @skb: send buffer
* @tx_ring: ring to send buffer on
* @flags: the tx flags to be set
*
* Checks the skb and set up correspondingly several generic transmit flags
* related to VLAN tagging for the HW, such as VLAN, DCB, etc.
*
* Returns error code indicate the frame should be dropped upon error and the
* otherwise returns 0 to indicate the flags has been set properly.
**/
static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
struct i40e_ring *tx_ring,
u32 *flags)
{
__be16 protocol = skb->protocol;
u32 tx_flags = 0;
if (protocol == htons(ETH_P_8021Q) &&
!(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
/* When HW VLAN acceleration is turned off by the user the
* stack sets the protocol to 8021q so that the driver
* can take any steps required to support the SW only
* VLAN handling. In our case the driver doesn't need
* to take any further steps so just set the protocol
* to the encapsulated ethertype.
*/
skb->protocol = vlan_get_protocol(skb);
goto out;
}
/* if we have a HW VLAN tag being added, default to the HW one */
if (skb_vlan_tag_present(skb)) {
tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
tx_flags |= I40E_TX_FLAGS_HW_VLAN;
/* else if it is a SW VLAN, check the next protocol and store the tag */
} else if (protocol == htons(ETH_P_8021Q)) {
struct vlan_hdr *vhdr, _vhdr;
vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
if (!vhdr)
return -EINVAL;
protocol = vhdr->h_vlan_encapsulated_proto;
tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
tx_flags |= I40E_TX_FLAGS_SW_VLAN;
}
if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
goto out;
/* Insert 802.1p priority into VLAN header */
if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
(skb->priority != TC_PRIO_CONTROL)) {
tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
tx_flags |= (skb->priority & 0x7) <<
I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
struct vlan_ethhdr *vhdr;
int rc;
rc = skb_cow_head(skb, 0);
if (rc < 0)
return rc;
vhdr = (struct vlan_ethhdr *)skb->data;
vhdr->h_vlan_TCI = htons(tx_flags >>
I40E_TX_FLAGS_VLAN_SHIFT);
} else {
tx_flags |= I40E_TX_FLAGS_HW_VLAN;
}
}
out:
*flags = tx_flags;
return 0;
}
/**
* i40e_tso - set up the tso context descriptor
* @first: pointer to first Tx buffer for xmit
* @hdr_len: ptr to the size of the packet header
* @cd_type_cmd_tso_mss: Quad Word 1
*
* Returns 0 if no TSO can happen, 1 if tso is going, or error
**/
static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
u64 *cd_type_cmd_tso_mss)
{
struct sk_buff *skb = first->skb;
u64 cd_cmd, cd_tso_len, cd_mss;
union {
struct iphdr *v4;
struct ipv6hdr *v6;
unsigned char *hdr;
} ip;
union {
struct tcphdr *tcp;
struct udphdr *udp;
unsigned char *hdr;
} l4;
u32 paylen, l4_offset;
u16 gso_segs, gso_size;
int err;
if (skb->ip_summed != CHECKSUM_PARTIAL)
return 0;
if (!skb_is_gso(skb))
return 0;
err = skb_cow_head(skb, 0);
if (err < 0)
return err;
ip.hdr = skb_network_header(skb);
l4.hdr = skb_transport_header(skb);
/* initialize outer IP header fields */
if (ip.v4->version == 4) {
ip.v4->tot_len = 0;
ip.v4->check = 0;
} else {
ip.v6->payload_len = 0;
}
if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
SKB_GSO_GRE_CSUM |
SKB_GSO_IPXIP4 |
SKB_GSO_IPXIP6 |
SKB_GSO_UDP_TUNNEL |
SKB_GSO_UDP_TUNNEL_CSUM)) {
if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
l4.udp->len = 0;
/* determine offset of outer transport header */
l4_offset = l4.hdr - skb->data;
/* remove payload length from outer checksum */
paylen = skb->len - l4_offset;
csum_replace_by_diff(&l4.udp->check,
(__force __wsum)htonl(paylen));
}
/* reset pointers to inner headers */
ip.hdr = skb_inner_network_header(skb);
l4.hdr = skb_inner_transport_header(skb);
/* initialize inner IP header fields */
if (ip.v4->version == 4) {
ip.v4->tot_len = 0;
ip.v4->check = 0;
} else {
ip.v6->payload_len = 0;
}
}
/* determine offset of inner transport header */
l4_offset = l4.hdr - skb->data;
/* remove payload length from inner checksum */
paylen = skb->len - l4_offset;
csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
/* compute length of segmentation header */
*hdr_len = (l4.tcp->doff * 4) + l4_offset;
/* pull values out of skb_shinfo */
gso_size = skb_shinfo(skb)->gso_size;
gso_segs = skb_shinfo(skb)->gso_segs;
/* update GSO size and bytecount with header size */
first->gso_segs = gso_segs;
first->bytecount += (first->gso_segs - 1) * *hdr_len;
/* find the field values */
cd_cmd = I40E_TX_CTX_DESC_TSO;
cd_tso_len = skb->len - *hdr_len;
cd_mss = gso_size;
*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
return 1;
}
/**
* i40e_tsyn - set up the tsyn context descriptor
* @tx_ring: ptr to the ring to send
* @skb: ptr to the skb we're sending
* @tx_flags: the collected send information
* @cd_type_cmd_tso_mss: Quad Word 1
*
* Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
**/
static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
u32 tx_flags, u64 *cd_type_cmd_tso_mss)
{
struct i40e_pf *pf;
if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
return 0;
/* Tx timestamps cannot be sampled when doing TSO */
if (tx_flags & I40E_TX_FLAGS_TSO)
return 0;
/* only timestamp the outbound packet if the user has requested it and
* we are not already transmitting a packet to be timestamped
*/
pf = i40e_netdev_to_pf(tx_ring->netdev);
if (!(pf->flags & I40E_FLAG_PTP))
return 0;
if (pf->ptp_tx &&
!test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
pf->ptp_tx_start = jiffies;
pf->ptp_tx_skb = skb_get(skb);
} else {
pf->tx_hwtstamp_skipped++;
return 0;
}
*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
I40E_TXD_CTX_QW1_CMD_SHIFT;
return 1;
}
/**
* i40e_tx_enable_csum - Enable Tx checksum offloads
* @skb: send buffer
* @tx_flags: pointer to Tx flags currently set
* @td_cmd: Tx descriptor command bits to set
* @td_offset: Tx descriptor header offsets to set
* @tx_ring: Tx descriptor ring
* @cd_tunneling: ptr to context desc bits
**/
static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
u32 *td_cmd, u32 *td_offset,
struct i40e_ring *tx_ring,
u32 *cd_tunneling)
{
union {
struct iphdr *v4;
struct ipv6hdr *v6;
unsigned char *hdr;
} ip;
union {
struct tcphdr *tcp;
struct udphdr *udp;
unsigned char *hdr;
} l4;
unsigned char *exthdr;
u32 offset, cmd = 0;
__be16 frag_off;
u8 l4_proto = 0;
if (skb->ip_summed != CHECKSUM_PARTIAL)
return 0;
ip.hdr = skb_network_header(skb);
l4.hdr = skb_transport_header(skb);
/* compute outer L2 header size */
offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
if (skb->encapsulation) {
u32 tunnel = 0;
/* define outer network header type */
if (*tx_flags & I40E_TX_FLAGS_IPV4) {
tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
I40E_TX_CTX_EXT_IP_IPV4 :
I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
l4_proto = ip.v4->protocol;
} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
exthdr = ip.hdr + sizeof(*ip.v6);
l4_proto = ip.v6->nexthdr;
if (l4.hdr != exthdr)
ipv6_skip_exthdr(skb, exthdr - skb->data,
&l4_proto, &frag_off);
}
/* define outer transport */
switch (l4_proto) {
case IPPROTO_UDP:
tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
break;
case IPPROTO_GRE:
tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
break;
case IPPROTO_IPIP:
case IPPROTO_IPV6:
*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
l4.hdr = skb_inner_network_header(skb);
break;
default:
if (*tx_flags & I40E_TX_FLAGS_TSO)
return -1;
skb_checksum_help(skb);
return 0;
}
/* compute outer L3 header size */
tunnel |= ((l4.hdr - ip.hdr) / 4) <<
I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
/* switch IP header pointer from outer to inner header */
ip.hdr = skb_inner_network_header(skb);
/* compute tunnel header size */
tunnel |= ((ip.hdr - l4.hdr) / 2) <<
I40E_TXD_CTX_QW0_NATLEN_SHIFT;
/* indicate if we need to offload outer UDP header */
if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
/* record tunnel offload values */
*cd_tunneling |= tunnel;
/* switch L4 header pointer from outer to inner */
l4.hdr = skb_inner_transport_header(skb);
l4_proto = 0;
/* reset type as we transition from outer to inner headers */
*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
if (ip.v4->version == 4)
*tx_flags |= I40E_TX_FLAGS_IPV4;
if (ip.v6->version == 6)
*tx_flags |= I40E_TX_FLAGS_IPV6;
}
/* Enable IP checksum offloads */
if (*tx_flags & I40E_TX_FLAGS_IPV4) {
l4_proto = ip.v4->protocol;
/* the stack computes the IP header already, the only time we
* need the hardware to recompute it is in the case of TSO.
*/
cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
I40E_TX_DESC_CMD_IIPT_IPV4;
} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
exthdr = ip.hdr + sizeof(*ip.v6);
l4_proto = ip.v6->nexthdr;
if (l4.hdr != exthdr)
ipv6_skip_exthdr(skb, exthdr - skb->data,
&l4_proto, &frag_off);
}
/* compute inner L3 header size */
offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
/* Enable L4 checksum offloads */
switch (l4_proto) {
case IPPROTO_TCP:
/* enable checksum offloads */
cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
break;
case IPPROTO_SCTP:
/* enable SCTP checksum offload */
cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
offset |= (sizeof(struct sctphdr) >> 2) <<
I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
break;
case IPPROTO_UDP:
/* enable UDP checksum offload */
cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
offset |= (sizeof(struct udphdr) >> 2) <<
I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
break;
default:
if (*tx_flags & I40E_TX_FLAGS_TSO)
return -1;
skb_checksum_help(skb);
return 0;
}
*td_cmd |= cmd;
*td_offset |= offset;
return 1;
}
/**
* i40e_create_tx_ctx Build the Tx context descriptor
* @tx_ring: ring to create the descriptor on
* @cd_type_cmd_tso_mss: Quad Word 1
* @cd_tunneling: Quad Word 0 - bits 0-31
* @cd_l2tag2: Quad Word 0 - bits 32-63
**/
static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
const u64 cd_type_cmd_tso_mss,
const u32 cd_tunneling, const u32 cd_l2tag2)
{
struct i40e_tx_context_desc *context_desc;
int i = tx_ring->next_to_use;
if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
!cd_tunneling && !cd_l2tag2)
return;
/* grab the next descriptor */
context_desc = I40E_TX_CTXTDESC(tx_ring, i);
i++;
tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
/* cpu_to_le32 and assign to struct fields */
context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
context_desc->rsvd = cpu_to_le16(0);
context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
}
/**
* __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
* @tx_ring: the ring to be checked
* @size: the size buffer we want to assure is available
*
* Returns -EBUSY if a stop is needed, else 0
**/
int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
{
netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
/* Memory barrier before checking head and tail */
smp_mb();
/* Check again in a case another CPU has just made room available. */
if (likely(I40E_DESC_UNUSED(tx_ring) < size))
return -EBUSY;
/* A reprieve! - use start_queue because it doesn't call schedule */
netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
++tx_ring->tx_stats.restart_queue;
return 0;
}
/**
* __i40e_chk_linearize - Check if there are more than 8 buffers per packet
* @skb: send buffer
*
* Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
* and so we need to figure out the cases where we need to linearize the skb.
*
* For TSO we need to count the TSO header and segment payload separately.
* As such we need to check cases where we have 7 fragments or more as we
* can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
* the segment payload in the first descriptor, and another 7 for the
* fragments.
**/
bool __i40e_chk_linearize(struct sk_buff *skb)
{
const struct skb_frag_struct *frag, *stale;
int nr_frags, sum;
/* no need to check if number of frags is less than 7 */
nr_frags = skb_shinfo(skb)->nr_frags;
if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
return false;
/* We need to walk through the list and validate that each group
* of 6 fragments totals at least gso_size.
*/
nr_frags -= I40E_MAX_BUFFER_TXD - 2;
frag = &skb_shinfo(skb)->frags[0];
/* Initialize size to the negative value of gso_size minus 1. We
* use this as the worst case scenerio in which the frag ahead
* of us only provides one byte which is why we are limited to 6
* descriptors for a single transmit as the header and previous
* fragment are already consuming 2 descriptors.
*/
sum = 1 - skb_shinfo(skb)->gso_size;
/* Add size of frags 0 through 4 to create our initial sum */
sum += skb_frag_size(frag++);
sum += skb_frag_size(frag++);
sum += skb_frag_size(frag++);
sum += skb_frag_size(frag++);
sum += skb_frag_size(frag++);
/* Walk through fragments adding latest fragment, testing it, and
* then removing stale fragments from the sum.
*/
for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
int stale_size = skb_frag_size(stale);
sum += skb_frag_size(frag++);
/* The stale fragment may present us with a smaller
* descriptor than the actual fragment size. To account
* for that we need to remove all the data on the front and
* figure out what the remainder would be in the last
* descriptor associated with the fragment.
*/
if (stale_size > I40E_MAX_DATA_PER_TXD) {
int align_pad = -(stale->page_offset) &
(I40E_MAX_READ_REQ_SIZE - 1);
sum -= align_pad;
stale_size -= align_pad;
do {
sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
} while (stale_size > I40E_MAX_DATA_PER_TXD);
}
/* if sum is negative we failed to make sufficient progress */
if (sum < 0)
return true;
if (!nr_frags--)
break;
sum -= stale_size;
}
return false;
}
/**
* i40e_tx_map - Build the Tx descriptor
* @tx_ring: ring to send buffer on
* @skb: send buffer
* @first: first buffer info buffer to use
* @tx_flags: collected send information
* @hdr_len: size of the packet header
* @td_cmd: the command field in the descriptor
* @td_offset: offset for checksum or crc
*
* Returns 0 on success, -1 on failure to DMA
**/
static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
struct i40e_tx_buffer *first, u32 tx_flags,
const u8 hdr_len, u32 td_cmd, u32 td_offset)
{
unsigned int data_len = skb->data_len;
unsigned int size = skb_headlen(skb);
struct skb_frag_struct *frag;
struct i40e_tx_buffer *tx_bi;
struct i40e_tx_desc *tx_desc;
u16 i = tx_ring->next_to_use;
u32 td_tag = 0;
dma_addr_t dma;
u16 desc_count = 1;
if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
I40E_TX_FLAGS_VLAN_SHIFT;
}
first->tx_flags = tx_flags;
dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
tx_desc = I40E_TX_DESC(tx_ring, i);
tx_bi = first;
for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
if (dma_mapping_error(tx_ring->dev, dma))
goto dma_error;
/* record length, and DMA address */
dma_unmap_len_set(tx_bi, len, size);
dma_unmap_addr_set(tx_bi, dma, dma);
/* align size to end of page */
max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
tx_desc->buffer_addr = cpu_to_le64(dma);
while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
tx_desc->cmd_type_offset_bsz =
build_ctob(td_cmd, td_offset,
max_data, td_tag);
tx_desc++;
i++;
desc_count++;
if (i == tx_ring->count) {
tx_desc = I40E_TX_DESC(tx_ring, 0);
i = 0;
}
dma += max_data;
size -= max_data;
max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
tx_desc->buffer_addr = cpu_to_le64(dma);
}
if (likely(!data_len))
break;
tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
size, td_tag);
tx_desc++;
i++;
desc_count++;
if (i == tx_ring->count) {
tx_desc = I40E_TX_DESC(tx_ring, 0);
i = 0;
}
size = skb_frag_size(frag);
data_len -= size;
dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
DMA_TO_DEVICE);
tx_bi = &tx_ring->tx_bi[i];
}
netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
i++;
if (i == tx_ring->count)
i = 0;
tx_ring->next_to_use = i;
i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
/* write last descriptor with EOP bit */
td_cmd |= I40E_TX_DESC_CMD_EOP;
/* We OR these values together to check both against 4 (WB_STRIDE)
* below. This is safe since we don't re-use desc_count afterwards.
*/
desc_count |= ++tx_ring->packet_stride;
if (desc_count >= WB_STRIDE) {
/* write last descriptor with RS bit set */
td_cmd |= I40E_TX_DESC_CMD_RS;
tx_ring->packet_stride = 0;
}
tx_desc->cmd_type_offset_bsz =
build_ctob(td_cmd, td_offset, size, td_tag);
/* Force memory writes to complete before letting h/w know there
* are new descriptors to fetch.
*
* We also use this memory barrier to make certain all of the
* status bits have been updated before next_to_watch is written.
*/
wmb();
/* set next_to_watch value indicating a packet is present */
first->next_to_watch = tx_desc;
/* notify HW of packet */
if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
writel(i, tx_ring->tail);
/* we need this if more than one processor can write to our tail
* at a time, it synchronizes IO on IA64/Altix systems
*/
mmiowb();
}
return 0;
dma_error:
dev_info(tx_ring->dev, "TX DMA map failed\n");
/* clear dma mappings for failed tx_bi map */
for (;;) {
tx_bi = &tx_ring->tx_bi[i];
i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
if (tx_bi == first)
break;
if (i == 0)
i = tx_ring->count;
i--;
}
tx_ring->next_to_use = i;
return -1;
}
/**
* i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
* @xdp: data to transmit
* @xdp_ring: XDP Tx ring
**/
static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
struct i40e_ring *xdp_ring)
{
u16 i = xdp_ring->next_to_use;
struct i40e_tx_buffer *tx_bi;
struct i40e_tx_desc *tx_desc;
u32 size = xdpf->len;
dma_addr_t dma;
if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) {
xdp_ring->tx_stats.tx_busy++;
return I40E_XDP_CONSUMED;
}
dma = dma_map_single(xdp_ring->dev, xdpf->data, size, DMA_TO_DEVICE);
if (dma_mapping_error(xdp_ring->dev, dma))
return I40E_XDP_CONSUMED;
tx_bi = &xdp_ring->tx_bi[i];
tx_bi->bytecount = size;
tx_bi->gso_segs = 1;
tx_bi->xdpf = xdpf;
/* record length, and DMA address */
dma_unmap_len_set(tx_bi, len, size);
dma_unmap_addr_set(tx_bi, dma, dma);
tx_desc = I40E_TX_DESC(xdp_ring, i);
tx_desc->buffer_addr = cpu_to_le64(dma);
tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC
| I40E_TXD_CMD,
0, size, 0);
/* Make certain all of the status bits have been updated
* before next_to_watch is written.
*/
smp_wmb();
i++;
if (i == xdp_ring->count)
i = 0;
tx_bi->next_to_watch = tx_desc;
xdp_ring->next_to_use = i;
return I40E_XDP_TX;
}
/**
* i40e_xmit_frame_ring - Sends buffer on Tx ring
* @skb: send buffer
* @tx_ring: ring to send buffer on
*
* Returns NETDEV_TX_OK if sent, else an error code
**/
static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
struct i40e_ring *tx_ring)
{
u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
u32 cd_tunneling = 0, cd_l2tag2 = 0;
struct i40e_tx_buffer *first;
u32 td_offset = 0;
u32 tx_flags = 0;
__be16 protocol;
u32 td_cmd = 0;
u8 hdr_len = 0;
int tso, count;
int tsyn;
/* prefetch the data, we'll need it later */
prefetch(skb->data);
i40e_trace(xmit_frame_ring, skb, tx_ring);
count = i40e_xmit_descriptor_count(skb);
if (i40e_chk_linearize(skb, count)) {
if (__skb_linearize(skb)) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
count = i40e_txd_use_count(skb->len);
tx_ring->tx_stats.tx_linearize++;
}
/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
* + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
* + 4 desc gap to avoid the cache line where head is,
* + 1 desc for context descriptor,
* otherwise try next time
*/
if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
tx_ring->tx_stats.tx_busy++;
return NETDEV_TX_BUSY;
}
/* record the location of the first descriptor for this packet */
first = &tx_ring->tx_bi[tx_ring->next_to_use];
first->skb = skb;
first->bytecount = skb->len;
first->gso_segs = 1;
/* prepare the xmit flags */
if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
goto out_drop;
/* obtain protocol of skb */
protocol = vlan_get_protocol(skb);
/* setup IPv4/IPv6 offloads */
if (protocol == htons(ETH_P_IP))
tx_flags |= I40E_TX_FLAGS_IPV4;
else if (protocol == htons(ETH_P_IPV6))
tx_flags |= I40E_TX_FLAGS_IPV6;
tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
if (tso < 0)
goto out_drop;
else if (tso)
tx_flags |= I40E_TX_FLAGS_TSO;
/* Always offload the checksum, since it's in the data descriptor */
tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
tx_ring, &cd_tunneling);
if (tso < 0)
goto out_drop;
tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
if (tsyn)
tx_flags |= I40E_TX_FLAGS_TSYN;
skb_tx_timestamp(skb);
/* always enable CRC insertion offload */
td_cmd |= I40E_TX_DESC_CMD_ICRC;
i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
cd_tunneling, cd_l2tag2);
/* Add Flow Director ATR if it's enabled.
*
* NOTE: this must always be directly before the data descriptor.
*/
i40e_atr(tx_ring, skb, tx_flags);
if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
td_cmd, td_offset))
goto cleanup_tx_tstamp;
return NETDEV_TX_OK;
out_drop:
i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
dev_kfree_skb_any(first->skb);
first->skb = NULL;
cleanup_tx_tstamp:
if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
dev_kfree_skb_any(pf->ptp_tx_skb);
pf->ptp_tx_skb = NULL;
clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
}
return NETDEV_TX_OK;
}
/**
* i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
* @skb: send buffer
* @netdev: network interface device structure
*
* Returns NETDEV_TX_OK if sent, else an error code
**/
netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
{
struct i40e_netdev_priv *np = netdev_priv(netdev);
struct i40e_vsi *vsi = np->vsi;
struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
/* hardware can't handle really short frames, hardware padding works
* beyond this point
*/
if (skb_put_padto(skb, I40E_MIN_TX_LEN))
return NETDEV_TX_OK;
return i40e_xmit_frame_ring(skb, tx_ring);
}
/**
* i40e_xdp_xmit - Implements ndo_xdp_xmit
* @dev: netdev
* @xdp: XDP buffer
*
* Returns number of frames successfully sent. Frames that fail are
* free'ed via XDP return API.
*
* For error cases, a negative errno code is returned and no-frames
* are transmitted (caller must handle freeing frames).
**/
int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
u32 flags)
{
struct i40e_netdev_priv *np = netdev_priv(dev);
unsigned int queue_index = smp_processor_id();
struct i40e_vsi *vsi = np->vsi;
struct i40e_ring *xdp_ring;
int drops = 0;
int i;
if (test_bit(__I40E_VSI_DOWN, vsi->state))
return -ENETDOWN;
if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs)
return -ENXIO;
if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
return -EINVAL;
xdp_ring = vsi->xdp_rings[queue_index];
for (i = 0; i < n; i++) {
struct xdp_frame *xdpf = frames[i];
int err;
err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
if (err != I40E_XDP_TX) {
xdp_return_frame_rx_napi(xdpf);
drops++;
}
}
if (unlikely(flags & XDP_XMIT_FLUSH))
i40e_xdp_ring_update_tail(xdp_ring);
return n - drops;
}