mirror of https://gitee.com/openkylin/linux.git
2542 lines
68 KiB
C
2542 lines
68 KiB
C
/*
|
|
* Copyright © 2008 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*
|
|
* Authors:
|
|
* Keith Packard <keithp@keithp.com>
|
|
*
|
|
*/
|
|
|
|
#include <linux/i2c.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/export.h>
|
|
#include "drmP.h"
|
|
#include "drm.h"
|
|
#include "drm_crtc.h"
|
|
#include "drm_crtc_helper.h"
|
|
#include "intel_drv.h"
|
|
#include "i915_drm.h"
|
|
#include "i915_drv.h"
|
|
#include "drm_dp_helper.h"
|
|
|
|
#define DP_RECEIVER_CAP_SIZE 0xf
|
|
#define DP_LINK_STATUS_SIZE 6
|
|
#define DP_LINK_CHECK_TIMEOUT (10 * 1000)
|
|
|
|
#define DP_LINK_CONFIGURATION_SIZE 9
|
|
|
|
struct intel_dp {
|
|
struct intel_encoder base;
|
|
uint32_t output_reg;
|
|
uint32_t DP;
|
|
uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
|
|
bool has_audio;
|
|
enum hdmi_force_audio force_audio;
|
|
uint32_t color_range;
|
|
int dpms_mode;
|
|
uint8_t link_bw;
|
|
uint8_t lane_count;
|
|
uint8_t dpcd[DP_RECEIVER_CAP_SIZE];
|
|
struct i2c_adapter adapter;
|
|
struct i2c_algo_dp_aux_data algo;
|
|
bool is_pch_edp;
|
|
uint8_t train_set[4];
|
|
int panel_power_up_delay;
|
|
int panel_power_down_delay;
|
|
int panel_power_cycle_delay;
|
|
int backlight_on_delay;
|
|
int backlight_off_delay;
|
|
struct drm_display_mode *panel_fixed_mode; /* for eDP */
|
|
struct delayed_work panel_vdd_work;
|
|
bool want_panel_vdd;
|
|
};
|
|
|
|
/**
|
|
* is_edp - is the given port attached to an eDP panel (either CPU or PCH)
|
|
* @intel_dp: DP struct
|
|
*
|
|
* If a CPU or PCH DP output is attached to an eDP panel, this function
|
|
* will return true, and false otherwise.
|
|
*/
|
|
static bool is_edp(struct intel_dp *intel_dp)
|
|
{
|
|
return intel_dp->base.type == INTEL_OUTPUT_EDP;
|
|
}
|
|
|
|
/**
|
|
* is_pch_edp - is the port on the PCH and attached to an eDP panel?
|
|
* @intel_dp: DP struct
|
|
*
|
|
* Returns true if the given DP struct corresponds to a PCH DP port attached
|
|
* to an eDP panel, false otherwise. Helpful for determining whether we
|
|
* may need FDI resources for a given DP output or not.
|
|
*/
|
|
static bool is_pch_edp(struct intel_dp *intel_dp)
|
|
{
|
|
return intel_dp->is_pch_edp;
|
|
}
|
|
|
|
/**
|
|
* is_cpu_edp - is the port on the CPU and attached to an eDP panel?
|
|
* @intel_dp: DP struct
|
|
*
|
|
* Returns true if the given DP struct corresponds to a CPU eDP port.
|
|
*/
|
|
static bool is_cpu_edp(struct intel_dp *intel_dp)
|
|
{
|
|
return is_edp(intel_dp) && !is_pch_edp(intel_dp);
|
|
}
|
|
|
|
static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
|
|
{
|
|
return container_of(encoder, struct intel_dp, base.base);
|
|
}
|
|
|
|
static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
|
|
{
|
|
return container_of(intel_attached_encoder(connector),
|
|
struct intel_dp, base);
|
|
}
|
|
|
|
/**
|
|
* intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
|
|
* @encoder: DRM encoder
|
|
*
|
|
* Return true if @encoder corresponds to a PCH attached eDP panel. Needed
|
|
* by intel_display.c.
|
|
*/
|
|
bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
|
|
{
|
|
struct intel_dp *intel_dp;
|
|
|
|
if (!encoder)
|
|
return false;
|
|
|
|
intel_dp = enc_to_intel_dp(encoder);
|
|
|
|
return is_pch_edp(intel_dp);
|
|
}
|
|
|
|
static void intel_dp_start_link_train(struct intel_dp *intel_dp);
|
|
static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
|
|
static void intel_dp_link_down(struct intel_dp *intel_dp);
|
|
|
|
void
|
|
intel_edp_link_config(struct intel_encoder *intel_encoder,
|
|
int *lane_num, int *link_bw)
|
|
{
|
|
struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
|
|
|
|
*lane_num = intel_dp->lane_count;
|
|
if (intel_dp->link_bw == DP_LINK_BW_1_62)
|
|
*link_bw = 162000;
|
|
else if (intel_dp->link_bw == DP_LINK_BW_2_7)
|
|
*link_bw = 270000;
|
|
}
|
|
|
|
static int
|
|
intel_dp_max_lane_count(struct intel_dp *intel_dp)
|
|
{
|
|
int max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
|
|
switch (max_lane_count) {
|
|
case 1: case 2: case 4:
|
|
break;
|
|
default:
|
|
max_lane_count = 4;
|
|
}
|
|
return max_lane_count;
|
|
}
|
|
|
|
static int
|
|
intel_dp_max_link_bw(struct intel_dp *intel_dp)
|
|
{
|
|
int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
|
|
|
|
switch (max_link_bw) {
|
|
case DP_LINK_BW_1_62:
|
|
case DP_LINK_BW_2_7:
|
|
break;
|
|
default:
|
|
max_link_bw = DP_LINK_BW_1_62;
|
|
break;
|
|
}
|
|
return max_link_bw;
|
|
}
|
|
|
|
static int
|
|
intel_dp_link_clock(uint8_t link_bw)
|
|
{
|
|
if (link_bw == DP_LINK_BW_2_7)
|
|
return 270000;
|
|
else
|
|
return 162000;
|
|
}
|
|
|
|
/*
|
|
* The units on the numbers in the next two are... bizarre. Examples will
|
|
* make it clearer; this one parallels an example in the eDP spec.
|
|
*
|
|
* intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
|
|
*
|
|
* 270000 * 1 * 8 / 10 == 216000
|
|
*
|
|
* The actual data capacity of that configuration is 2.16Gbit/s, so the
|
|
* units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
|
|
* or equivalently, kilopixels per second - so for 1680x1050R it'd be
|
|
* 119000. At 18bpp that's 2142000 kilobits per second.
|
|
*
|
|
* Thus the strange-looking division by 10 in intel_dp_link_required, to
|
|
* get the result in decakilobits instead of kilobits.
|
|
*/
|
|
|
|
static int
|
|
intel_dp_link_required(int pixel_clock, int bpp)
|
|
{
|
|
return (pixel_clock * bpp + 9) / 10;
|
|
}
|
|
|
|
static int
|
|
intel_dp_max_data_rate(int max_link_clock, int max_lanes)
|
|
{
|
|
return (max_link_clock * max_lanes * 8) / 10;
|
|
}
|
|
|
|
static int
|
|
intel_dp_mode_valid(struct drm_connector *connector,
|
|
struct drm_display_mode *mode)
|
|
{
|
|
struct intel_dp *intel_dp = intel_attached_dp(connector);
|
|
int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
|
|
int max_lanes = intel_dp_max_lane_count(intel_dp);
|
|
int max_rate, mode_rate;
|
|
|
|
if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
|
|
if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
|
|
return MODE_PANEL;
|
|
|
|
if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
|
|
return MODE_PANEL;
|
|
}
|
|
|
|
mode_rate = intel_dp_link_required(mode->clock, 24);
|
|
max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
|
|
|
|
if (mode_rate > max_rate) {
|
|
mode_rate = intel_dp_link_required(mode->clock, 18);
|
|
if (mode_rate > max_rate)
|
|
return MODE_CLOCK_HIGH;
|
|
else
|
|
mode->private_flags |= INTEL_MODE_DP_FORCE_6BPC;
|
|
}
|
|
|
|
if (mode->clock < 10000)
|
|
return MODE_CLOCK_LOW;
|
|
|
|
return MODE_OK;
|
|
}
|
|
|
|
static uint32_t
|
|
pack_aux(uint8_t *src, int src_bytes)
|
|
{
|
|
int i;
|
|
uint32_t v = 0;
|
|
|
|
if (src_bytes > 4)
|
|
src_bytes = 4;
|
|
for (i = 0; i < src_bytes; i++)
|
|
v |= ((uint32_t) src[i]) << ((3-i) * 8);
|
|
return v;
|
|
}
|
|
|
|
static void
|
|
unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
|
|
{
|
|
int i;
|
|
if (dst_bytes > 4)
|
|
dst_bytes = 4;
|
|
for (i = 0; i < dst_bytes; i++)
|
|
dst[i] = src >> ((3-i) * 8);
|
|
}
|
|
|
|
/* hrawclock is 1/4 the FSB frequency */
|
|
static int
|
|
intel_hrawclk(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
uint32_t clkcfg;
|
|
|
|
clkcfg = I915_READ(CLKCFG);
|
|
switch (clkcfg & CLKCFG_FSB_MASK) {
|
|
case CLKCFG_FSB_400:
|
|
return 100;
|
|
case CLKCFG_FSB_533:
|
|
return 133;
|
|
case CLKCFG_FSB_667:
|
|
return 166;
|
|
case CLKCFG_FSB_800:
|
|
return 200;
|
|
case CLKCFG_FSB_1067:
|
|
return 266;
|
|
case CLKCFG_FSB_1333:
|
|
return 333;
|
|
/* these two are just a guess; one of them might be right */
|
|
case CLKCFG_FSB_1600:
|
|
case CLKCFG_FSB_1600_ALT:
|
|
return 400;
|
|
default:
|
|
return 133;
|
|
}
|
|
}
|
|
|
|
static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_device *dev = intel_dp->base.base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
|
|
}
|
|
|
|
static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_device *dev = intel_dp->base.base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
|
|
}
|
|
|
|
static void
|
|
intel_dp_check_edp(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_device *dev = intel_dp->base.base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
if (!is_edp(intel_dp))
|
|
return;
|
|
if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
|
|
WARN(1, "eDP powered off while attempting aux channel communication.\n");
|
|
DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
|
|
I915_READ(PCH_PP_STATUS),
|
|
I915_READ(PCH_PP_CONTROL));
|
|
}
|
|
}
|
|
|
|
static int
|
|
intel_dp_aux_ch(struct intel_dp *intel_dp,
|
|
uint8_t *send, int send_bytes,
|
|
uint8_t *recv, int recv_size)
|
|
{
|
|
uint32_t output_reg = intel_dp->output_reg;
|
|
struct drm_device *dev = intel_dp->base.base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
uint32_t ch_ctl = output_reg + 0x10;
|
|
uint32_t ch_data = ch_ctl + 4;
|
|
int i;
|
|
int recv_bytes;
|
|
uint32_t status;
|
|
uint32_t aux_clock_divider;
|
|
int try, precharge = 5;
|
|
|
|
intel_dp_check_edp(intel_dp);
|
|
/* The clock divider is based off the hrawclk,
|
|
* and would like to run at 2MHz. So, take the
|
|
* hrawclk value and divide by 2 and use that
|
|
*
|
|
* Note that PCH attached eDP panels should use a 125MHz input
|
|
* clock divider.
|
|
*/
|
|
if (is_cpu_edp(intel_dp)) {
|
|
if (IS_GEN6(dev) || IS_GEN7(dev))
|
|
aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
|
|
else
|
|
aux_clock_divider = 225; /* eDP input clock at 450Mhz */
|
|
} else if (HAS_PCH_SPLIT(dev))
|
|
aux_clock_divider = 63; /* IRL input clock fixed at 125Mhz */
|
|
else
|
|
aux_clock_divider = intel_hrawclk(dev) / 2;
|
|
|
|
/* Try to wait for any previous AUX channel activity */
|
|
for (try = 0; try < 3; try++) {
|
|
status = I915_READ(ch_ctl);
|
|
if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
|
|
break;
|
|
msleep(1);
|
|
}
|
|
|
|
if (try == 3) {
|
|
WARN(1, "dp_aux_ch not started status 0x%08x\n",
|
|
I915_READ(ch_ctl));
|
|
return -EBUSY;
|
|
}
|
|
|
|
/* Must try at least 3 times according to DP spec */
|
|
for (try = 0; try < 5; try++) {
|
|
/* Load the send data into the aux channel data registers */
|
|
for (i = 0; i < send_bytes; i += 4)
|
|
I915_WRITE(ch_data + i,
|
|
pack_aux(send + i, send_bytes - i));
|
|
|
|
/* Send the command and wait for it to complete */
|
|
I915_WRITE(ch_ctl,
|
|
DP_AUX_CH_CTL_SEND_BUSY |
|
|
DP_AUX_CH_CTL_TIME_OUT_400us |
|
|
(send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
|
|
(precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
|
|
(aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
|
|
DP_AUX_CH_CTL_DONE |
|
|
DP_AUX_CH_CTL_TIME_OUT_ERROR |
|
|
DP_AUX_CH_CTL_RECEIVE_ERROR);
|
|
for (;;) {
|
|
status = I915_READ(ch_ctl);
|
|
if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
|
|
break;
|
|
udelay(100);
|
|
}
|
|
|
|
/* Clear done status and any errors */
|
|
I915_WRITE(ch_ctl,
|
|
status |
|
|
DP_AUX_CH_CTL_DONE |
|
|
DP_AUX_CH_CTL_TIME_OUT_ERROR |
|
|
DP_AUX_CH_CTL_RECEIVE_ERROR);
|
|
|
|
if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
|
|
DP_AUX_CH_CTL_RECEIVE_ERROR))
|
|
continue;
|
|
if (status & DP_AUX_CH_CTL_DONE)
|
|
break;
|
|
}
|
|
|
|
if ((status & DP_AUX_CH_CTL_DONE) == 0) {
|
|
DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
|
|
return -EBUSY;
|
|
}
|
|
|
|
/* Check for timeout or receive error.
|
|
* Timeouts occur when the sink is not connected
|
|
*/
|
|
if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
|
|
DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
|
|
return -EIO;
|
|
}
|
|
|
|
/* Timeouts occur when the device isn't connected, so they're
|
|
* "normal" -- don't fill the kernel log with these */
|
|
if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
|
|
DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
/* Unload any bytes sent back from the other side */
|
|
recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
|
|
DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
|
|
if (recv_bytes > recv_size)
|
|
recv_bytes = recv_size;
|
|
|
|
for (i = 0; i < recv_bytes; i += 4)
|
|
unpack_aux(I915_READ(ch_data + i),
|
|
recv + i, recv_bytes - i);
|
|
|
|
return recv_bytes;
|
|
}
|
|
|
|
/* Write data to the aux channel in native mode */
|
|
static int
|
|
intel_dp_aux_native_write(struct intel_dp *intel_dp,
|
|
uint16_t address, uint8_t *send, int send_bytes)
|
|
{
|
|
int ret;
|
|
uint8_t msg[20];
|
|
int msg_bytes;
|
|
uint8_t ack;
|
|
|
|
intel_dp_check_edp(intel_dp);
|
|
if (send_bytes > 16)
|
|
return -1;
|
|
msg[0] = AUX_NATIVE_WRITE << 4;
|
|
msg[1] = address >> 8;
|
|
msg[2] = address & 0xff;
|
|
msg[3] = send_bytes - 1;
|
|
memcpy(&msg[4], send, send_bytes);
|
|
msg_bytes = send_bytes + 4;
|
|
for (;;) {
|
|
ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
|
|
if (ret < 0)
|
|
return ret;
|
|
if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
|
|
break;
|
|
else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
|
|
udelay(100);
|
|
else
|
|
return -EIO;
|
|
}
|
|
return send_bytes;
|
|
}
|
|
|
|
/* Write a single byte to the aux channel in native mode */
|
|
static int
|
|
intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
|
|
uint16_t address, uint8_t byte)
|
|
{
|
|
return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
|
|
}
|
|
|
|
/* read bytes from a native aux channel */
|
|
static int
|
|
intel_dp_aux_native_read(struct intel_dp *intel_dp,
|
|
uint16_t address, uint8_t *recv, int recv_bytes)
|
|
{
|
|
uint8_t msg[4];
|
|
int msg_bytes;
|
|
uint8_t reply[20];
|
|
int reply_bytes;
|
|
uint8_t ack;
|
|
int ret;
|
|
|
|
intel_dp_check_edp(intel_dp);
|
|
msg[0] = AUX_NATIVE_READ << 4;
|
|
msg[1] = address >> 8;
|
|
msg[2] = address & 0xff;
|
|
msg[3] = recv_bytes - 1;
|
|
|
|
msg_bytes = 4;
|
|
reply_bytes = recv_bytes + 1;
|
|
|
|
for (;;) {
|
|
ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
|
|
reply, reply_bytes);
|
|
if (ret == 0)
|
|
return -EPROTO;
|
|
if (ret < 0)
|
|
return ret;
|
|
ack = reply[0];
|
|
if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
|
|
memcpy(recv, reply + 1, ret - 1);
|
|
return ret - 1;
|
|
}
|
|
else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
|
|
udelay(100);
|
|
else
|
|
return -EIO;
|
|
}
|
|
}
|
|
|
|
static int
|
|
intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
|
|
uint8_t write_byte, uint8_t *read_byte)
|
|
{
|
|
struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
|
|
struct intel_dp *intel_dp = container_of(adapter,
|
|
struct intel_dp,
|
|
adapter);
|
|
uint16_t address = algo_data->address;
|
|
uint8_t msg[5];
|
|
uint8_t reply[2];
|
|
unsigned retry;
|
|
int msg_bytes;
|
|
int reply_bytes;
|
|
int ret;
|
|
|
|
intel_dp_check_edp(intel_dp);
|
|
/* Set up the command byte */
|
|
if (mode & MODE_I2C_READ)
|
|
msg[0] = AUX_I2C_READ << 4;
|
|
else
|
|
msg[0] = AUX_I2C_WRITE << 4;
|
|
|
|
if (!(mode & MODE_I2C_STOP))
|
|
msg[0] |= AUX_I2C_MOT << 4;
|
|
|
|
msg[1] = address >> 8;
|
|
msg[2] = address;
|
|
|
|
switch (mode) {
|
|
case MODE_I2C_WRITE:
|
|
msg[3] = 0;
|
|
msg[4] = write_byte;
|
|
msg_bytes = 5;
|
|
reply_bytes = 1;
|
|
break;
|
|
case MODE_I2C_READ:
|
|
msg[3] = 0;
|
|
msg_bytes = 4;
|
|
reply_bytes = 2;
|
|
break;
|
|
default:
|
|
msg_bytes = 3;
|
|
reply_bytes = 1;
|
|
break;
|
|
}
|
|
|
|
for (retry = 0; retry < 5; retry++) {
|
|
ret = intel_dp_aux_ch(intel_dp,
|
|
msg, msg_bytes,
|
|
reply, reply_bytes);
|
|
if (ret < 0) {
|
|
DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
|
|
case AUX_NATIVE_REPLY_ACK:
|
|
/* I2C-over-AUX Reply field is only valid
|
|
* when paired with AUX ACK.
|
|
*/
|
|
break;
|
|
case AUX_NATIVE_REPLY_NACK:
|
|
DRM_DEBUG_KMS("aux_ch native nack\n");
|
|
return -EREMOTEIO;
|
|
case AUX_NATIVE_REPLY_DEFER:
|
|
udelay(100);
|
|
continue;
|
|
default:
|
|
DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
|
|
reply[0]);
|
|
return -EREMOTEIO;
|
|
}
|
|
|
|
switch (reply[0] & AUX_I2C_REPLY_MASK) {
|
|
case AUX_I2C_REPLY_ACK:
|
|
if (mode == MODE_I2C_READ) {
|
|
*read_byte = reply[1];
|
|
}
|
|
return reply_bytes - 1;
|
|
case AUX_I2C_REPLY_NACK:
|
|
DRM_DEBUG_KMS("aux_i2c nack\n");
|
|
return -EREMOTEIO;
|
|
case AUX_I2C_REPLY_DEFER:
|
|
DRM_DEBUG_KMS("aux_i2c defer\n");
|
|
udelay(100);
|
|
break;
|
|
default:
|
|
DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
|
|
return -EREMOTEIO;
|
|
}
|
|
}
|
|
|
|
DRM_ERROR("too many retries, giving up\n");
|
|
return -EREMOTEIO;
|
|
}
|
|
|
|
static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp);
|
|
static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
|
|
|
|
static int
|
|
intel_dp_i2c_init(struct intel_dp *intel_dp,
|
|
struct intel_connector *intel_connector, const char *name)
|
|
{
|
|
int ret;
|
|
|
|
DRM_DEBUG_KMS("i2c_init %s\n", name);
|
|
intel_dp->algo.running = false;
|
|
intel_dp->algo.address = 0;
|
|
intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
|
|
|
|
memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
|
|
intel_dp->adapter.owner = THIS_MODULE;
|
|
intel_dp->adapter.class = I2C_CLASS_DDC;
|
|
strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
|
|
intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
|
|
intel_dp->adapter.algo_data = &intel_dp->algo;
|
|
intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
|
|
|
|
ironlake_edp_panel_vdd_on(intel_dp);
|
|
ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
|
|
ironlake_edp_panel_vdd_off(intel_dp, false);
|
|
return ret;
|
|
}
|
|
|
|
static bool
|
|
intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
|
|
struct drm_display_mode *adjusted_mode)
|
|
{
|
|
struct drm_device *dev = encoder->dev;
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
|
|
int lane_count, clock;
|
|
int max_lane_count = intel_dp_max_lane_count(intel_dp);
|
|
int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
|
|
int bpp = mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
|
|
static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
|
|
|
|
if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
|
|
intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
|
|
intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
|
|
mode, adjusted_mode);
|
|
/*
|
|
* the mode->clock is used to calculate the Data&Link M/N
|
|
* of the pipe. For the eDP the fixed clock should be used.
|
|
*/
|
|
mode->clock = intel_dp->panel_fixed_mode->clock;
|
|
}
|
|
|
|
for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
|
|
for (clock = 0; clock <= max_clock; clock++) {
|
|
int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
|
|
|
|
if (intel_dp_link_required(mode->clock, bpp)
|
|
<= link_avail) {
|
|
intel_dp->link_bw = bws[clock];
|
|
intel_dp->lane_count = lane_count;
|
|
adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
|
|
DRM_DEBUG_KMS("Display port link bw %02x lane "
|
|
"count %d clock %d\n",
|
|
intel_dp->link_bw, intel_dp->lane_count,
|
|
adjusted_mode->clock);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
struct intel_dp_m_n {
|
|
uint32_t tu;
|
|
uint32_t gmch_m;
|
|
uint32_t gmch_n;
|
|
uint32_t link_m;
|
|
uint32_t link_n;
|
|
};
|
|
|
|
static void
|
|
intel_reduce_ratio(uint32_t *num, uint32_t *den)
|
|
{
|
|
while (*num > 0xffffff || *den > 0xffffff) {
|
|
*num >>= 1;
|
|
*den >>= 1;
|
|
}
|
|
}
|
|
|
|
static void
|
|
intel_dp_compute_m_n(int bpp,
|
|
int nlanes,
|
|
int pixel_clock,
|
|
int link_clock,
|
|
struct intel_dp_m_n *m_n)
|
|
{
|
|
m_n->tu = 64;
|
|
m_n->gmch_m = (pixel_clock * bpp) >> 3;
|
|
m_n->gmch_n = link_clock * nlanes;
|
|
intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
|
|
m_n->link_m = pixel_clock;
|
|
m_n->link_n = link_clock;
|
|
intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
|
|
}
|
|
|
|
void
|
|
intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
|
|
struct drm_display_mode *adjusted_mode)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_mode_config *mode_config = &dev->mode_config;
|
|
struct drm_encoder *encoder;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int lane_count = 4;
|
|
struct intel_dp_m_n m_n;
|
|
int pipe = intel_crtc->pipe;
|
|
|
|
/*
|
|
* Find the lane count in the intel_encoder private
|
|
*/
|
|
list_for_each_entry(encoder, &mode_config->encoder_list, head) {
|
|
struct intel_dp *intel_dp;
|
|
|
|
if (encoder->crtc != crtc)
|
|
continue;
|
|
|
|
intel_dp = enc_to_intel_dp(encoder);
|
|
if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
|
|
intel_dp->base.type == INTEL_OUTPUT_EDP)
|
|
{
|
|
lane_count = intel_dp->lane_count;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Compute the GMCH and Link ratios. The '3' here is
|
|
* the number of bytes_per_pixel post-LUT, which we always
|
|
* set up for 8-bits of R/G/B, or 3 bytes total.
|
|
*/
|
|
intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
|
|
mode->clock, adjusted_mode->clock, &m_n);
|
|
|
|
if (HAS_PCH_SPLIT(dev)) {
|
|
I915_WRITE(TRANSDATA_M1(pipe),
|
|
((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
|
|
m_n.gmch_m);
|
|
I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
|
|
I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
|
|
I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
|
|
} else {
|
|
I915_WRITE(PIPE_GMCH_DATA_M(pipe),
|
|
((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
|
|
m_n.gmch_m);
|
|
I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
|
|
I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
|
|
I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
|
|
}
|
|
}
|
|
|
|
static void ironlake_edp_pll_on(struct drm_encoder *encoder);
|
|
static void ironlake_edp_pll_off(struct drm_encoder *encoder);
|
|
|
|
static void
|
|
intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
|
|
struct drm_display_mode *adjusted_mode)
|
|
{
|
|
struct drm_device *dev = encoder->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
|
|
struct drm_crtc *crtc = intel_dp->base.base.crtc;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
|
|
/* Turn on the eDP PLL if needed */
|
|
if (is_edp(intel_dp)) {
|
|
if (!is_pch_edp(intel_dp))
|
|
ironlake_edp_pll_on(encoder);
|
|
else
|
|
ironlake_edp_pll_off(encoder);
|
|
}
|
|
|
|
/*
|
|
* There are four kinds of DP registers:
|
|
*
|
|
* IBX PCH
|
|
* SNB CPU
|
|
* IVB CPU
|
|
* CPT PCH
|
|
*
|
|
* IBX PCH and CPU are the same for almost everything,
|
|
* except that the CPU DP PLL is configured in this
|
|
* register
|
|
*
|
|
* CPT PCH is quite different, having many bits moved
|
|
* to the TRANS_DP_CTL register instead. That
|
|
* configuration happens (oddly) in ironlake_pch_enable
|
|
*/
|
|
|
|
/* Preserve the BIOS-computed detected bit. This is
|
|
* supposed to be read-only.
|
|
*/
|
|
intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
|
|
intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
|
|
|
|
/* Handle DP bits in common between all three register formats */
|
|
|
|
intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
|
|
|
|
switch (intel_dp->lane_count) {
|
|
case 1:
|
|
intel_dp->DP |= DP_PORT_WIDTH_1;
|
|
break;
|
|
case 2:
|
|
intel_dp->DP |= DP_PORT_WIDTH_2;
|
|
break;
|
|
case 4:
|
|
intel_dp->DP |= DP_PORT_WIDTH_4;
|
|
break;
|
|
}
|
|
if (intel_dp->has_audio) {
|
|
DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
|
|
pipe_name(intel_crtc->pipe));
|
|
intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
|
|
intel_write_eld(encoder, adjusted_mode);
|
|
}
|
|
memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
|
|
intel_dp->link_configuration[0] = intel_dp->link_bw;
|
|
intel_dp->link_configuration[1] = intel_dp->lane_count;
|
|
intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
|
|
/*
|
|
* Check for DPCD version > 1.1 and enhanced framing support
|
|
*/
|
|
if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
|
|
(intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
|
|
intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
|
|
}
|
|
|
|
/* Split out the IBX/CPU vs CPT settings */
|
|
|
|
if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
|
|
if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
|
|
intel_dp->DP |= DP_SYNC_HS_HIGH;
|
|
if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
|
|
intel_dp->DP |= DP_SYNC_VS_HIGH;
|
|
intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
|
|
|
|
if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
|
|
intel_dp->DP |= DP_ENHANCED_FRAMING;
|
|
|
|
intel_dp->DP |= intel_crtc->pipe << 29;
|
|
|
|
/* don't miss out required setting for eDP */
|
|
intel_dp->DP |= DP_PLL_ENABLE;
|
|
if (adjusted_mode->clock < 200000)
|
|
intel_dp->DP |= DP_PLL_FREQ_160MHZ;
|
|
else
|
|
intel_dp->DP |= DP_PLL_FREQ_270MHZ;
|
|
} else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
|
|
intel_dp->DP |= intel_dp->color_range;
|
|
|
|
if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
|
|
intel_dp->DP |= DP_SYNC_HS_HIGH;
|
|
if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
|
|
intel_dp->DP |= DP_SYNC_VS_HIGH;
|
|
intel_dp->DP |= DP_LINK_TRAIN_OFF;
|
|
|
|
if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
|
|
intel_dp->DP |= DP_ENHANCED_FRAMING;
|
|
|
|
if (intel_crtc->pipe == 1)
|
|
intel_dp->DP |= DP_PIPEB_SELECT;
|
|
|
|
if (is_cpu_edp(intel_dp)) {
|
|
/* don't miss out required setting for eDP */
|
|
intel_dp->DP |= DP_PLL_ENABLE;
|
|
if (adjusted_mode->clock < 200000)
|
|
intel_dp->DP |= DP_PLL_FREQ_160MHZ;
|
|
else
|
|
intel_dp->DP |= DP_PLL_FREQ_270MHZ;
|
|
}
|
|
} else {
|
|
intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
|
|
}
|
|
}
|
|
|
|
#define IDLE_ON_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
|
|
#define IDLE_ON_VALUE (PP_ON | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
|
|
|
|
#define IDLE_OFF_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
|
|
#define IDLE_OFF_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
|
|
|
|
#define IDLE_CYCLE_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
|
|
#define IDLE_CYCLE_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
|
|
|
|
static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
|
|
u32 mask,
|
|
u32 value)
|
|
{
|
|
struct drm_device *dev = intel_dp->base.base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
|
|
mask, value,
|
|
I915_READ(PCH_PP_STATUS),
|
|
I915_READ(PCH_PP_CONTROL));
|
|
|
|
if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
|
|
DRM_ERROR("Panel status timeout: status %08x control %08x\n",
|
|
I915_READ(PCH_PP_STATUS),
|
|
I915_READ(PCH_PP_CONTROL));
|
|
}
|
|
}
|
|
|
|
static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
|
|
{
|
|
DRM_DEBUG_KMS("Wait for panel power on\n");
|
|
ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
|
|
}
|
|
|
|
static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
|
|
{
|
|
DRM_DEBUG_KMS("Wait for panel power off time\n");
|
|
ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
|
|
}
|
|
|
|
static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
|
|
{
|
|
DRM_DEBUG_KMS("Wait for panel power cycle\n");
|
|
ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
|
|
}
|
|
|
|
|
|
/* Read the current pp_control value, unlocking the register if it
|
|
* is locked
|
|
*/
|
|
|
|
static u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
|
|
{
|
|
u32 control = I915_READ(PCH_PP_CONTROL);
|
|
|
|
control &= ~PANEL_UNLOCK_MASK;
|
|
control |= PANEL_UNLOCK_REGS;
|
|
return control;
|
|
}
|
|
|
|
static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_device *dev = intel_dp->base.base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 pp;
|
|
|
|
if (!is_edp(intel_dp))
|
|
return;
|
|
DRM_DEBUG_KMS("Turn eDP VDD on\n");
|
|
|
|
WARN(intel_dp->want_panel_vdd,
|
|
"eDP VDD already requested on\n");
|
|
|
|
intel_dp->want_panel_vdd = true;
|
|
|
|
if (ironlake_edp_have_panel_vdd(intel_dp)) {
|
|
DRM_DEBUG_KMS("eDP VDD already on\n");
|
|
return;
|
|
}
|
|
|
|
if (!ironlake_edp_have_panel_power(intel_dp))
|
|
ironlake_wait_panel_power_cycle(intel_dp);
|
|
|
|
pp = ironlake_get_pp_control(dev_priv);
|
|
pp |= EDP_FORCE_VDD;
|
|
I915_WRITE(PCH_PP_CONTROL, pp);
|
|
POSTING_READ(PCH_PP_CONTROL);
|
|
DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
|
|
I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
|
|
|
|
/*
|
|
* If the panel wasn't on, delay before accessing aux channel
|
|
*/
|
|
if (!ironlake_edp_have_panel_power(intel_dp)) {
|
|
DRM_DEBUG_KMS("eDP was not running\n");
|
|
msleep(intel_dp->panel_power_up_delay);
|
|
}
|
|
}
|
|
|
|
static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_device *dev = intel_dp->base.base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 pp;
|
|
|
|
if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
|
|
pp = ironlake_get_pp_control(dev_priv);
|
|
pp &= ~EDP_FORCE_VDD;
|
|
I915_WRITE(PCH_PP_CONTROL, pp);
|
|
POSTING_READ(PCH_PP_CONTROL);
|
|
|
|
/* Make sure sequencer is idle before allowing subsequent activity */
|
|
DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
|
|
I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
|
|
|
|
msleep(intel_dp->panel_power_down_delay);
|
|
}
|
|
}
|
|
|
|
static void ironlake_panel_vdd_work(struct work_struct *__work)
|
|
{
|
|
struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
|
|
struct intel_dp, panel_vdd_work);
|
|
struct drm_device *dev = intel_dp->base.base.dev;
|
|
|
|
mutex_lock(&dev->mode_config.mutex);
|
|
ironlake_panel_vdd_off_sync(intel_dp);
|
|
mutex_unlock(&dev->mode_config.mutex);
|
|
}
|
|
|
|
static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
|
|
{
|
|
if (!is_edp(intel_dp))
|
|
return;
|
|
|
|
DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
|
|
WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
|
|
|
|
intel_dp->want_panel_vdd = false;
|
|
|
|
if (sync) {
|
|
ironlake_panel_vdd_off_sync(intel_dp);
|
|
} else {
|
|
/*
|
|
* Queue the timer to fire a long
|
|
* time from now (relative to the power down delay)
|
|
* to keep the panel power up across a sequence of operations
|
|
*/
|
|
schedule_delayed_work(&intel_dp->panel_vdd_work,
|
|
msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
|
|
}
|
|
}
|
|
|
|
static void ironlake_edp_panel_on(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_device *dev = intel_dp->base.base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 pp;
|
|
|
|
if (!is_edp(intel_dp))
|
|
return;
|
|
|
|
DRM_DEBUG_KMS("Turn eDP power on\n");
|
|
|
|
if (ironlake_edp_have_panel_power(intel_dp)) {
|
|
DRM_DEBUG_KMS("eDP power already on\n");
|
|
return;
|
|
}
|
|
|
|
ironlake_wait_panel_power_cycle(intel_dp);
|
|
|
|
pp = ironlake_get_pp_control(dev_priv);
|
|
if (IS_GEN5(dev)) {
|
|
/* ILK workaround: disable reset around power sequence */
|
|
pp &= ~PANEL_POWER_RESET;
|
|
I915_WRITE(PCH_PP_CONTROL, pp);
|
|
POSTING_READ(PCH_PP_CONTROL);
|
|
}
|
|
|
|
pp |= POWER_TARGET_ON;
|
|
if (!IS_GEN5(dev))
|
|
pp |= PANEL_POWER_RESET;
|
|
|
|
I915_WRITE(PCH_PP_CONTROL, pp);
|
|
POSTING_READ(PCH_PP_CONTROL);
|
|
|
|
ironlake_wait_panel_on(intel_dp);
|
|
|
|
if (IS_GEN5(dev)) {
|
|
pp |= PANEL_POWER_RESET; /* restore panel reset bit */
|
|
I915_WRITE(PCH_PP_CONTROL, pp);
|
|
POSTING_READ(PCH_PP_CONTROL);
|
|
}
|
|
}
|
|
|
|
static void ironlake_edp_panel_off(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_device *dev = intel_dp->base.base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 pp;
|
|
|
|
if (!is_edp(intel_dp))
|
|
return;
|
|
|
|
DRM_DEBUG_KMS("Turn eDP power off\n");
|
|
|
|
WARN(intel_dp->want_panel_vdd, "Cannot turn power off while VDD is on\n");
|
|
|
|
pp = ironlake_get_pp_control(dev_priv);
|
|
pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
|
|
I915_WRITE(PCH_PP_CONTROL, pp);
|
|
POSTING_READ(PCH_PP_CONTROL);
|
|
|
|
ironlake_wait_panel_off(intel_dp);
|
|
}
|
|
|
|
static void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_device *dev = intel_dp->base.base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 pp;
|
|
|
|
if (!is_edp(intel_dp))
|
|
return;
|
|
|
|
DRM_DEBUG_KMS("\n");
|
|
/*
|
|
* If we enable the backlight right away following a panel power
|
|
* on, we may see slight flicker as the panel syncs with the eDP
|
|
* link. So delay a bit to make sure the image is solid before
|
|
* allowing it to appear.
|
|
*/
|
|
msleep(intel_dp->backlight_on_delay);
|
|
pp = ironlake_get_pp_control(dev_priv);
|
|
pp |= EDP_BLC_ENABLE;
|
|
I915_WRITE(PCH_PP_CONTROL, pp);
|
|
POSTING_READ(PCH_PP_CONTROL);
|
|
}
|
|
|
|
static void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_device *dev = intel_dp->base.base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 pp;
|
|
|
|
if (!is_edp(intel_dp))
|
|
return;
|
|
|
|
DRM_DEBUG_KMS("\n");
|
|
pp = ironlake_get_pp_control(dev_priv);
|
|
pp &= ~EDP_BLC_ENABLE;
|
|
I915_WRITE(PCH_PP_CONTROL, pp);
|
|
POSTING_READ(PCH_PP_CONTROL);
|
|
msleep(intel_dp->backlight_off_delay);
|
|
}
|
|
|
|
static void ironlake_edp_pll_on(struct drm_encoder *encoder)
|
|
{
|
|
struct drm_device *dev = encoder->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 dpa_ctl;
|
|
|
|
DRM_DEBUG_KMS("\n");
|
|
dpa_ctl = I915_READ(DP_A);
|
|
dpa_ctl |= DP_PLL_ENABLE;
|
|
I915_WRITE(DP_A, dpa_ctl);
|
|
POSTING_READ(DP_A);
|
|
udelay(200);
|
|
}
|
|
|
|
static void ironlake_edp_pll_off(struct drm_encoder *encoder)
|
|
{
|
|
struct drm_device *dev = encoder->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 dpa_ctl;
|
|
|
|
dpa_ctl = I915_READ(DP_A);
|
|
dpa_ctl &= ~DP_PLL_ENABLE;
|
|
I915_WRITE(DP_A, dpa_ctl);
|
|
POSTING_READ(DP_A);
|
|
udelay(200);
|
|
}
|
|
|
|
/* If the sink supports it, try to set the power state appropriately */
|
|
static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
|
|
{
|
|
int ret, i;
|
|
|
|
/* Should have a valid DPCD by this point */
|
|
if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
|
|
return;
|
|
|
|
if (mode != DRM_MODE_DPMS_ON) {
|
|
ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
|
|
DP_SET_POWER_D3);
|
|
if (ret != 1)
|
|
DRM_DEBUG_DRIVER("failed to write sink power state\n");
|
|
} else {
|
|
/*
|
|
* When turning on, we need to retry for 1ms to give the sink
|
|
* time to wake up.
|
|
*/
|
|
for (i = 0; i < 3; i++) {
|
|
ret = intel_dp_aux_native_write_1(intel_dp,
|
|
DP_SET_POWER,
|
|
DP_SET_POWER_D0);
|
|
if (ret == 1)
|
|
break;
|
|
msleep(1);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void intel_dp_prepare(struct drm_encoder *encoder)
|
|
{
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
|
|
|
|
ironlake_edp_backlight_off(intel_dp);
|
|
ironlake_edp_panel_off(intel_dp);
|
|
|
|
/* Wake up the sink first */
|
|
ironlake_edp_panel_vdd_on(intel_dp);
|
|
intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
|
|
intel_dp_link_down(intel_dp);
|
|
ironlake_edp_panel_vdd_off(intel_dp, false);
|
|
|
|
/* Make sure the panel is off before trying to
|
|
* change the mode
|
|
*/
|
|
}
|
|
|
|
static void intel_dp_commit(struct drm_encoder *encoder)
|
|
{
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
|
|
struct drm_device *dev = encoder->dev;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
|
|
|
|
ironlake_edp_panel_vdd_on(intel_dp);
|
|
intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
|
|
intel_dp_start_link_train(intel_dp);
|
|
ironlake_edp_panel_on(intel_dp);
|
|
ironlake_edp_panel_vdd_off(intel_dp, true);
|
|
intel_dp_complete_link_train(intel_dp);
|
|
ironlake_edp_backlight_on(intel_dp);
|
|
|
|
intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
|
|
|
|
if (HAS_PCH_CPT(dev))
|
|
intel_cpt_verify_modeset(dev, intel_crtc->pipe);
|
|
}
|
|
|
|
static void
|
|
intel_dp_dpms(struct drm_encoder *encoder, int mode)
|
|
{
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
|
|
struct drm_device *dev = encoder->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
uint32_t dp_reg = I915_READ(intel_dp->output_reg);
|
|
|
|
if (mode != DRM_MODE_DPMS_ON) {
|
|
ironlake_edp_backlight_off(intel_dp);
|
|
ironlake_edp_panel_off(intel_dp);
|
|
|
|
ironlake_edp_panel_vdd_on(intel_dp);
|
|
intel_dp_sink_dpms(intel_dp, mode);
|
|
intel_dp_link_down(intel_dp);
|
|
ironlake_edp_panel_vdd_off(intel_dp, false);
|
|
|
|
if (is_cpu_edp(intel_dp))
|
|
ironlake_edp_pll_off(encoder);
|
|
} else {
|
|
if (is_cpu_edp(intel_dp))
|
|
ironlake_edp_pll_on(encoder);
|
|
|
|
ironlake_edp_panel_vdd_on(intel_dp);
|
|
intel_dp_sink_dpms(intel_dp, mode);
|
|
if (!(dp_reg & DP_PORT_EN)) {
|
|
intel_dp_start_link_train(intel_dp);
|
|
ironlake_edp_panel_on(intel_dp);
|
|
ironlake_edp_panel_vdd_off(intel_dp, true);
|
|
intel_dp_complete_link_train(intel_dp);
|
|
} else
|
|
ironlake_edp_panel_vdd_off(intel_dp, false);
|
|
ironlake_edp_backlight_on(intel_dp);
|
|
}
|
|
intel_dp->dpms_mode = mode;
|
|
}
|
|
|
|
/*
|
|
* Native read with retry for link status and receiver capability reads for
|
|
* cases where the sink may still be asleep.
|
|
*/
|
|
static bool
|
|
intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
|
|
uint8_t *recv, int recv_bytes)
|
|
{
|
|
int ret, i;
|
|
|
|
/*
|
|
* Sinks are *supposed* to come up within 1ms from an off state,
|
|
* but we're also supposed to retry 3 times per the spec.
|
|
*/
|
|
for (i = 0; i < 3; i++) {
|
|
ret = intel_dp_aux_native_read(intel_dp, address, recv,
|
|
recv_bytes);
|
|
if (ret == recv_bytes)
|
|
return true;
|
|
msleep(1);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Fetch AUX CH registers 0x202 - 0x207 which contain
|
|
* link status information
|
|
*/
|
|
static bool
|
|
intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
|
|
{
|
|
return intel_dp_aux_native_read_retry(intel_dp,
|
|
DP_LANE0_1_STATUS,
|
|
link_status,
|
|
DP_LINK_STATUS_SIZE);
|
|
}
|
|
|
|
static uint8_t
|
|
intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
|
|
int r)
|
|
{
|
|
return link_status[r - DP_LANE0_1_STATUS];
|
|
}
|
|
|
|
static uint8_t
|
|
intel_get_adjust_request_voltage(uint8_t adjust_request[2],
|
|
int lane)
|
|
{
|
|
int s = ((lane & 1) ?
|
|
DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
|
|
DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
|
|
uint8_t l = adjust_request[lane>>1];
|
|
|
|
return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
|
|
}
|
|
|
|
static uint8_t
|
|
intel_get_adjust_request_pre_emphasis(uint8_t adjust_request[2],
|
|
int lane)
|
|
{
|
|
int s = ((lane & 1) ?
|
|
DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
|
|
DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
|
|
uint8_t l = adjust_request[lane>>1];
|
|
|
|
return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
|
|
}
|
|
|
|
|
|
#if 0
|
|
static char *voltage_names[] = {
|
|
"0.4V", "0.6V", "0.8V", "1.2V"
|
|
};
|
|
static char *pre_emph_names[] = {
|
|
"0dB", "3.5dB", "6dB", "9.5dB"
|
|
};
|
|
static char *link_train_names[] = {
|
|
"pattern 1", "pattern 2", "idle", "off"
|
|
};
|
|
#endif
|
|
|
|
/*
|
|
* These are source-specific values; current Intel hardware supports
|
|
* a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
|
|
*/
|
|
|
|
static uint8_t
|
|
intel_dp_voltage_max(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_device *dev = intel_dp->base.base.dev;
|
|
|
|
if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
|
|
return DP_TRAIN_VOLTAGE_SWING_800;
|
|
else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
|
|
return DP_TRAIN_VOLTAGE_SWING_1200;
|
|
else
|
|
return DP_TRAIN_VOLTAGE_SWING_800;
|
|
}
|
|
|
|
static uint8_t
|
|
intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
|
|
{
|
|
struct drm_device *dev = intel_dp->base.base.dev;
|
|
|
|
if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
|
|
switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
|
|
case DP_TRAIN_VOLTAGE_SWING_400:
|
|
return DP_TRAIN_PRE_EMPHASIS_6;
|
|
case DP_TRAIN_VOLTAGE_SWING_600:
|
|
case DP_TRAIN_VOLTAGE_SWING_800:
|
|
return DP_TRAIN_PRE_EMPHASIS_3_5;
|
|
default:
|
|
return DP_TRAIN_PRE_EMPHASIS_0;
|
|
}
|
|
} else {
|
|
switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
|
|
case DP_TRAIN_VOLTAGE_SWING_400:
|
|
return DP_TRAIN_PRE_EMPHASIS_6;
|
|
case DP_TRAIN_VOLTAGE_SWING_600:
|
|
return DP_TRAIN_PRE_EMPHASIS_6;
|
|
case DP_TRAIN_VOLTAGE_SWING_800:
|
|
return DP_TRAIN_PRE_EMPHASIS_3_5;
|
|
case DP_TRAIN_VOLTAGE_SWING_1200:
|
|
default:
|
|
return DP_TRAIN_PRE_EMPHASIS_0;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
|
|
{
|
|
uint8_t v = 0;
|
|
uint8_t p = 0;
|
|
int lane;
|
|
uint8_t *adjust_request = link_status + (DP_ADJUST_REQUEST_LANE0_1 - DP_LANE0_1_STATUS);
|
|
uint8_t voltage_max;
|
|
uint8_t preemph_max;
|
|
|
|
for (lane = 0; lane < intel_dp->lane_count; lane++) {
|
|
uint8_t this_v = intel_get_adjust_request_voltage(adjust_request, lane);
|
|
uint8_t this_p = intel_get_adjust_request_pre_emphasis(adjust_request, lane);
|
|
|
|
if (this_v > v)
|
|
v = this_v;
|
|
if (this_p > p)
|
|
p = this_p;
|
|
}
|
|
|
|
voltage_max = intel_dp_voltage_max(intel_dp);
|
|
if (v >= voltage_max)
|
|
v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
|
|
|
|
preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
|
|
if (p >= preemph_max)
|
|
p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
|
|
|
|
for (lane = 0; lane < 4; lane++)
|
|
intel_dp->train_set[lane] = v | p;
|
|
}
|
|
|
|
static uint32_t
|
|
intel_dp_signal_levels(uint8_t train_set)
|
|
{
|
|
uint32_t signal_levels = 0;
|
|
|
|
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
|
|
case DP_TRAIN_VOLTAGE_SWING_400:
|
|
default:
|
|
signal_levels |= DP_VOLTAGE_0_4;
|
|
break;
|
|
case DP_TRAIN_VOLTAGE_SWING_600:
|
|
signal_levels |= DP_VOLTAGE_0_6;
|
|
break;
|
|
case DP_TRAIN_VOLTAGE_SWING_800:
|
|
signal_levels |= DP_VOLTAGE_0_8;
|
|
break;
|
|
case DP_TRAIN_VOLTAGE_SWING_1200:
|
|
signal_levels |= DP_VOLTAGE_1_2;
|
|
break;
|
|
}
|
|
switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
|
|
case DP_TRAIN_PRE_EMPHASIS_0:
|
|
default:
|
|
signal_levels |= DP_PRE_EMPHASIS_0;
|
|
break;
|
|
case DP_TRAIN_PRE_EMPHASIS_3_5:
|
|
signal_levels |= DP_PRE_EMPHASIS_3_5;
|
|
break;
|
|
case DP_TRAIN_PRE_EMPHASIS_6:
|
|
signal_levels |= DP_PRE_EMPHASIS_6;
|
|
break;
|
|
case DP_TRAIN_PRE_EMPHASIS_9_5:
|
|
signal_levels |= DP_PRE_EMPHASIS_9_5;
|
|
break;
|
|
}
|
|
return signal_levels;
|
|
}
|
|
|
|
/* Gen6's DP voltage swing and pre-emphasis control */
|
|
static uint32_t
|
|
intel_gen6_edp_signal_levels(uint8_t train_set)
|
|
{
|
|
int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
|
|
DP_TRAIN_PRE_EMPHASIS_MASK);
|
|
switch (signal_levels) {
|
|
case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
|
|
case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
|
|
return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
|
|
case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
|
|
return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
|
|
case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
|
|
case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
|
|
return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
|
|
case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
|
|
case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
|
|
return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
|
|
case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
|
|
case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
|
|
return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
|
|
default:
|
|
DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
|
|
"0x%x\n", signal_levels);
|
|
return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
|
|
}
|
|
}
|
|
|
|
/* Gen7's DP voltage swing and pre-emphasis control */
|
|
static uint32_t
|
|
intel_gen7_edp_signal_levels(uint8_t train_set)
|
|
{
|
|
int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
|
|
DP_TRAIN_PRE_EMPHASIS_MASK);
|
|
switch (signal_levels) {
|
|
case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
|
|
return EDP_LINK_TRAIN_400MV_0DB_IVB;
|
|
case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
|
|
return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
|
|
case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
|
|
return EDP_LINK_TRAIN_400MV_6DB_IVB;
|
|
|
|
case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
|
|
return EDP_LINK_TRAIN_600MV_0DB_IVB;
|
|
case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
|
|
return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
|
|
|
|
case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
|
|
return EDP_LINK_TRAIN_800MV_0DB_IVB;
|
|
case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
|
|
return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
|
|
|
|
default:
|
|
DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
|
|
"0x%x\n", signal_levels);
|
|
return EDP_LINK_TRAIN_500MV_0DB_IVB;
|
|
}
|
|
}
|
|
|
|
static uint8_t
|
|
intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
|
|
int lane)
|
|
{
|
|
int s = (lane & 1) * 4;
|
|
uint8_t l = link_status[lane>>1];
|
|
|
|
return (l >> s) & 0xf;
|
|
}
|
|
|
|
/* Check for clock recovery is done on all channels */
|
|
static bool
|
|
intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
|
|
{
|
|
int lane;
|
|
uint8_t lane_status;
|
|
|
|
for (lane = 0; lane < lane_count; lane++) {
|
|
lane_status = intel_get_lane_status(link_status, lane);
|
|
if ((lane_status & DP_LANE_CR_DONE) == 0)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Check to see if channel eq is done on all channels */
|
|
#define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
|
|
DP_LANE_CHANNEL_EQ_DONE|\
|
|
DP_LANE_SYMBOL_LOCKED)
|
|
static bool
|
|
intel_channel_eq_ok(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
|
|
{
|
|
uint8_t lane_align;
|
|
uint8_t lane_status;
|
|
int lane;
|
|
|
|
lane_align = intel_dp_link_status(link_status,
|
|
DP_LANE_ALIGN_STATUS_UPDATED);
|
|
if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
|
|
return false;
|
|
for (lane = 0; lane < intel_dp->lane_count; lane++) {
|
|
lane_status = intel_get_lane_status(link_status, lane);
|
|
if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
intel_dp_set_link_train(struct intel_dp *intel_dp,
|
|
uint32_t dp_reg_value,
|
|
uint8_t dp_train_pat)
|
|
{
|
|
struct drm_device *dev = intel_dp->base.base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int ret;
|
|
|
|
I915_WRITE(intel_dp->output_reg, dp_reg_value);
|
|
POSTING_READ(intel_dp->output_reg);
|
|
|
|
intel_dp_aux_native_write_1(intel_dp,
|
|
DP_TRAINING_PATTERN_SET,
|
|
dp_train_pat);
|
|
|
|
ret = intel_dp_aux_native_write(intel_dp,
|
|
DP_TRAINING_LANE0_SET,
|
|
intel_dp->train_set,
|
|
intel_dp->lane_count);
|
|
if (ret != intel_dp->lane_count)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Enable corresponding port and start training pattern 1 */
|
|
static void
|
|
intel_dp_start_link_train(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_device *dev = intel_dp->base.base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
|
|
int i;
|
|
uint8_t voltage;
|
|
bool clock_recovery = false;
|
|
int voltage_tries, loop_tries;
|
|
u32 reg;
|
|
uint32_t DP = intel_dp->DP;
|
|
|
|
/*
|
|
* On CPT we have to enable the port in training pattern 1, which
|
|
* will happen below in intel_dp_set_link_train. Otherwise, enable
|
|
* the port and wait for it to become active.
|
|
*/
|
|
if (!HAS_PCH_CPT(dev)) {
|
|
I915_WRITE(intel_dp->output_reg, intel_dp->DP);
|
|
POSTING_READ(intel_dp->output_reg);
|
|
intel_wait_for_vblank(dev, intel_crtc->pipe);
|
|
}
|
|
|
|
/* Write the link configuration data */
|
|
intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
|
|
intel_dp->link_configuration,
|
|
DP_LINK_CONFIGURATION_SIZE);
|
|
|
|
DP |= DP_PORT_EN;
|
|
|
|
if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
|
|
DP &= ~DP_LINK_TRAIN_MASK_CPT;
|
|
else
|
|
DP &= ~DP_LINK_TRAIN_MASK;
|
|
memset(intel_dp->train_set, 0, 4);
|
|
voltage = 0xff;
|
|
voltage_tries = 0;
|
|
loop_tries = 0;
|
|
clock_recovery = false;
|
|
for (;;) {
|
|
/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
|
|
uint8_t link_status[DP_LINK_STATUS_SIZE];
|
|
uint32_t signal_levels;
|
|
|
|
|
|
if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
|
|
signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
|
|
DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
|
|
} else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
|
|
signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
|
|
DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
|
|
} else {
|
|
signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
|
|
DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n", signal_levels);
|
|
DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
|
|
}
|
|
|
|
if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
|
|
reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
|
|
else
|
|
reg = DP | DP_LINK_TRAIN_PAT_1;
|
|
|
|
if (!intel_dp_set_link_train(intel_dp, reg,
|
|
DP_TRAINING_PATTERN_1 |
|
|
DP_LINK_SCRAMBLING_DISABLE))
|
|
break;
|
|
/* Set training pattern 1 */
|
|
|
|
udelay(100);
|
|
if (!intel_dp_get_link_status(intel_dp, link_status)) {
|
|
DRM_ERROR("failed to get link status\n");
|
|
break;
|
|
}
|
|
|
|
if (intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
|
|
DRM_DEBUG_KMS("clock recovery OK\n");
|
|
clock_recovery = true;
|
|
break;
|
|
}
|
|
|
|
/* Check to see if we've tried the max voltage */
|
|
for (i = 0; i < intel_dp->lane_count; i++)
|
|
if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
|
|
break;
|
|
if (i == intel_dp->lane_count) {
|
|
++loop_tries;
|
|
if (loop_tries == 5) {
|
|
DRM_DEBUG_KMS("too many full retries, give up\n");
|
|
break;
|
|
}
|
|
memset(intel_dp->train_set, 0, 4);
|
|
voltage_tries = 0;
|
|
continue;
|
|
}
|
|
|
|
/* Check to see if we've tried the same voltage 5 times */
|
|
if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
|
|
++voltage_tries;
|
|
if (voltage_tries == 5) {
|
|
DRM_DEBUG_KMS("too many voltage retries, give up\n");
|
|
break;
|
|
}
|
|
} else
|
|
voltage_tries = 0;
|
|
voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
|
|
|
|
/* Compute new intel_dp->train_set as requested by target */
|
|
intel_get_adjust_train(intel_dp, link_status);
|
|
}
|
|
|
|
intel_dp->DP = DP;
|
|
}
|
|
|
|
static void
|
|
intel_dp_complete_link_train(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_device *dev = intel_dp->base.base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
bool channel_eq = false;
|
|
int tries, cr_tries;
|
|
u32 reg;
|
|
uint32_t DP = intel_dp->DP;
|
|
|
|
/* channel equalization */
|
|
tries = 0;
|
|
cr_tries = 0;
|
|
channel_eq = false;
|
|
for (;;) {
|
|
/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
|
|
uint32_t signal_levels;
|
|
uint8_t link_status[DP_LINK_STATUS_SIZE];
|
|
|
|
if (cr_tries > 5) {
|
|
DRM_ERROR("failed to train DP, aborting\n");
|
|
intel_dp_link_down(intel_dp);
|
|
break;
|
|
}
|
|
|
|
if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
|
|
signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
|
|
DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
|
|
} else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
|
|
signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
|
|
DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
|
|
} else {
|
|
signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
|
|
DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
|
|
}
|
|
|
|
if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
|
|
reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
|
|
else
|
|
reg = DP | DP_LINK_TRAIN_PAT_2;
|
|
|
|
/* channel eq pattern */
|
|
if (!intel_dp_set_link_train(intel_dp, reg,
|
|
DP_TRAINING_PATTERN_2 |
|
|
DP_LINK_SCRAMBLING_DISABLE))
|
|
break;
|
|
|
|
udelay(400);
|
|
if (!intel_dp_get_link_status(intel_dp, link_status))
|
|
break;
|
|
|
|
/* Make sure clock is still ok */
|
|
if (!intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
|
|
intel_dp_start_link_train(intel_dp);
|
|
cr_tries++;
|
|
continue;
|
|
}
|
|
|
|
if (intel_channel_eq_ok(intel_dp, link_status)) {
|
|
channel_eq = true;
|
|
break;
|
|
}
|
|
|
|
/* Try 5 times, then try clock recovery if that fails */
|
|
if (tries > 5) {
|
|
intel_dp_link_down(intel_dp);
|
|
intel_dp_start_link_train(intel_dp);
|
|
tries = 0;
|
|
cr_tries++;
|
|
continue;
|
|
}
|
|
|
|
/* Compute new intel_dp->train_set as requested by target */
|
|
intel_get_adjust_train(intel_dp, link_status);
|
|
++tries;
|
|
}
|
|
|
|
if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
|
|
reg = DP | DP_LINK_TRAIN_OFF_CPT;
|
|
else
|
|
reg = DP | DP_LINK_TRAIN_OFF;
|
|
|
|
I915_WRITE(intel_dp->output_reg, reg);
|
|
POSTING_READ(intel_dp->output_reg);
|
|
intel_dp_aux_native_write_1(intel_dp,
|
|
DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
|
|
}
|
|
|
|
static void
|
|
intel_dp_link_down(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_device *dev = intel_dp->base.base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
uint32_t DP = intel_dp->DP;
|
|
|
|
if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
|
|
return;
|
|
|
|
DRM_DEBUG_KMS("\n");
|
|
|
|
if (is_edp(intel_dp)) {
|
|
DP &= ~DP_PLL_ENABLE;
|
|
I915_WRITE(intel_dp->output_reg, DP);
|
|
POSTING_READ(intel_dp->output_reg);
|
|
udelay(100);
|
|
}
|
|
|
|
if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
|
|
DP &= ~DP_LINK_TRAIN_MASK_CPT;
|
|
I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
|
|
} else {
|
|
DP &= ~DP_LINK_TRAIN_MASK;
|
|
I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
|
|
}
|
|
POSTING_READ(intel_dp->output_reg);
|
|
|
|
msleep(17);
|
|
|
|
if (is_edp(intel_dp)) {
|
|
if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
|
|
DP |= DP_LINK_TRAIN_OFF_CPT;
|
|
else
|
|
DP |= DP_LINK_TRAIN_OFF;
|
|
}
|
|
|
|
if (!HAS_PCH_CPT(dev) &&
|
|
I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
|
|
struct drm_crtc *crtc = intel_dp->base.base.crtc;
|
|
|
|
/* Hardware workaround: leaving our transcoder select
|
|
* set to transcoder B while it's off will prevent the
|
|
* corresponding HDMI output on transcoder A.
|
|
*
|
|
* Combine this with another hardware workaround:
|
|
* transcoder select bit can only be cleared while the
|
|
* port is enabled.
|
|
*/
|
|
DP &= ~DP_PIPEB_SELECT;
|
|
I915_WRITE(intel_dp->output_reg, DP);
|
|
|
|
/* Changes to enable or select take place the vblank
|
|
* after being written.
|
|
*/
|
|
if (crtc == NULL) {
|
|
/* We can arrive here never having been attached
|
|
* to a CRTC, for instance, due to inheriting
|
|
* random state from the BIOS.
|
|
*
|
|
* If the pipe is not running, play safe and
|
|
* wait for the clocks to stabilise before
|
|
* continuing.
|
|
*/
|
|
POSTING_READ(intel_dp->output_reg);
|
|
msleep(50);
|
|
} else
|
|
intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
|
|
}
|
|
|
|
DP &= ~DP_AUDIO_OUTPUT_ENABLE;
|
|
I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
|
|
POSTING_READ(intel_dp->output_reg);
|
|
msleep(intel_dp->panel_power_down_delay);
|
|
}
|
|
|
|
static bool
|
|
intel_dp_get_dpcd(struct intel_dp *intel_dp)
|
|
{
|
|
if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
|
|
sizeof(intel_dp->dpcd)) &&
|
|
(intel_dp->dpcd[DP_DPCD_REV] != 0)) {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool
|
|
intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
|
|
{
|
|
int ret;
|
|
|
|
ret = intel_dp_aux_native_read_retry(intel_dp,
|
|
DP_DEVICE_SERVICE_IRQ_VECTOR,
|
|
sink_irq_vector, 1);
|
|
if (!ret)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void
|
|
intel_dp_handle_test_request(struct intel_dp *intel_dp)
|
|
{
|
|
/* NAK by default */
|
|
intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_ACK);
|
|
}
|
|
|
|
/*
|
|
* According to DP spec
|
|
* 5.1.2:
|
|
* 1. Read DPCD
|
|
* 2. Configure link according to Receiver Capabilities
|
|
* 3. Use Link Training from 2.5.3.3 and 3.5.1.3
|
|
* 4. Check link status on receipt of hot-plug interrupt
|
|
*/
|
|
|
|
static void
|
|
intel_dp_check_link_status(struct intel_dp *intel_dp)
|
|
{
|
|
u8 sink_irq_vector;
|
|
u8 link_status[DP_LINK_STATUS_SIZE];
|
|
|
|
if (intel_dp->dpms_mode != DRM_MODE_DPMS_ON)
|
|
return;
|
|
|
|
if (!intel_dp->base.base.crtc)
|
|
return;
|
|
|
|
/* Try to read receiver status if the link appears to be up */
|
|
if (!intel_dp_get_link_status(intel_dp, link_status)) {
|
|
intel_dp_link_down(intel_dp);
|
|
return;
|
|
}
|
|
|
|
/* Now read the DPCD to see if it's actually running */
|
|
if (!intel_dp_get_dpcd(intel_dp)) {
|
|
intel_dp_link_down(intel_dp);
|
|
return;
|
|
}
|
|
|
|
/* Try to read the source of the interrupt */
|
|
if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
|
|
intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
|
|
/* Clear interrupt source */
|
|
intel_dp_aux_native_write_1(intel_dp,
|
|
DP_DEVICE_SERVICE_IRQ_VECTOR,
|
|
sink_irq_vector);
|
|
|
|
if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
|
|
intel_dp_handle_test_request(intel_dp);
|
|
if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
|
|
DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
|
|
}
|
|
|
|
if (!intel_channel_eq_ok(intel_dp, link_status)) {
|
|
DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
|
|
drm_get_encoder_name(&intel_dp->base.base));
|
|
intel_dp_start_link_train(intel_dp);
|
|
intel_dp_complete_link_train(intel_dp);
|
|
}
|
|
}
|
|
|
|
static enum drm_connector_status
|
|
intel_dp_detect_dpcd(struct intel_dp *intel_dp)
|
|
{
|
|
if (intel_dp_get_dpcd(intel_dp))
|
|
return connector_status_connected;
|
|
return connector_status_disconnected;
|
|
}
|
|
|
|
static enum drm_connector_status
|
|
ironlake_dp_detect(struct intel_dp *intel_dp)
|
|
{
|
|
enum drm_connector_status status;
|
|
|
|
/* Can't disconnect eDP, but you can close the lid... */
|
|
if (is_edp(intel_dp)) {
|
|
status = intel_panel_detect(intel_dp->base.base.dev);
|
|
if (status == connector_status_unknown)
|
|
status = connector_status_connected;
|
|
return status;
|
|
}
|
|
|
|
return intel_dp_detect_dpcd(intel_dp);
|
|
}
|
|
|
|
static enum drm_connector_status
|
|
g4x_dp_detect(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_device *dev = intel_dp->base.base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
uint32_t temp, bit;
|
|
|
|
switch (intel_dp->output_reg) {
|
|
case DP_B:
|
|
bit = DPB_HOTPLUG_INT_STATUS;
|
|
break;
|
|
case DP_C:
|
|
bit = DPC_HOTPLUG_INT_STATUS;
|
|
break;
|
|
case DP_D:
|
|
bit = DPD_HOTPLUG_INT_STATUS;
|
|
break;
|
|
default:
|
|
return connector_status_unknown;
|
|
}
|
|
|
|
temp = I915_READ(PORT_HOTPLUG_STAT);
|
|
|
|
if ((temp & bit) == 0)
|
|
return connector_status_disconnected;
|
|
|
|
return intel_dp_detect_dpcd(intel_dp);
|
|
}
|
|
|
|
static struct edid *
|
|
intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
|
|
{
|
|
struct intel_dp *intel_dp = intel_attached_dp(connector);
|
|
struct edid *edid;
|
|
|
|
ironlake_edp_panel_vdd_on(intel_dp);
|
|
edid = drm_get_edid(connector, adapter);
|
|
ironlake_edp_panel_vdd_off(intel_dp, false);
|
|
return edid;
|
|
}
|
|
|
|
static int
|
|
intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
|
|
{
|
|
struct intel_dp *intel_dp = intel_attached_dp(connector);
|
|
int ret;
|
|
|
|
ironlake_edp_panel_vdd_on(intel_dp);
|
|
ret = intel_ddc_get_modes(connector, adapter);
|
|
ironlake_edp_panel_vdd_off(intel_dp, false);
|
|
return ret;
|
|
}
|
|
|
|
|
|
/**
|
|
* Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
|
|
*
|
|
* \return true if DP port is connected.
|
|
* \return false if DP port is disconnected.
|
|
*/
|
|
static enum drm_connector_status
|
|
intel_dp_detect(struct drm_connector *connector, bool force)
|
|
{
|
|
struct intel_dp *intel_dp = intel_attached_dp(connector);
|
|
struct drm_device *dev = intel_dp->base.base.dev;
|
|
enum drm_connector_status status;
|
|
struct edid *edid = NULL;
|
|
|
|
intel_dp->has_audio = false;
|
|
|
|
if (HAS_PCH_SPLIT(dev))
|
|
status = ironlake_dp_detect(intel_dp);
|
|
else
|
|
status = g4x_dp_detect(intel_dp);
|
|
|
|
DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
|
|
intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
|
|
intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
|
|
intel_dp->dpcd[6], intel_dp->dpcd[7]);
|
|
|
|
if (status != connector_status_connected)
|
|
return status;
|
|
|
|
if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
|
|
intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
|
|
} else {
|
|
edid = intel_dp_get_edid(connector, &intel_dp->adapter);
|
|
if (edid) {
|
|
intel_dp->has_audio = drm_detect_monitor_audio(edid);
|
|
connector->display_info.raw_edid = NULL;
|
|
kfree(edid);
|
|
}
|
|
}
|
|
|
|
return connector_status_connected;
|
|
}
|
|
|
|
static int intel_dp_get_modes(struct drm_connector *connector)
|
|
{
|
|
struct intel_dp *intel_dp = intel_attached_dp(connector);
|
|
struct drm_device *dev = intel_dp->base.base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int ret;
|
|
|
|
/* We should parse the EDID data and find out if it has an audio sink
|
|
*/
|
|
|
|
ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
|
|
if (ret) {
|
|
if (is_edp(intel_dp) && !intel_dp->panel_fixed_mode) {
|
|
struct drm_display_mode *newmode;
|
|
list_for_each_entry(newmode, &connector->probed_modes,
|
|
head) {
|
|
if ((newmode->type & DRM_MODE_TYPE_PREFERRED)) {
|
|
intel_dp->panel_fixed_mode =
|
|
drm_mode_duplicate(dev, newmode);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* if eDP has no EDID, try to use fixed panel mode from VBT */
|
|
if (is_edp(intel_dp)) {
|
|
/* initialize panel mode from VBT if available for eDP */
|
|
if (intel_dp->panel_fixed_mode == NULL && dev_priv->lfp_lvds_vbt_mode != NULL) {
|
|
intel_dp->panel_fixed_mode =
|
|
drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
|
|
if (intel_dp->panel_fixed_mode) {
|
|
intel_dp->panel_fixed_mode->type |=
|
|
DRM_MODE_TYPE_PREFERRED;
|
|
}
|
|
}
|
|
if (intel_dp->panel_fixed_mode) {
|
|
struct drm_display_mode *mode;
|
|
mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
|
|
drm_mode_probed_add(connector, mode);
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static bool
|
|
intel_dp_detect_audio(struct drm_connector *connector)
|
|
{
|
|
struct intel_dp *intel_dp = intel_attached_dp(connector);
|
|
struct edid *edid;
|
|
bool has_audio = false;
|
|
|
|
edid = intel_dp_get_edid(connector, &intel_dp->adapter);
|
|
if (edid) {
|
|
has_audio = drm_detect_monitor_audio(edid);
|
|
|
|
connector->display_info.raw_edid = NULL;
|
|
kfree(edid);
|
|
}
|
|
|
|
return has_audio;
|
|
}
|
|
|
|
static int
|
|
intel_dp_set_property(struct drm_connector *connector,
|
|
struct drm_property *property,
|
|
uint64_t val)
|
|
{
|
|
struct drm_i915_private *dev_priv = connector->dev->dev_private;
|
|
struct intel_dp *intel_dp = intel_attached_dp(connector);
|
|
int ret;
|
|
|
|
ret = drm_connector_property_set_value(connector, property, val);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (property == dev_priv->force_audio_property) {
|
|
int i = val;
|
|
bool has_audio;
|
|
|
|
if (i == intel_dp->force_audio)
|
|
return 0;
|
|
|
|
intel_dp->force_audio = i;
|
|
|
|
if (i == HDMI_AUDIO_AUTO)
|
|
has_audio = intel_dp_detect_audio(connector);
|
|
else
|
|
has_audio = (i == HDMI_AUDIO_ON);
|
|
|
|
if (has_audio == intel_dp->has_audio)
|
|
return 0;
|
|
|
|
intel_dp->has_audio = has_audio;
|
|
goto done;
|
|
}
|
|
|
|
if (property == dev_priv->broadcast_rgb_property) {
|
|
if (val == !!intel_dp->color_range)
|
|
return 0;
|
|
|
|
intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
|
|
goto done;
|
|
}
|
|
|
|
return -EINVAL;
|
|
|
|
done:
|
|
if (intel_dp->base.base.crtc) {
|
|
struct drm_crtc *crtc = intel_dp->base.base.crtc;
|
|
drm_crtc_helper_set_mode(crtc, &crtc->mode,
|
|
crtc->x, crtc->y,
|
|
crtc->fb);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
intel_dp_destroy(struct drm_connector *connector)
|
|
{
|
|
struct drm_device *dev = connector->dev;
|
|
|
|
if (intel_dpd_is_edp(dev))
|
|
intel_panel_destroy_backlight(dev);
|
|
|
|
drm_sysfs_connector_remove(connector);
|
|
drm_connector_cleanup(connector);
|
|
kfree(connector);
|
|
}
|
|
|
|
static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
|
|
{
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
|
|
|
|
i2c_del_adapter(&intel_dp->adapter);
|
|
drm_encoder_cleanup(encoder);
|
|
if (is_edp(intel_dp)) {
|
|
cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
|
|
ironlake_panel_vdd_off_sync(intel_dp);
|
|
}
|
|
kfree(intel_dp);
|
|
}
|
|
|
|
static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
|
|
.dpms = intel_dp_dpms,
|
|
.mode_fixup = intel_dp_mode_fixup,
|
|
.prepare = intel_dp_prepare,
|
|
.mode_set = intel_dp_mode_set,
|
|
.commit = intel_dp_commit,
|
|
};
|
|
|
|
static const struct drm_connector_funcs intel_dp_connector_funcs = {
|
|
.dpms = drm_helper_connector_dpms,
|
|
.detect = intel_dp_detect,
|
|
.fill_modes = drm_helper_probe_single_connector_modes,
|
|
.set_property = intel_dp_set_property,
|
|
.destroy = intel_dp_destroy,
|
|
};
|
|
|
|
static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
|
|
.get_modes = intel_dp_get_modes,
|
|
.mode_valid = intel_dp_mode_valid,
|
|
.best_encoder = intel_best_encoder,
|
|
};
|
|
|
|
static const struct drm_encoder_funcs intel_dp_enc_funcs = {
|
|
.destroy = intel_dp_encoder_destroy,
|
|
};
|
|
|
|
static void
|
|
intel_dp_hot_plug(struct intel_encoder *intel_encoder)
|
|
{
|
|
struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
|
|
|
|
intel_dp_check_link_status(intel_dp);
|
|
}
|
|
|
|
/* Return which DP Port should be selected for Transcoder DP control */
|
|
int
|
|
intel_trans_dp_port_sel(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_mode_config *mode_config = &dev->mode_config;
|
|
struct drm_encoder *encoder;
|
|
|
|
list_for_each_entry(encoder, &mode_config->encoder_list, head) {
|
|
struct intel_dp *intel_dp;
|
|
|
|
if (encoder->crtc != crtc)
|
|
continue;
|
|
|
|
intel_dp = enc_to_intel_dp(encoder);
|
|
if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
|
|
intel_dp->base.type == INTEL_OUTPUT_EDP)
|
|
return intel_dp->output_reg;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
/* check the VBT to see whether the eDP is on DP-D port */
|
|
bool intel_dpd_is_edp(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct child_device_config *p_child;
|
|
int i;
|
|
|
|
if (!dev_priv->child_dev_num)
|
|
return false;
|
|
|
|
for (i = 0; i < dev_priv->child_dev_num; i++) {
|
|
p_child = dev_priv->child_dev + i;
|
|
|
|
if (p_child->dvo_port == PORT_IDPD &&
|
|
p_child->device_type == DEVICE_TYPE_eDP)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void
|
|
intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
|
|
{
|
|
intel_attach_force_audio_property(connector);
|
|
intel_attach_broadcast_rgb_property(connector);
|
|
}
|
|
|
|
void
|
|
intel_dp_init(struct drm_device *dev, int output_reg)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_connector *connector;
|
|
struct intel_dp *intel_dp;
|
|
struct intel_encoder *intel_encoder;
|
|
struct intel_connector *intel_connector;
|
|
const char *name = NULL;
|
|
int type;
|
|
|
|
intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
|
|
if (!intel_dp)
|
|
return;
|
|
|
|
intel_dp->output_reg = output_reg;
|
|
intel_dp->dpms_mode = -1;
|
|
|
|
intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
|
|
if (!intel_connector) {
|
|
kfree(intel_dp);
|
|
return;
|
|
}
|
|
intel_encoder = &intel_dp->base;
|
|
|
|
if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
|
|
if (intel_dpd_is_edp(dev))
|
|
intel_dp->is_pch_edp = true;
|
|
|
|
if (output_reg == DP_A || is_pch_edp(intel_dp)) {
|
|
type = DRM_MODE_CONNECTOR_eDP;
|
|
intel_encoder->type = INTEL_OUTPUT_EDP;
|
|
} else {
|
|
type = DRM_MODE_CONNECTOR_DisplayPort;
|
|
intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
|
|
}
|
|
|
|
connector = &intel_connector->base;
|
|
drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
|
|
drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
|
|
|
|
connector->polled = DRM_CONNECTOR_POLL_HPD;
|
|
|
|
if (output_reg == DP_B || output_reg == PCH_DP_B)
|
|
intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
|
|
else if (output_reg == DP_C || output_reg == PCH_DP_C)
|
|
intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
|
|
else if (output_reg == DP_D || output_reg == PCH_DP_D)
|
|
intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
|
|
|
|
if (is_edp(intel_dp)) {
|
|
intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
|
|
INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
|
|
ironlake_panel_vdd_work);
|
|
}
|
|
|
|
intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
|
|
connector->interlace_allowed = true;
|
|
connector->doublescan_allowed = 0;
|
|
|
|
drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
|
|
DRM_MODE_ENCODER_TMDS);
|
|
drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
|
|
|
|
intel_connector_attach_encoder(intel_connector, intel_encoder);
|
|
drm_sysfs_connector_add(connector);
|
|
|
|
/* Set up the DDC bus. */
|
|
switch (output_reg) {
|
|
case DP_A:
|
|
name = "DPDDC-A";
|
|
break;
|
|
case DP_B:
|
|
case PCH_DP_B:
|
|
dev_priv->hotplug_supported_mask |=
|
|
HDMIB_HOTPLUG_INT_STATUS;
|
|
name = "DPDDC-B";
|
|
break;
|
|
case DP_C:
|
|
case PCH_DP_C:
|
|
dev_priv->hotplug_supported_mask |=
|
|
HDMIC_HOTPLUG_INT_STATUS;
|
|
name = "DPDDC-C";
|
|
break;
|
|
case DP_D:
|
|
case PCH_DP_D:
|
|
dev_priv->hotplug_supported_mask |=
|
|
HDMID_HOTPLUG_INT_STATUS;
|
|
name = "DPDDC-D";
|
|
break;
|
|
}
|
|
|
|
/* Cache some DPCD data in the eDP case */
|
|
if (is_edp(intel_dp)) {
|
|
bool ret;
|
|
struct edp_power_seq cur, vbt;
|
|
u32 pp_on, pp_off, pp_div;
|
|
|
|
pp_on = I915_READ(PCH_PP_ON_DELAYS);
|
|
pp_off = I915_READ(PCH_PP_OFF_DELAYS);
|
|
pp_div = I915_READ(PCH_PP_DIVISOR);
|
|
|
|
/* Pull timing values out of registers */
|
|
cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
|
|
PANEL_POWER_UP_DELAY_SHIFT;
|
|
|
|
cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
|
|
PANEL_LIGHT_ON_DELAY_SHIFT;
|
|
|
|
cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
|
|
PANEL_LIGHT_OFF_DELAY_SHIFT;
|
|
|
|
cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
|
|
PANEL_POWER_DOWN_DELAY_SHIFT;
|
|
|
|
cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
|
|
PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
|
|
|
|
DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
|
|
cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
|
|
|
|
vbt = dev_priv->edp.pps;
|
|
|
|
DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
|
|
vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
|
|
|
|
#define get_delay(field) ((max(cur.field, vbt.field) + 9) / 10)
|
|
|
|
intel_dp->panel_power_up_delay = get_delay(t1_t3);
|
|
intel_dp->backlight_on_delay = get_delay(t8);
|
|
intel_dp->backlight_off_delay = get_delay(t9);
|
|
intel_dp->panel_power_down_delay = get_delay(t10);
|
|
intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
|
|
|
|
DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
|
|
intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
|
|
intel_dp->panel_power_cycle_delay);
|
|
|
|
DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
|
|
intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
|
|
|
|
ironlake_edp_panel_vdd_on(intel_dp);
|
|
ret = intel_dp_get_dpcd(intel_dp);
|
|
ironlake_edp_panel_vdd_off(intel_dp, false);
|
|
|
|
if (ret) {
|
|
if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
|
|
dev_priv->no_aux_handshake =
|
|
intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
|
|
DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
|
|
} else {
|
|
/* if this fails, presume the device is a ghost */
|
|
DRM_INFO("failed to retrieve link info, disabling eDP\n");
|
|
intel_dp_encoder_destroy(&intel_dp->base.base);
|
|
intel_dp_destroy(&intel_connector->base);
|
|
return;
|
|
}
|
|
}
|
|
|
|
intel_dp_i2c_init(intel_dp, intel_connector, name);
|
|
|
|
intel_encoder->hot_plug = intel_dp_hot_plug;
|
|
|
|
if (is_edp(intel_dp)) {
|
|
dev_priv->int_edp_connector = connector;
|
|
intel_panel_setup_backlight(dev);
|
|
}
|
|
|
|
intel_dp_add_properties(intel_dp, connector);
|
|
|
|
/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
|
|
* 0xd. Failure to do so will result in spurious interrupts being
|
|
* generated on the port when a cable is not attached.
|
|
*/
|
|
if (IS_G4X(dev) && !IS_GM45(dev)) {
|
|
u32 temp = I915_READ(PEG_BAND_GAP_DATA);
|
|
I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
|
|
}
|
|
}
|