linux/drivers/input/rmi4/rmi_f11.c

1363 lines
40 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2011-2015 Synaptics Incorporated
* Copyright (c) 2011 Unixphere
*/
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/input.h>
#include <linux/input/mt.h>
#include <linux/rmi.h>
#include <linux/slab.h>
#include <linux/of.h>
#include "rmi_driver.h"
#include "rmi_2d_sensor.h"
#define F11_MAX_NUM_OF_FINGERS 10
#define F11_MAX_NUM_OF_TOUCH_SHAPES 16
#define FINGER_STATE_MASK 0x03
#define F11_CTRL_SENSOR_MAX_X_POS_OFFSET 6
#define F11_CTRL_SENSOR_MAX_Y_POS_OFFSET 8
#define DEFAULT_XY_MAX 9999
#define DEFAULT_MAX_ABS_MT_PRESSURE 255
#define DEFAULT_MAX_ABS_MT_TOUCH 15
#define DEFAULT_MAX_ABS_MT_ORIENTATION 1
#define DEFAULT_MIN_ABS_MT_TRACKING_ID 1
#define DEFAULT_MAX_ABS_MT_TRACKING_ID 10
/** A note about RMI4 F11 register structure.
*
* The properties for
* a given sensor are described by its query registers. The number of query
* registers and the layout of their contents are described by the F11 device
* queries as well as the sensor query information.
*
* Similarly, each sensor has control registers that govern its behavior. The
* size and layout of the control registers for a given sensor can be determined
* by parsing that sensors query registers.
*
* And in a likewise fashion, each sensor has data registers where it reports
* its touch data and other interesting stuff. The size and layout of a
* sensors data registers must be determined by parsing its query registers.
*
* The short story is that we need to read and parse a lot of query
* registers in order to determine the attributes of a sensor. Then
* we need to use that data to compute the size of the control and data
* registers for sensor.
*
* The end result is that we have a number of structs that aren't used to
* directly generate the input events, but their size, location and contents
* are critical to determining where the data we are interested in lives.
*
* At this time, the driver does not yet comprehend all possible F11
* configuration options, but it should be sufficient to cover 99% of RMI4 F11
* devices currently in the field.
*/
/* maximum ABS_MT_POSITION displacement (in mm) */
#define DMAX 10
/**
* @rezero - writing this to the F11 command register will cause the sensor to
* calibrate to the current capacitive state.
*/
#define RMI_F11_REZERO 0x01
#define RMI_F11_HAS_QUERY9 (1 << 3)
#define RMI_F11_HAS_QUERY11 (1 << 4)
#define RMI_F11_HAS_QUERY12 (1 << 5)
#define RMI_F11_HAS_QUERY27 (1 << 6)
#define RMI_F11_HAS_QUERY28 (1 << 7)
/** Defs for Query 1 */
#define RMI_F11_NR_FINGERS_MASK 0x07
#define RMI_F11_HAS_REL (1 << 3)
#define RMI_F11_HAS_ABS (1 << 4)
#define RMI_F11_HAS_GESTURES (1 << 5)
#define RMI_F11_HAS_SENSITIVITY_ADJ (1 << 6)
#define RMI_F11_CONFIGURABLE (1 << 7)
/** Defs for Query 2, 3, and 4. */
#define RMI_F11_NR_ELECTRODES_MASK 0x7F
/** Defs for Query 5 */
#define RMI_F11_ABS_DATA_SIZE_MASK 0x03
#define RMI_F11_HAS_ANCHORED_FINGER (1 << 2)
#define RMI_F11_HAS_ADJ_HYST (1 << 3)
#define RMI_F11_HAS_DRIBBLE (1 << 4)
#define RMI_F11_HAS_BENDING_CORRECTION (1 << 5)
#define RMI_F11_HAS_LARGE_OBJECT_SUPPRESSION (1 << 6)
#define RMI_F11_HAS_JITTER_FILTER (1 << 7)
/** Defs for Query 7 */
#define RMI_F11_HAS_SINGLE_TAP (1 << 0)
#define RMI_F11_HAS_TAP_AND_HOLD (1 << 1)
#define RMI_F11_HAS_DOUBLE_TAP (1 << 2)
#define RMI_F11_HAS_EARLY_TAP (1 << 3)
#define RMI_F11_HAS_FLICK (1 << 4)
#define RMI_F11_HAS_PRESS (1 << 5)
#define RMI_F11_HAS_PINCH (1 << 6)
#define RMI_F11_HAS_CHIRAL (1 << 7)
/** Defs for Query 8 */
#define RMI_F11_HAS_PALM_DET (1 << 0)
#define RMI_F11_HAS_ROTATE (1 << 1)
#define RMI_F11_HAS_TOUCH_SHAPES (1 << 2)
#define RMI_F11_HAS_SCROLL_ZONES (1 << 3)
#define RMI_F11_HAS_INDIVIDUAL_SCROLL_ZONES (1 << 4)
#define RMI_F11_HAS_MF_SCROLL (1 << 5)
#define RMI_F11_HAS_MF_EDGE_MOTION (1 << 6)
#define RMI_F11_HAS_MF_SCROLL_INERTIA (1 << 7)
/** Defs for Query 9. */
#define RMI_F11_HAS_PEN (1 << 0)
#define RMI_F11_HAS_PROXIMITY (1 << 1)
#define RMI_F11_HAS_PALM_DET_SENSITIVITY (1 << 2)
#define RMI_F11_HAS_SUPPRESS_ON_PALM_DETECT (1 << 3)
#define RMI_F11_HAS_TWO_PEN_THRESHOLDS (1 << 4)
#define RMI_F11_HAS_CONTACT_GEOMETRY (1 << 5)
#define RMI_F11_HAS_PEN_HOVER_DISCRIMINATION (1 << 6)
#define RMI_F11_HAS_PEN_FILTERS (1 << 7)
/** Defs for Query 10. */
#define RMI_F11_NR_TOUCH_SHAPES_MASK 0x1F
/** Defs for Query 11 */
#define RMI_F11_HAS_Z_TUNING (1 << 0)
#define RMI_F11_HAS_ALGORITHM_SELECTION (1 << 1)
#define RMI_F11_HAS_W_TUNING (1 << 2)
#define RMI_F11_HAS_PITCH_INFO (1 << 3)
#define RMI_F11_HAS_FINGER_SIZE (1 << 4)
#define RMI_F11_HAS_SEGMENTATION_AGGRESSIVENESS (1 << 5)
#define RMI_F11_HAS_XY_CLIP (1 << 6)
#define RMI_F11_HAS_DRUMMING_FILTER (1 << 7)
/** Defs for Query 12. */
#define RMI_F11_HAS_GAPLESS_FINGER (1 << 0)
#define RMI_F11_HAS_GAPLESS_FINGER_TUNING (1 << 1)
#define RMI_F11_HAS_8BIT_W (1 << 2)
#define RMI_F11_HAS_ADJUSTABLE_MAPPING (1 << 3)
#define RMI_F11_HAS_INFO2 (1 << 4)
#define RMI_F11_HAS_PHYSICAL_PROPS (1 << 5)
#define RMI_F11_HAS_FINGER_LIMIT (1 << 6)
#define RMI_F11_HAS_LINEAR_COEFF (1 << 7)
/** Defs for Query 13. */
#define RMI_F11_JITTER_WINDOW_MASK 0x1F
#define RMI_F11_JITTER_FILTER_MASK 0x60
#define RMI_F11_JITTER_FILTER_SHIFT 5
/** Defs for Query 14. */
#define RMI_F11_LIGHT_CONTROL_MASK 0x03
#define RMI_F11_IS_CLEAR (1 << 2)
#define RMI_F11_CLICKPAD_PROPS_MASK 0x18
#define RMI_F11_CLICKPAD_PROPS_SHIFT 3
#define RMI_F11_MOUSE_BUTTONS_MASK 0x60
#define RMI_F11_MOUSE_BUTTONS_SHIFT 5
#define RMI_F11_HAS_ADVANCED_GESTURES (1 << 7)
#define RMI_F11_QUERY_SIZE 4
#define RMI_F11_QUERY_GESTURE_SIZE 2
#define F11_LIGHT_CTL_NONE 0x00
#define F11_LUXPAD 0x01
#define F11_DUAL_MODE 0x02
#define F11_NOT_CLICKPAD 0x00
#define F11_HINGED_CLICKPAD 0x01
#define F11_UNIFORM_CLICKPAD 0x02
/**
* Query registers 1 through 4 are always present.
*
* @nr_fingers - describes the maximum number of fingers the 2-D sensor
* supports.
* @has_rel - the sensor supports relative motion reporting.
* @has_abs - the sensor supports absolute poition reporting.
* @has_gestures - the sensor supports gesture reporting.
* @has_sensitivity_adjust - the sensor supports a global sensitivity
* adjustment.
* @configurable - the sensor supports various configuration options.
* @num_of_x_electrodes - the maximum number of electrodes the 2-D sensor
* supports on the X axis.
* @num_of_y_electrodes - the maximum number of electrodes the 2-D sensor
* supports on the Y axis.
* @max_electrodes - the total number of X and Y electrodes that may be
* configured.
*
* Query 5 is present if the has_abs bit is set.
*
* @abs_data_size - describes the format of data reported by the absolute
* data source. Only one format (the kind used here) is supported at this
* time.
* @has_anchored_finger - then the sensor supports the high-precision second
* finger tracking provided by the manual tracking and motion sensitivity
* options.
* @has_adjust_hyst - the difference between the finger release threshold and
* the touch threshold.
* @has_dribble - the sensor supports the generation of dribble interrupts,
* which may be enabled or disabled with the dribble control bit.
* @has_bending_correction - Bending related data registers 28 and 36, and
* control register 52..57 are present.
* @has_large_object_suppression - control register 58 and data register 28
* exist.
* @has_jitter_filter - query 13 and control 73..76 exist.
*
* Gesture information queries 7 and 8 are present if has_gestures bit is set.
*
* @has_single_tap - a basic single-tap gesture is supported.
* @has_tap_n_hold - tap-and-hold gesture is supported.
* @has_double_tap - double-tap gesture is supported.
* @has_early_tap - early tap is supported and reported as soon as the finger
* lifts for any tap event that could be interpreted as either a single tap
* or as the first tap of a double-tap or tap-and-hold gesture.
* @has_flick - flick detection is supported.
* @has_press - press gesture reporting is supported.
* @has_pinch - pinch gesture detection is supported.
* @has_palm_det - the 2-D sensor notifies the host whenever a large conductive
* object such as a palm or a cheek touches the 2-D sensor.
* @has_rotate - rotation gesture detection is supported.
* @has_touch_shapes - TouchShapes are supported. A TouchShape is a fixed
* rectangular area on the sensor that behaves like a capacitive button.
* @has_scroll_zones - scrolling areas near the sensor edges are supported.
* @has_individual_scroll_zones - if 1, then 4 scroll zones are supported;
* if 0, then only two are supported.
* @has_mf_scroll - the multifinger_scrolling bit will be set when
* more than one finger is involved in a scrolling action.
*
* Convenience for checking bytes in the gesture info registers. This is done
* often enough that we put it here to declutter the conditionals
*
* @query7_nonzero - true if none of the query 7 bits are set
* @query8_nonzero - true if none of the query 8 bits are set
*
* Query 9 is present if the has_query9 is set.
*
* @has_pen - detection of a stylus is supported and registers F11_2D_Ctrl20
* and F11_2D_Ctrl21 exist.
* @has_proximity - detection of fingers near the sensor is supported and
* registers F11_2D_Ctrl22 through F11_2D_Ctrl26 exist.
* @has_palm_det_sensitivity - the sensor supports the palm detect sensitivity
* feature and register F11_2D_Ctrl27 exists.
* @has_two_pen_thresholds - is has_pen is also set, then F11_2D_Ctrl35 exists.
* @has_contact_geometry - the sensor supports the use of contact geometry to
* map absolute X and Y target positions and registers F11_2D_Data18
* through F11_2D_Data27 exist.
*
* Touch shape info (query 10) is present if has_touch_shapes is set.
*
* @nr_touch_shapes - the total number of touch shapes supported.
*
* Query 11 is present if the has_query11 bit is set in query 0.
*
* @has_z_tuning - if set, the sensor supports Z tuning and registers
* F11_2D_Ctrl29 through F11_2D_Ctrl33 exist.
* @has_algorithm_selection - controls choice of noise suppression algorithm
* @has_w_tuning - the sensor supports Wx and Wy scaling and registers
* F11_2D_Ctrl36 through F11_2D_Ctrl39 exist.
* @has_pitch_info - the X and Y pitches of the sensor electrodes can be
* configured and registers F11_2D_Ctrl40 and F11_2D_Ctrl41 exist.
* @has_finger_size - the default finger width settings for the
* sensor can be configured and registers F11_2D_Ctrl42 through F11_2D_Ctrl44
* exist.
* @has_segmentation_aggressiveness - the sensors ability to distinguish
* multiple objects close together can be configured and register F11_2D_Ctrl45
* exists.
* @has_XY_clip - the inactive outside borders of the sensor can be
* configured and registers F11_2D_Ctrl46 through F11_2D_Ctrl49 exist.
* @has_drumming_filter - the sensor can be configured to distinguish
* between a fast flick and a quick drumming movement and registers
* F11_2D_Ctrl50 and F11_2D_Ctrl51 exist.
*
* Query 12 is present if hasQuery12 bit is set.
*
* @has_gapless_finger - control registers relating to gapless finger are
* present.
* @has_gapless_finger_tuning - additional control and data registers relating
* to gapless finger are present.
* @has_8bit_w - larger W value reporting is supported.
* @has_adjustable_mapping - TBD
* @has_info2 - the general info query14 is present
* @has_physical_props - additional queries describing the physical properties
* of the sensor are present.
* @has_finger_limit - indicates that F11 Ctrl 80 exists.
* @has_linear_coeff - indicates that F11 Ctrl 81 exists.
*
* Query 13 is present if Query 5's has_jitter_filter bit is set.
* @jitter_window_size - used by Design Studio 4.
* @jitter_filter_type - used by Design Studio 4.
*
* Query 14 is present if query 12's has_general_info2 flag is set.
*
* @light_control - Indicates what light/led control features are present, if
* any.
* @is_clear - if set, this is a clear sensor (indicating direct pointing
* application), otherwise it's opaque (indicating indirect pointing).
* @clickpad_props - specifies if this is a clickpad, and if so what sort of
* mechanism it uses
* @mouse_buttons - specifies the number of mouse buttons present (if any).
* @has_advanced_gestures - advanced driver gestures are supported.
*/
struct f11_2d_sensor_queries {
/* query1 */
u8 nr_fingers;
bool has_rel;
bool has_abs;
bool has_gestures;
bool has_sensitivity_adjust;
bool configurable;
/* query2 */
u8 nr_x_electrodes;
/* query3 */
u8 nr_y_electrodes;
/* query4 */
u8 max_electrodes;
/* query5 */
u8 abs_data_size;
bool has_anchored_finger;
bool has_adj_hyst;
bool has_dribble;
bool has_bending_correction;
bool has_large_object_suppression;
bool has_jitter_filter;
u8 f11_2d_query6;
/* query 7 */
bool has_single_tap;
bool has_tap_n_hold;
bool has_double_tap;
bool has_early_tap;
bool has_flick;
bool has_press;
bool has_pinch;
bool has_chiral;
bool query7_nonzero;
/* query 8 */
bool has_palm_det;
bool has_rotate;
bool has_touch_shapes;
bool has_scroll_zones;
bool has_individual_scroll_zones;
bool has_mf_scroll;
bool has_mf_edge_motion;
bool has_mf_scroll_inertia;
bool query8_nonzero;
/* Query 9 */
bool has_pen;
bool has_proximity;
bool has_palm_det_sensitivity;
bool has_suppress_on_palm_detect;
bool has_two_pen_thresholds;
bool has_contact_geometry;
bool has_pen_hover_discrimination;
bool has_pen_filters;
/* Query 10 */
u8 nr_touch_shapes;
/* Query 11. */
bool has_z_tuning;
bool has_algorithm_selection;
bool has_w_tuning;
bool has_pitch_info;
bool has_finger_size;
bool has_segmentation_aggressiveness;
bool has_XY_clip;
bool has_drumming_filter;
/* Query 12 */
bool has_gapless_finger;
bool has_gapless_finger_tuning;
bool has_8bit_w;
bool has_adjustable_mapping;
bool has_info2;
bool has_physical_props;
bool has_finger_limit;
bool has_linear_coeff_2;
/* Query 13 */
u8 jitter_window_size;
u8 jitter_filter_type;
/* Query 14 */
u8 light_control;
bool is_clear;
u8 clickpad_props;
u8 mouse_buttons;
bool has_advanced_gestures;
/* Query 15 - 18 */
u16 x_sensor_size_mm;
u16 y_sensor_size_mm;
};
/* Defs for Ctrl0. */
#define RMI_F11_REPORT_MODE_MASK 0x07
#define RMI_F11_REPORT_MODE_CONTINUOUS (0 << 0)
#define RMI_F11_REPORT_MODE_REDUCED (1 << 0)
#define RMI_F11_REPORT_MODE_FS_CHANGE (2 << 0)
#define RMI_F11_REPORT_MODE_FP_CHANGE (3 << 0)
#define RMI_F11_ABS_POS_FILT (1 << 3)
#define RMI_F11_REL_POS_FILT (1 << 4)
#define RMI_F11_REL_BALLISTICS (1 << 5)
#define RMI_F11_DRIBBLE (1 << 6)
#define RMI_F11_REPORT_BEYOND_CLIP (1 << 7)
/* Defs for Ctrl1. */
#define RMI_F11_PALM_DETECT_THRESH_MASK 0x0F
#define RMI_F11_MOTION_SENSITIVITY_MASK 0x30
#define RMI_F11_MANUAL_TRACKING (1 << 6)
#define RMI_F11_MANUAL_TRACKED_FINGER (1 << 7)
#define RMI_F11_DELTA_X_THRESHOLD 2
#define RMI_F11_DELTA_Y_THRESHOLD 3
#define RMI_F11_CTRL_REG_COUNT 12
struct f11_2d_ctrl {
u8 ctrl0_11[RMI_F11_CTRL_REG_COUNT];
u16 ctrl0_11_address;
};
#define RMI_F11_ABS_BYTES 5
#define RMI_F11_REL_BYTES 2
/* Defs for Data 8 */
#define RMI_F11_SINGLE_TAP (1 << 0)
#define RMI_F11_TAP_AND_HOLD (1 << 1)
#define RMI_F11_DOUBLE_TAP (1 << 2)
#define RMI_F11_EARLY_TAP (1 << 3)
#define RMI_F11_FLICK (1 << 4)
#define RMI_F11_PRESS (1 << 5)
#define RMI_F11_PINCH (1 << 6)
/* Defs for Data 9 */
#define RMI_F11_PALM_DETECT (1 << 0)
#define RMI_F11_ROTATE (1 << 1)
#define RMI_F11_SHAPE (1 << 2)
#define RMI_F11_SCROLLZONE (1 << 3)
#define RMI_F11_GESTURE_FINGER_COUNT_MASK 0x70
/** Handy pointers into our data buffer.
*
* @f_state - start of finger state registers.
* @abs_pos - start of absolute position registers (if present).
* @rel_pos - start of relative data registers (if present).
* @gest_1 - gesture flags (if present).
* @gest_2 - gesture flags & finger count (if present).
* @pinch - pinch motion register (if present).
* @flick - flick distance X & Y, flick time (if present).
* @rotate - rotate motion and finger separation.
* @multi_scroll - chiral deltas for X and Y (if present).
* @scroll_zones - scroll deltas for 4 regions (if present).
*/
struct f11_2d_data {
u8 *f_state;
u8 *abs_pos;
s8 *rel_pos;
u8 *gest_1;
u8 *gest_2;
s8 *pinch;
u8 *flick;
u8 *rotate;
u8 *shapes;
s8 *multi_scroll;
s8 *scroll_zones;
};
/** Data pertaining to F11 in general. For per-sensor data, see struct
* f11_2d_sensor.
*
* @dev_query - F11 device specific query registers.
* @dev_controls - F11 device specific control registers.
* @dev_controls_mutex - lock for the control registers.
* @rezero_wait_ms - if nonzero, upon resume we will wait this many
* milliseconds before rezeroing the sensor(s). This is useful in systems with
* poor electrical behavior on resume, where the initial calibration of the
* sensor(s) coming out of sleep state may be bogus.
* @sensors - per sensor data structures.
*/
struct f11_data {
bool has_query9;
bool has_query11;
bool has_query12;
bool has_query27;
bool has_query28;
bool has_acm;
struct f11_2d_ctrl dev_controls;
struct mutex dev_controls_mutex;
u16 rezero_wait_ms;
struct rmi_2d_sensor sensor;
struct f11_2d_sensor_queries sens_query;
struct f11_2d_data data;
struct rmi_2d_sensor_platform_data sensor_pdata;
unsigned long *abs_mask;
unsigned long *rel_mask;
};
enum f11_finger_state {
F11_NO_FINGER = 0x00,
F11_PRESENT = 0x01,
F11_INACCURATE = 0x02,
F11_RESERVED = 0x03
};
static void rmi_f11_rel_pos_report(struct f11_data *f11, u8 n_finger)
{
struct rmi_2d_sensor *sensor = &f11->sensor;
struct f11_2d_data *data = &f11->data;
s8 x, y;
x = data->rel_pos[n_finger * RMI_F11_REL_BYTES];
y = data->rel_pos[n_finger * RMI_F11_REL_BYTES + 1];
rmi_2d_sensor_rel_report(sensor, x, y);
}
static void rmi_f11_abs_pos_process(struct f11_data *f11,
struct rmi_2d_sensor *sensor,
struct rmi_2d_sensor_abs_object *obj,
enum f11_finger_state finger_state,
u8 n_finger)
{
struct f11_2d_data *data = &f11->data;
u8 *pos_data = &data->abs_pos[n_finger * RMI_F11_ABS_BYTES];
int tool_type = MT_TOOL_FINGER;
switch (finger_state) {
case F11_PRESENT:
obj->type = RMI_2D_OBJECT_FINGER;
break;
default:
obj->type = RMI_2D_OBJECT_NONE;
}
obj->mt_tool = tool_type;
obj->x = (pos_data[0] << 4) | (pos_data[2] & 0x0F);
obj->y = (pos_data[1] << 4) | (pos_data[2] >> 4);
obj->z = pos_data[4];
obj->wx = pos_data[3] & 0x0f;
obj->wy = pos_data[3] >> 4;
rmi_2d_sensor_abs_process(sensor, obj, n_finger);
}
static inline u8 rmi_f11_parse_finger_state(const u8 *f_state, u8 n_finger)
{
return (f_state[n_finger / 4] >> (2 * (n_finger % 4))) &
FINGER_STATE_MASK;
}
static void rmi_f11_finger_handler(struct f11_data *f11,
struct rmi_2d_sensor *sensor, int size)
{
const u8 *f_state = f11->data.f_state;
u8 finger_state;
u8 i;
int abs_fingers;
int rel_fingers;
int abs_size = sensor->nbr_fingers * RMI_F11_ABS_BYTES;
if (sensor->report_abs) {
if (abs_size > size)
abs_fingers = size / RMI_F11_ABS_BYTES;
else
abs_fingers = sensor->nbr_fingers;
for (i = 0; i < abs_fingers; i++) {
/* Possible of having 4 fingers per f_state register */
finger_state = rmi_f11_parse_finger_state(f_state, i);
if (finger_state == F11_RESERVED) {
pr_err("Invalid finger state[%d]: 0x%02x", i,
finger_state);
continue;
}
rmi_f11_abs_pos_process(f11, sensor, &sensor->objs[i],
finger_state, i);
}
/*
* the absolute part is made in 2 parts to allow the kernel
* tracking to take place.
*/
if (sensor->kernel_tracking)
input_mt_assign_slots(sensor->input,
sensor->tracking_slots,
sensor->tracking_pos,
sensor->nbr_fingers,
sensor->dmax);
for (i = 0; i < abs_fingers; i++) {
finger_state = rmi_f11_parse_finger_state(f_state, i);
if (finger_state == F11_RESERVED)
/* no need to send twice the error */
continue;
rmi_2d_sensor_abs_report(sensor, &sensor->objs[i], i);
}
input_mt_sync_frame(sensor->input);
} else if (sensor->report_rel) {
if ((abs_size + sensor->nbr_fingers * RMI_F11_REL_BYTES) > size)
rel_fingers = (size - abs_size) / RMI_F11_REL_BYTES;
else
rel_fingers = sensor->nbr_fingers;
for (i = 0; i < rel_fingers; i++)
rmi_f11_rel_pos_report(f11, i);
}
}
static int f11_2d_construct_data(struct f11_data *f11)
{
struct rmi_2d_sensor *sensor = &f11->sensor;
struct f11_2d_sensor_queries *query = &f11->sens_query;
struct f11_2d_data *data = &f11->data;
int i;
sensor->nbr_fingers = (query->nr_fingers == 5 ? 10 :
query->nr_fingers + 1);
sensor->pkt_size = DIV_ROUND_UP(sensor->nbr_fingers, 4);
if (query->has_abs) {
sensor->pkt_size += (sensor->nbr_fingers * 5);
sensor->attn_size = sensor->pkt_size;
}
if (query->has_rel)
sensor->pkt_size += (sensor->nbr_fingers * 2);
/* Check if F11_2D_Query7 is non-zero */
if (query->query7_nonzero)
sensor->pkt_size += sizeof(u8);
/* Check if F11_2D_Query7 or F11_2D_Query8 is non-zero */
if (query->query7_nonzero || query->query8_nonzero)
sensor->pkt_size += sizeof(u8);
if (query->has_pinch || query->has_flick || query->has_rotate) {
sensor->pkt_size += 3;
if (!query->has_flick)
sensor->pkt_size--;
if (!query->has_rotate)
sensor->pkt_size--;
}
if (query->has_touch_shapes)
sensor->pkt_size +=
DIV_ROUND_UP(query->nr_touch_shapes + 1, 8);
sensor->data_pkt = devm_kzalloc(&sensor->fn->dev, sensor->pkt_size,
GFP_KERNEL);
if (!sensor->data_pkt)
return -ENOMEM;
data->f_state = sensor->data_pkt;
i = DIV_ROUND_UP(sensor->nbr_fingers, 4);
if (query->has_abs) {
data->abs_pos = &sensor->data_pkt[i];
i += (sensor->nbr_fingers * RMI_F11_ABS_BYTES);
}
if (query->has_rel) {
data->rel_pos = &sensor->data_pkt[i];
i += (sensor->nbr_fingers * RMI_F11_REL_BYTES);
}
if (query->query7_nonzero) {
data->gest_1 = &sensor->data_pkt[i];
i++;
}
if (query->query7_nonzero || query->query8_nonzero) {
data->gest_2 = &sensor->data_pkt[i];
i++;
}
if (query->has_pinch) {
data->pinch = &sensor->data_pkt[i];
i++;
}
if (query->has_flick) {
if (query->has_pinch) {
data->flick = data->pinch;
i += 2;
} else {
data->flick = &sensor->data_pkt[i];
i += 3;
}
}
if (query->has_rotate) {
if (query->has_flick) {
data->rotate = data->flick + 1;
} else {
data->rotate = &sensor->data_pkt[i];
i += 2;
}
}
if (query->has_touch_shapes)
data->shapes = &sensor->data_pkt[i];
return 0;
}
static int f11_read_control_regs(struct rmi_function *fn,
struct f11_2d_ctrl *ctrl, u16 ctrl_base_addr) {
struct rmi_device *rmi_dev = fn->rmi_dev;
int error = 0;
ctrl->ctrl0_11_address = ctrl_base_addr;
error = rmi_read_block(rmi_dev, ctrl_base_addr, ctrl->ctrl0_11,
RMI_F11_CTRL_REG_COUNT);
if (error < 0) {
dev_err(&fn->dev, "Failed to read ctrl0, code: %d.\n", error);
return error;
}
return 0;
}
static int f11_write_control_regs(struct rmi_function *fn,
struct f11_2d_sensor_queries *query,
struct f11_2d_ctrl *ctrl,
u16 ctrl_base_addr)
{
struct rmi_device *rmi_dev = fn->rmi_dev;
int error;
error = rmi_write_block(rmi_dev, ctrl_base_addr, ctrl->ctrl0_11,
RMI_F11_CTRL_REG_COUNT);
if (error < 0)
return error;
return 0;
}
static int rmi_f11_get_query_parameters(struct rmi_device *rmi_dev,
struct f11_data *f11,
struct f11_2d_sensor_queries *sensor_query,
u16 query_base_addr)
{
int query_size;
int rc;
u8 query_buf[RMI_F11_QUERY_SIZE];
bool has_query36 = false;
rc = rmi_read_block(rmi_dev, query_base_addr, query_buf,
RMI_F11_QUERY_SIZE);
if (rc < 0)
return rc;
sensor_query->nr_fingers = query_buf[0] & RMI_F11_NR_FINGERS_MASK;
sensor_query->has_rel = !!(query_buf[0] & RMI_F11_HAS_REL);
sensor_query->has_abs = !!(query_buf[0] & RMI_F11_HAS_ABS);
sensor_query->has_gestures = !!(query_buf[0] & RMI_F11_HAS_GESTURES);
sensor_query->has_sensitivity_adjust =
!!(query_buf[0] & RMI_F11_HAS_SENSITIVITY_ADJ);
sensor_query->configurable = !!(query_buf[0] & RMI_F11_CONFIGURABLE);
sensor_query->nr_x_electrodes =
query_buf[1] & RMI_F11_NR_ELECTRODES_MASK;
sensor_query->nr_y_electrodes =
query_buf[2] & RMI_F11_NR_ELECTRODES_MASK;
sensor_query->max_electrodes =
query_buf[3] & RMI_F11_NR_ELECTRODES_MASK;
query_size = RMI_F11_QUERY_SIZE;
if (sensor_query->has_abs) {
rc = rmi_read(rmi_dev, query_base_addr + query_size, query_buf);
if (rc < 0)
return rc;
sensor_query->abs_data_size =
query_buf[0] & RMI_F11_ABS_DATA_SIZE_MASK;
sensor_query->has_anchored_finger =
!!(query_buf[0] & RMI_F11_HAS_ANCHORED_FINGER);
sensor_query->has_adj_hyst =
!!(query_buf[0] & RMI_F11_HAS_ADJ_HYST);
sensor_query->has_dribble =
!!(query_buf[0] & RMI_F11_HAS_DRIBBLE);
sensor_query->has_bending_correction =
!!(query_buf[0] & RMI_F11_HAS_BENDING_CORRECTION);
sensor_query->has_large_object_suppression =
!!(query_buf[0] & RMI_F11_HAS_LARGE_OBJECT_SUPPRESSION);
sensor_query->has_jitter_filter =
!!(query_buf[0] & RMI_F11_HAS_JITTER_FILTER);
query_size++;
}
if (sensor_query->has_rel) {
rc = rmi_read(rmi_dev, query_base_addr + query_size,
&sensor_query->f11_2d_query6);
if (rc < 0)
return rc;
query_size++;
}
if (sensor_query->has_gestures) {
rc = rmi_read_block(rmi_dev, query_base_addr + query_size,
query_buf, RMI_F11_QUERY_GESTURE_SIZE);
if (rc < 0)
return rc;
sensor_query->has_single_tap =
!!(query_buf[0] & RMI_F11_HAS_SINGLE_TAP);
sensor_query->has_tap_n_hold =
!!(query_buf[0] & RMI_F11_HAS_TAP_AND_HOLD);
sensor_query->has_double_tap =
!!(query_buf[0] & RMI_F11_HAS_DOUBLE_TAP);
sensor_query->has_early_tap =
!!(query_buf[0] & RMI_F11_HAS_EARLY_TAP);
sensor_query->has_flick =
!!(query_buf[0] & RMI_F11_HAS_FLICK);
sensor_query->has_press =
!!(query_buf[0] & RMI_F11_HAS_PRESS);
sensor_query->has_pinch =
!!(query_buf[0] & RMI_F11_HAS_PINCH);
sensor_query->has_chiral =
!!(query_buf[0] & RMI_F11_HAS_CHIRAL);
/* query 8 */
sensor_query->has_palm_det =
!!(query_buf[1] & RMI_F11_HAS_PALM_DET);
sensor_query->has_rotate =
!!(query_buf[1] & RMI_F11_HAS_ROTATE);
sensor_query->has_touch_shapes =
!!(query_buf[1] & RMI_F11_HAS_TOUCH_SHAPES);
sensor_query->has_scroll_zones =
!!(query_buf[1] & RMI_F11_HAS_SCROLL_ZONES);
sensor_query->has_individual_scroll_zones =
!!(query_buf[1] & RMI_F11_HAS_INDIVIDUAL_SCROLL_ZONES);
sensor_query->has_mf_scroll =
!!(query_buf[1] & RMI_F11_HAS_MF_SCROLL);
sensor_query->has_mf_edge_motion =
!!(query_buf[1] & RMI_F11_HAS_MF_EDGE_MOTION);
sensor_query->has_mf_scroll_inertia =
!!(query_buf[1] & RMI_F11_HAS_MF_SCROLL_INERTIA);
sensor_query->query7_nonzero = !!(query_buf[0]);
sensor_query->query8_nonzero = !!(query_buf[1]);
query_size += 2;
}
if (f11->has_query9) {
rc = rmi_read(rmi_dev, query_base_addr + query_size, query_buf);
if (rc < 0)
return rc;
sensor_query->has_pen =
!!(query_buf[0] & RMI_F11_HAS_PEN);
sensor_query->has_proximity =
!!(query_buf[0] & RMI_F11_HAS_PROXIMITY);
sensor_query->has_palm_det_sensitivity =
!!(query_buf[0] & RMI_F11_HAS_PALM_DET_SENSITIVITY);
sensor_query->has_suppress_on_palm_detect =
!!(query_buf[0] & RMI_F11_HAS_SUPPRESS_ON_PALM_DETECT);
sensor_query->has_two_pen_thresholds =
!!(query_buf[0] & RMI_F11_HAS_TWO_PEN_THRESHOLDS);
sensor_query->has_contact_geometry =
!!(query_buf[0] & RMI_F11_HAS_CONTACT_GEOMETRY);
sensor_query->has_pen_hover_discrimination =
!!(query_buf[0] & RMI_F11_HAS_PEN_HOVER_DISCRIMINATION);
sensor_query->has_pen_filters =
!!(query_buf[0] & RMI_F11_HAS_PEN_FILTERS);
query_size++;
}
if (sensor_query->has_touch_shapes) {
rc = rmi_read(rmi_dev, query_base_addr + query_size, query_buf);
if (rc < 0)
return rc;
sensor_query->nr_touch_shapes = query_buf[0] &
RMI_F11_NR_TOUCH_SHAPES_MASK;
query_size++;
}
if (f11->has_query11) {
rc = rmi_read(rmi_dev, query_base_addr + query_size, query_buf);
if (rc < 0)
return rc;
sensor_query->has_z_tuning =
!!(query_buf[0] & RMI_F11_HAS_Z_TUNING);
sensor_query->has_algorithm_selection =
!!(query_buf[0] & RMI_F11_HAS_ALGORITHM_SELECTION);
sensor_query->has_w_tuning =
!!(query_buf[0] & RMI_F11_HAS_W_TUNING);
sensor_query->has_pitch_info =
!!(query_buf[0] & RMI_F11_HAS_PITCH_INFO);
sensor_query->has_finger_size =
!!(query_buf[0] & RMI_F11_HAS_FINGER_SIZE);
sensor_query->has_segmentation_aggressiveness =
!!(query_buf[0] &
RMI_F11_HAS_SEGMENTATION_AGGRESSIVENESS);
sensor_query->has_XY_clip =
!!(query_buf[0] & RMI_F11_HAS_XY_CLIP);
sensor_query->has_drumming_filter =
!!(query_buf[0] & RMI_F11_HAS_DRUMMING_FILTER);
query_size++;
}
if (f11->has_query12) {
rc = rmi_read(rmi_dev, query_base_addr + query_size, query_buf);
if (rc < 0)
return rc;
sensor_query->has_gapless_finger =
!!(query_buf[0] & RMI_F11_HAS_GAPLESS_FINGER);
sensor_query->has_gapless_finger_tuning =
!!(query_buf[0] & RMI_F11_HAS_GAPLESS_FINGER_TUNING);
sensor_query->has_8bit_w =
!!(query_buf[0] & RMI_F11_HAS_8BIT_W);
sensor_query->has_adjustable_mapping =
!!(query_buf[0] & RMI_F11_HAS_ADJUSTABLE_MAPPING);
sensor_query->has_info2 =
!!(query_buf[0] & RMI_F11_HAS_INFO2);
sensor_query->has_physical_props =
!!(query_buf[0] & RMI_F11_HAS_PHYSICAL_PROPS);
sensor_query->has_finger_limit =
!!(query_buf[0] & RMI_F11_HAS_FINGER_LIMIT);
sensor_query->has_linear_coeff_2 =
!!(query_buf[0] & RMI_F11_HAS_LINEAR_COEFF);
query_size++;
}
if (sensor_query->has_jitter_filter) {
rc = rmi_read(rmi_dev, query_base_addr + query_size, query_buf);
if (rc < 0)
return rc;
sensor_query->jitter_window_size = query_buf[0] &
RMI_F11_JITTER_WINDOW_MASK;
sensor_query->jitter_filter_type = (query_buf[0] &
RMI_F11_JITTER_FILTER_MASK) >>
RMI_F11_JITTER_FILTER_SHIFT;
query_size++;
}
if (sensor_query->has_info2) {
rc = rmi_read(rmi_dev, query_base_addr + query_size, query_buf);
if (rc < 0)
return rc;
sensor_query->light_control =
query_buf[0] & RMI_F11_LIGHT_CONTROL_MASK;
sensor_query->is_clear =
!!(query_buf[0] & RMI_F11_IS_CLEAR);
sensor_query->clickpad_props =
(query_buf[0] & RMI_F11_CLICKPAD_PROPS_MASK) >>
RMI_F11_CLICKPAD_PROPS_SHIFT;
sensor_query->mouse_buttons =
(query_buf[0] & RMI_F11_MOUSE_BUTTONS_MASK) >>
RMI_F11_MOUSE_BUTTONS_SHIFT;
sensor_query->has_advanced_gestures =
!!(query_buf[0] & RMI_F11_HAS_ADVANCED_GESTURES);
query_size++;
}
if (sensor_query->has_physical_props) {
rc = rmi_read_block(rmi_dev, query_base_addr
+ query_size, query_buf, 4);
if (rc < 0)
return rc;
sensor_query->x_sensor_size_mm =
(query_buf[0] | (query_buf[1] << 8)) / 10;
sensor_query->y_sensor_size_mm =
(query_buf[2] | (query_buf[3] << 8)) / 10;
/*
* query 15 - 18 contain the size of the sensor
* and query 19 - 26 contain bezel dimensions
*/
query_size += 12;
}
if (f11->has_query27)
++query_size;
if (f11->has_query28) {
rc = rmi_read(rmi_dev, query_base_addr + query_size,
query_buf);
if (rc < 0)
return rc;
has_query36 = !!(query_buf[0] & BIT(6));
}
if (has_query36) {
query_size += 2;
rc = rmi_read(rmi_dev, query_base_addr + query_size,
query_buf);
if (rc < 0)
return rc;
if (!!(query_buf[0] & BIT(5)))
f11->has_acm = true;
}
return query_size;
}
static int rmi_f11_initialize(struct rmi_function *fn)
{
struct rmi_device *rmi_dev = fn->rmi_dev;
struct f11_data *f11;
struct f11_2d_ctrl *ctrl;
u8 query_offset;
u16 query_base_addr;
u16 control_base_addr;
u16 max_x_pos, max_y_pos;
int rc;
const struct rmi_device_platform_data *pdata =
rmi_get_platform_data(rmi_dev);
struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
struct rmi_2d_sensor *sensor;
u8 buf;
int mask_size;
rmi_dbg(RMI_DEBUG_FN, &fn->dev, "Initializing F11 values.\n");
mask_size = BITS_TO_LONGS(drvdata->irq_count) * sizeof(unsigned long);
/*
** init instance data, fill in values and create any sysfs files
*/
f11 = devm_kzalloc(&fn->dev, sizeof(struct f11_data) + mask_size * 2,
GFP_KERNEL);
if (!f11)
return -ENOMEM;
if (fn->dev.of_node) {
rc = rmi_2d_sensor_of_probe(&fn->dev, &f11->sensor_pdata);
if (rc)
return rc;
} else {
f11->sensor_pdata = pdata->sensor_pdata;
}
f11->rezero_wait_ms = f11->sensor_pdata.rezero_wait;
f11->abs_mask = (unsigned long *)((char *)f11
+ sizeof(struct f11_data));
f11->rel_mask = (unsigned long *)((char *)f11
+ sizeof(struct f11_data) + mask_size);
set_bit(fn->irq_pos, f11->abs_mask);
set_bit(fn->irq_pos + 1, f11->rel_mask);
query_base_addr = fn->fd.query_base_addr;
control_base_addr = fn->fd.control_base_addr;
rc = rmi_read(rmi_dev, query_base_addr, &buf);
if (rc < 0)
return rc;
f11->has_query9 = !!(buf & RMI_F11_HAS_QUERY9);
f11->has_query11 = !!(buf & RMI_F11_HAS_QUERY11);
f11->has_query12 = !!(buf & RMI_F11_HAS_QUERY12);
f11->has_query27 = !!(buf & RMI_F11_HAS_QUERY27);
f11->has_query28 = !!(buf & RMI_F11_HAS_QUERY28);
query_offset = (query_base_addr + 1);
sensor = &f11->sensor;
sensor->fn = fn;
rc = rmi_f11_get_query_parameters(rmi_dev, f11,
&f11->sens_query, query_offset);
if (rc < 0)
return rc;
query_offset += rc;
rc = f11_read_control_regs(fn, &f11->dev_controls,
control_base_addr);
if (rc < 0) {
dev_err(&fn->dev,
"Failed to read F11 control params.\n");
return rc;
}
if (f11->sens_query.has_info2) {
if (f11->sens_query.is_clear)
f11->sensor.sensor_type = rmi_sensor_touchscreen;
else
f11->sensor.sensor_type = rmi_sensor_touchpad;
}
sensor->report_abs = f11->sens_query.has_abs;
sensor->axis_align =
f11->sensor_pdata.axis_align;
sensor->topbuttonpad = f11->sensor_pdata.topbuttonpad;
sensor->kernel_tracking = f11->sensor_pdata.kernel_tracking;
sensor->dmax = f11->sensor_pdata.dmax;
sensor->dribble = f11->sensor_pdata.dribble;
sensor->palm_detect = f11->sensor_pdata.palm_detect;
if (f11->sens_query.has_physical_props) {
sensor->x_mm = f11->sens_query.x_sensor_size_mm;
sensor->y_mm = f11->sens_query.y_sensor_size_mm;
} else {
sensor->x_mm = f11->sensor_pdata.x_mm;
sensor->y_mm = f11->sensor_pdata.y_mm;
}
if (sensor->sensor_type == rmi_sensor_default)
sensor->sensor_type =
f11->sensor_pdata.sensor_type;
sensor->report_abs = sensor->report_abs
&& !(f11->sensor_pdata.disable_report_mask
& RMI_F11_DISABLE_ABS_REPORT);
if (!sensor->report_abs)
/*
* If device doesn't have abs or if it has been disables
* fallback to reporting rel data.
*/
sensor->report_rel = f11->sens_query.has_rel;
rc = rmi_read_block(rmi_dev,
control_base_addr + F11_CTRL_SENSOR_MAX_X_POS_OFFSET,
(u8 *)&max_x_pos, sizeof(max_x_pos));
if (rc < 0)
return rc;
rc = rmi_read_block(rmi_dev,
control_base_addr + F11_CTRL_SENSOR_MAX_Y_POS_OFFSET,
(u8 *)&max_y_pos, sizeof(max_y_pos));
if (rc < 0)
return rc;
sensor->max_x = max_x_pos;
sensor->max_y = max_y_pos;
rc = f11_2d_construct_data(f11);
if (rc < 0)
return rc;
if (f11->has_acm)
f11->sensor.attn_size += f11->sensor.nbr_fingers * 2;
/* allocate the in-kernel tracking buffers */
sensor->tracking_pos = devm_kcalloc(&fn->dev,
sensor->nbr_fingers, sizeof(struct input_mt_pos),
GFP_KERNEL);
sensor->tracking_slots = devm_kcalloc(&fn->dev,
sensor->nbr_fingers, sizeof(int), GFP_KERNEL);
sensor->objs = devm_kcalloc(&fn->dev,
sensor->nbr_fingers,
sizeof(struct rmi_2d_sensor_abs_object),
GFP_KERNEL);
if (!sensor->tracking_pos || !sensor->tracking_slots || !sensor->objs)
return -ENOMEM;
ctrl = &f11->dev_controls;
if (sensor->axis_align.delta_x_threshold)
ctrl->ctrl0_11[RMI_F11_DELTA_X_THRESHOLD] =
sensor->axis_align.delta_x_threshold;
if (sensor->axis_align.delta_y_threshold)
ctrl->ctrl0_11[RMI_F11_DELTA_Y_THRESHOLD] =
sensor->axis_align.delta_y_threshold;
/*
* If distance threshold values are set, switch to reduced reporting
* mode so they actually get used by the controller.
*/
if (sensor->axis_align.delta_x_threshold ||
sensor->axis_align.delta_y_threshold) {
ctrl->ctrl0_11[0] &= ~RMI_F11_REPORT_MODE_MASK;
ctrl->ctrl0_11[0] |= RMI_F11_REPORT_MODE_REDUCED;
}
if (f11->sens_query.has_dribble) {
switch (sensor->dribble) {
case RMI_REG_STATE_OFF:
ctrl->ctrl0_11[0] &= ~BIT(6);
break;
case RMI_REG_STATE_ON:
ctrl->ctrl0_11[0] |= BIT(6);
break;
case RMI_REG_STATE_DEFAULT:
default:
break;
}
}
if (f11->sens_query.has_palm_det) {
switch (sensor->palm_detect) {
case RMI_REG_STATE_OFF:
ctrl->ctrl0_11[11] &= ~BIT(0);
break;
case RMI_REG_STATE_ON:
ctrl->ctrl0_11[11] |= BIT(0);
break;
case RMI_REG_STATE_DEFAULT:
default:
break;
}
}
rc = f11_write_control_regs(fn, &f11->sens_query,
&f11->dev_controls, fn->fd.control_base_addr);
if (rc)
dev_warn(&fn->dev, "Failed to write control registers\n");
mutex_init(&f11->dev_controls_mutex);
dev_set_drvdata(&fn->dev, f11);
return 0;
}
static int rmi_f11_config(struct rmi_function *fn)
{
struct f11_data *f11 = dev_get_drvdata(&fn->dev);
struct rmi_driver *drv = fn->rmi_dev->driver;
struct rmi_2d_sensor *sensor = &f11->sensor;
int rc;
if (!sensor->report_abs)
drv->clear_irq_bits(fn->rmi_dev, f11->abs_mask);
else
drv->set_irq_bits(fn->rmi_dev, f11->abs_mask);
if (!sensor->report_rel)
drv->clear_irq_bits(fn->rmi_dev, f11->rel_mask);
else
drv->set_irq_bits(fn->rmi_dev, f11->rel_mask);
rc = f11_write_control_regs(fn, &f11->sens_query,
&f11->dev_controls, fn->fd.query_base_addr);
if (rc < 0)
return rc;
return 0;
}
static irqreturn_t rmi_f11_attention(int irq, void *ctx)
{
struct rmi_function *fn = ctx;
struct rmi_device *rmi_dev = fn->rmi_dev;
struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
struct f11_data *f11 = dev_get_drvdata(&fn->dev);
u16 data_base_addr = fn->fd.data_base_addr;
int error;
int valid_bytes = f11->sensor.pkt_size;
if (drvdata->attn_data.data) {
/*
* The valid data in the attention report is less then
* expected. Only process the complete fingers.
*/
if (f11->sensor.attn_size > drvdata->attn_data.size)
valid_bytes = drvdata->attn_data.size;
else
valid_bytes = f11->sensor.attn_size;
memcpy(f11->sensor.data_pkt, drvdata->attn_data.data,
valid_bytes);
drvdata->attn_data.data += valid_bytes;
drvdata->attn_data.size -= valid_bytes;
} else {
error = rmi_read_block(rmi_dev,
data_base_addr, f11->sensor.data_pkt,
f11->sensor.pkt_size);
if (error < 0)
return IRQ_RETVAL(error);
}
rmi_f11_finger_handler(f11, &f11->sensor, valid_bytes);
return IRQ_HANDLED;
}
static int rmi_f11_resume(struct rmi_function *fn)
{
struct f11_data *f11 = dev_get_drvdata(&fn->dev);
int error;
rmi_dbg(RMI_DEBUG_FN, &fn->dev, "Resuming...\n");
if (!f11->rezero_wait_ms)
return 0;
mdelay(f11->rezero_wait_ms);
error = rmi_write(fn->rmi_dev, fn->fd.command_base_addr,
RMI_F11_REZERO);
if (error) {
dev_err(&fn->dev,
"%s: failed to issue rezero command, error = %d.",
__func__, error);
return error;
}
return 0;
}
static int rmi_f11_probe(struct rmi_function *fn)
{
int error;
struct f11_data *f11;
error = rmi_f11_initialize(fn);
if (error)
return error;
f11 = dev_get_drvdata(&fn->dev);
error = rmi_2d_sensor_configure_input(fn, &f11->sensor);
if (error)
return error;
return 0;
}
struct rmi_function_handler rmi_f11_handler = {
.driver = {
.name = "rmi4_f11",
},
.func = 0x11,
.probe = rmi_f11_probe,
.config = rmi_f11_config,
.attention = rmi_f11_attention,
.resume = rmi_f11_resume,
};