linux/drivers/rtc/rtc-armada38x.c

605 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* RTC driver for the Armada 38x Marvell SoCs
*
* Copyright (C) 2015 Marvell
*
* Gregory Clement <gregory.clement@free-electrons.com>
*/
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/rtc.h>
#define RTC_STATUS 0x0
#define RTC_STATUS_ALARM1 BIT(0)
#define RTC_STATUS_ALARM2 BIT(1)
#define RTC_IRQ1_CONF 0x4
#define RTC_IRQ2_CONF 0x8
#define RTC_IRQ_AL_EN BIT(0)
#define RTC_IRQ_FREQ_EN BIT(1)
#define RTC_IRQ_FREQ_1HZ BIT(2)
#define RTC_CCR 0x18
#define RTC_CCR_MODE BIT(15)
#define RTC_CONF_TEST 0x1C
#define RTC_NOMINAL_TIMING BIT(13)
#define RTC_TIME 0xC
#define RTC_ALARM1 0x10
#define RTC_ALARM2 0x14
/* Armada38x SoC registers */
#define RTC_38X_BRIDGE_TIMING_CTL 0x0
#define RTC_38X_PERIOD_OFFS 0
#define RTC_38X_PERIOD_MASK (0x3FF << RTC_38X_PERIOD_OFFS)
#define RTC_38X_READ_DELAY_OFFS 26
#define RTC_38X_READ_DELAY_MASK (0x1F << RTC_38X_READ_DELAY_OFFS)
/* Armada 7K/8K registers */
#define RTC_8K_BRIDGE_TIMING_CTL0 0x0
#define RTC_8K_WRCLK_PERIOD_OFFS 0
#define RTC_8K_WRCLK_PERIOD_MASK (0xFFFF << RTC_8K_WRCLK_PERIOD_OFFS)
#define RTC_8K_WRCLK_SETUP_OFFS 16
#define RTC_8K_WRCLK_SETUP_MASK (0xFFFF << RTC_8K_WRCLK_SETUP_OFFS)
#define RTC_8K_BRIDGE_TIMING_CTL1 0x4
#define RTC_8K_READ_DELAY_OFFS 0
#define RTC_8K_READ_DELAY_MASK (0xFFFF << RTC_8K_READ_DELAY_OFFS)
#define RTC_8K_ISR 0x10
#define RTC_8K_IMR 0x14
#define RTC_8K_ALARM2 BIT(0)
#define SOC_RTC_INTERRUPT 0x8
#define SOC_RTC_ALARM1 BIT(0)
#define SOC_RTC_ALARM2 BIT(1)
#define SOC_RTC_ALARM1_MASK BIT(2)
#define SOC_RTC_ALARM2_MASK BIT(3)
#define SAMPLE_NR 100
struct value_to_freq {
u32 value;
u8 freq;
};
struct armada38x_rtc {
struct rtc_device *rtc_dev;
void __iomem *regs;
void __iomem *regs_soc;
spinlock_t lock;
int irq;
bool initialized;
struct value_to_freq *val_to_freq;
const struct armada38x_rtc_data *data;
};
#define ALARM1 0
#define ALARM2 1
#define ALARM_REG(base, alarm) ((base) + (alarm) * sizeof(u32))
struct armada38x_rtc_data {
/* Initialize the RTC-MBUS bridge timing */
void (*update_mbus_timing)(struct armada38x_rtc *rtc);
u32 (*read_rtc_reg)(struct armada38x_rtc *rtc, u8 rtc_reg);
void (*clear_isr)(struct armada38x_rtc *rtc);
void (*unmask_interrupt)(struct armada38x_rtc *rtc);
u32 alarm;
};
/*
* According to the datasheet, the OS should wait 5us after every
* register write to the RTC hard macro so that the required update
* can occur without holding off the system bus
* According to errata RES-3124064, Write to any RTC register
* may fail. As a workaround, before writing to RTC
* register, issue a dummy write of 0x0 twice to RTC Status
* register.
*/
static void rtc_delayed_write(u32 val, struct armada38x_rtc *rtc, int offset)
{
writel(0, rtc->regs + RTC_STATUS);
writel(0, rtc->regs + RTC_STATUS);
writel(val, rtc->regs + offset);
udelay(5);
}
/* Update RTC-MBUS bridge timing parameters */
static void rtc_update_38x_mbus_timing_params(struct armada38x_rtc *rtc)
{
u32 reg;
reg = readl(rtc->regs_soc + RTC_38X_BRIDGE_TIMING_CTL);
reg &= ~RTC_38X_PERIOD_MASK;
reg |= 0x3FF << RTC_38X_PERIOD_OFFS; /* Maximum value */
reg &= ~RTC_38X_READ_DELAY_MASK;
reg |= 0x1F << RTC_38X_READ_DELAY_OFFS; /* Maximum value */
writel(reg, rtc->regs_soc + RTC_38X_BRIDGE_TIMING_CTL);
}
static void rtc_update_8k_mbus_timing_params(struct armada38x_rtc *rtc)
{
u32 reg;
reg = readl(rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL0);
reg &= ~RTC_8K_WRCLK_PERIOD_MASK;
reg |= 0x3FF << RTC_8K_WRCLK_PERIOD_OFFS;
reg &= ~RTC_8K_WRCLK_SETUP_MASK;
reg |= 0x29 << RTC_8K_WRCLK_SETUP_OFFS;
writel(reg, rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL0);
reg = readl(rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL1);
reg &= ~RTC_8K_READ_DELAY_MASK;
reg |= 0x3F << RTC_8K_READ_DELAY_OFFS;
writel(reg, rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL1);
}
static u32 read_rtc_register(struct armada38x_rtc *rtc, u8 rtc_reg)
{
return readl(rtc->regs + rtc_reg);
}
static u32 read_rtc_register_38x_wa(struct armada38x_rtc *rtc, u8 rtc_reg)
{
int i, index_max = 0, max = 0;
for (i = 0; i < SAMPLE_NR; i++) {
rtc->val_to_freq[i].value = readl(rtc->regs + rtc_reg);
rtc->val_to_freq[i].freq = 0;
}
for (i = 0; i < SAMPLE_NR; i++) {
int j = 0;
u32 value = rtc->val_to_freq[i].value;
while (rtc->val_to_freq[j].freq) {
if (rtc->val_to_freq[j].value == value) {
rtc->val_to_freq[j].freq++;
break;
}
j++;
}
if (!rtc->val_to_freq[j].freq) {
rtc->val_to_freq[j].value = value;
rtc->val_to_freq[j].freq = 1;
}
if (rtc->val_to_freq[j].freq > max) {
index_max = j;
max = rtc->val_to_freq[j].freq;
}
/*
* If a value already has half of the sample this is the most
* frequent one and we can stop the research right now
*/
if (max > SAMPLE_NR / 2)
break;
}
return rtc->val_to_freq[index_max].value;
}
static void armada38x_clear_isr(struct armada38x_rtc *rtc)
{
u32 val = readl(rtc->regs_soc + SOC_RTC_INTERRUPT);
writel(val & ~SOC_RTC_ALARM1, rtc->regs_soc + SOC_RTC_INTERRUPT);
}
static void armada38x_unmask_interrupt(struct armada38x_rtc *rtc)
{
u32 val = readl(rtc->regs_soc + SOC_RTC_INTERRUPT);
writel(val | SOC_RTC_ALARM1_MASK, rtc->regs_soc + SOC_RTC_INTERRUPT);
}
static void armada8k_clear_isr(struct armada38x_rtc *rtc)
{
writel(RTC_8K_ALARM2, rtc->regs_soc + RTC_8K_ISR);
}
static void armada8k_unmask_interrupt(struct armada38x_rtc *rtc)
{
writel(RTC_8K_ALARM2, rtc->regs_soc + RTC_8K_IMR);
}
static int armada38x_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
struct armada38x_rtc *rtc = dev_get_drvdata(dev);
unsigned long time, flags;
spin_lock_irqsave(&rtc->lock, flags);
time = rtc->data->read_rtc_reg(rtc, RTC_TIME);
spin_unlock_irqrestore(&rtc->lock, flags);
rtc_time64_to_tm(time, tm);
return 0;
}
static void armada38x_rtc_reset(struct armada38x_rtc *rtc)
{
u32 reg;
reg = rtc->data->read_rtc_reg(rtc, RTC_CONF_TEST);
/* If bits [7:0] are non-zero, assume RTC was uninitialized */
if (reg & 0xff) {
rtc_delayed_write(0, rtc, RTC_CONF_TEST);
msleep(500); /* Oscillator startup time */
rtc_delayed_write(0, rtc, RTC_TIME);
rtc_delayed_write(SOC_RTC_ALARM1 | SOC_RTC_ALARM2, rtc,
RTC_STATUS);
rtc_delayed_write(RTC_NOMINAL_TIMING, rtc, RTC_CCR);
}
rtc->initialized = true;
}
static int armada38x_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
struct armada38x_rtc *rtc = dev_get_drvdata(dev);
unsigned long time, flags;
time = rtc_tm_to_time64(tm);
if (!rtc->initialized)
armada38x_rtc_reset(rtc);
spin_lock_irqsave(&rtc->lock, flags);
rtc_delayed_write(time, rtc, RTC_TIME);
spin_unlock_irqrestore(&rtc->lock, flags);
return 0;
}
static int armada38x_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
struct armada38x_rtc *rtc = dev_get_drvdata(dev);
unsigned long time, flags;
u32 reg = ALARM_REG(RTC_ALARM1, rtc->data->alarm);
u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
u32 val;
spin_lock_irqsave(&rtc->lock, flags);
time = rtc->data->read_rtc_reg(rtc, reg);
val = rtc->data->read_rtc_reg(rtc, reg_irq) & RTC_IRQ_AL_EN;
spin_unlock_irqrestore(&rtc->lock, flags);
alrm->enabled = val ? 1 : 0;
rtc_time64_to_tm(time, &alrm->time);
return 0;
}
static int armada38x_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
struct armada38x_rtc *rtc = dev_get_drvdata(dev);
u32 reg = ALARM_REG(RTC_ALARM1, rtc->data->alarm);
u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
unsigned long time, flags;
time = rtc_tm_to_time64(&alrm->time);
spin_lock_irqsave(&rtc->lock, flags);
rtc_delayed_write(time, rtc, reg);
if (alrm->enabled) {
rtc_delayed_write(RTC_IRQ_AL_EN, rtc, reg_irq);
rtc->data->unmask_interrupt(rtc);
}
spin_unlock_irqrestore(&rtc->lock, flags);
return 0;
}
static int armada38x_rtc_alarm_irq_enable(struct device *dev,
unsigned int enabled)
{
struct armada38x_rtc *rtc = dev_get_drvdata(dev);
u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
unsigned long flags;
spin_lock_irqsave(&rtc->lock, flags);
if (enabled)
rtc_delayed_write(RTC_IRQ_AL_EN, rtc, reg_irq);
else
rtc_delayed_write(0, rtc, reg_irq);
spin_unlock_irqrestore(&rtc->lock, flags);
return 0;
}
static irqreturn_t armada38x_rtc_alarm_irq(int irq, void *data)
{
struct armada38x_rtc *rtc = data;
u32 val;
int event = RTC_IRQF | RTC_AF;
u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
dev_dbg(&rtc->rtc_dev->dev, "%s:irq(%d)\n", __func__, irq);
spin_lock(&rtc->lock);
rtc->data->clear_isr(rtc);
val = rtc->data->read_rtc_reg(rtc, reg_irq);
/* disable all the interrupts for alarm*/
rtc_delayed_write(0, rtc, reg_irq);
/* Ack the event */
rtc_delayed_write(1 << rtc->data->alarm, rtc, RTC_STATUS);
spin_unlock(&rtc->lock);
if (val & RTC_IRQ_FREQ_EN) {
if (val & RTC_IRQ_FREQ_1HZ)
event |= RTC_UF;
else
event |= RTC_PF;
}
rtc_update_irq(rtc->rtc_dev, 1, event);
return IRQ_HANDLED;
}
/*
* The information given in the Armada 388 functional spec is complex.
* They give two different formulas for calculating the offset value,
* but when considering "Offset" as an 8-bit signed integer, they both
* reduce down to (we shall rename "Offset" as "val" here):
*
* val = (f_ideal / f_measured - 1) / resolution where f_ideal = 32768
*
* Converting to time, f = 1/t:
* val = (t_measured / t_ideal - 1) / resolution where t_ideal = 1/32768
*
* => t_measured / t_ideal = val * resolution + 1
*
* "offset" in the RTC interface is defined as:
* t = t0 * (1 + offset * 1e-9)
* where t is the desired period, t0 is the measured period with a zero
* offset, which is t_measured above. With t0 = t_measured and t = t_ideal,
* offset = (t_ideal / t_measured - 1) / 1e-9
*
* => t_ideal / t_measured = offset * 1e-9 + 1
*
* so:
*
* offset * 1e-9 + 1 = 1 / (val * resolution + 1)
*
* We want "resolution" to be an integer, so resolution = R * 1e-9, giving
* offset = 1e18 / (val * R + 1e9) - 1e9
* val = (1e18 / (offset + 1e9) - 1e9) / R
* with a common transformation:
* f(x) = 1e18 / (x + 1e9) - 1e9
* offset = f(val * R)
* val = f(offset) / R
*
* Armada 38x supports two modes, fine mode (954ppb) and coarse mode (3815ppb).
*/
static long armada38x_ppb_convert(long ppb)
{
long div = ppb + 1000000000L;
return div_s64(1000000000000000000LL + div / 2, div) - 1000000000L;
}
static int armada38x_rtc_read_offset(struct device *dev, long *offset)
{
struct armada38x_rtc *rtc = dev_get_drvdata(dev);
unsigned long ccr, flags;
long ppb_cor;
spin_lock_irqsave(&rtc->lock, flags);
ccr = rtc->data->read_rtc_reg(rtc, RTC_CCR);
spin_unlock_irqrestore(&rtc->lock, flags);
ppb_cor = (ccr & RTC_CCR_MODE ? 3815 : 954) * (s8)ccr;
/* ppb_cor + 1000000000L can never be zero */
*offset = armada38x_ppb_convert(ppb_cor);
return 0;
}
static int armada38x_rtc_set_offset(struct device *dev, long offset)
{
struct armada38x_rtc *rtc = dev_get_drvdata(dev);
unsigned long ccr = 0;
long ppb_cor, off;
/*
* The maximum ppb_cor is -128 * 3815 .. 127 * 3815, but we
* need to clamp the input. This equates to -484270 .. 488558.
* Not only is this to stop out of range "off" but also to
* avoid the division by zero in armada38x_ppb_convert().
*/
offset = clamp(offset, -484270L, 488558L);
ppb_cor = armada38x_ppb_convert(offset);
/*
* Use low update mode where possible, which gives a better
* resolution of correction.
*/
off = DIV_ROUND_CLOSEST(ppb_cor, 954);
if (off > 127 || off < -128) {
ccr = RTC_CCR_MODE;
off = DIV_ROUND_CLOSEST(ppb_cor, 3815);
}
/*
* Armada 388 requires a bit pattern in bits 14..8 depending on
* the sign bit: { 0, ~S, S, S, S, S, S }
*/
ccr |= (off & 0x3fff) ^ 0x2000;
rtc_delayed_write(ccr, rtc, RTC_CCR);
return 0;
}
static const struct rtc_class_ops armada38x_rtc_ops = {
.read_time = armada38x_rtc_read_time,
.set_time = armada38x_rtc_set_time,
.read_alarm = armada38x_rtc_read_alarm,
.set_alarm = armada38x_rtc_set_alarm,
.alarm_irq_enable = armada38x_rtc_alarm_irq_enable,
.read_offset = armada38x_rtc_read_offset,
.set_offset = armada38x_rtc_set_offset,
};
static const struct rtc_class_ops armada38x_rtc_ops_noirq = {
.read_time = armada38x_rtc_read_time,
.set_time = armada38x_rtc_set_time,
.read_alarm = armada38x_rtc_read_alarm,
.read_offset = armada38x_rtc_read_offset,
.set_offset = armada38x_rtc_set_offset,
};
static const struct armada38x_rtc_data armada38x_data = {
.update_mbus_timing = rtc_update_38x_mbus_timing_params,
.read_rtc_reg = read_rtc_register_38x_wa,
.clear_isr = armada38x_clear_isr,
.unmask_interrupt = armada38x_unmask_interrupt,
.alarm = ALARM1,
};
static const struct armada38x_rtc_data armada8k_data = {
.update_mbus_timing = rtc_update_8k_mbus_timing_params,
.read_rtc_reg = read_rtc_register,
.clear_isr = armada8k_clear_isr,
.unmask_interrupt = armada8k_unmask_interrupt,
.alarm = ALARM2,
};
#ifdef CONFIG_OF
static const struct of_device_id armada38x_rtc_of_match_table[] = {
{
.compatible = "marvell,armada-380-rtc",
.data = &armada38x_data,
},
{
.compatible = "marvell,armada-8k-rtc",
.data = &armada8k_data,
},
{}
};
MODULE_DEVICE_TABLE(of, armada38x_rtc_of_match_table);
#endif
static __init int armada38x_rtc_probe(struct platform_device *pdev)
{
struct resource *res;
struct armada38x_rtc *rtc;
rtc = devm_kzalloc(&pdev->dev, sizeof(struct armada38x_rtc),
GFP_KERNEL);
if (!rtc)
return -ENOMEM;
rtc->data = of_device_get_match_data(&pdev->dev);
rtc->val_to_freq = devm_kcalloc(&pdev->dev, SAMPLE_NR,
sizeof(struct value_to_freq), GFP_KERNEL);
if (!rtc->val_to_freq)
return -ENOMEM;
spin_lock_init(&rtc->lock);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "rtc");
rtc->regs = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(rtc->regs))
return PTR_ERR(rtc->regs);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "rtc-soc");
rtc->regs_soc = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(rtc->regs_soc))
return PTR_ERR(rtc->regs_soc);
rtc->irq = platform_get_irq(pdev, 0);
if (rtc->irq < 0)
return rtc->irq;
rtc->rtc_dev = devm_rtc_allocate_device(&pdev->dev);
if (IS_ERR(rtc->rtc_dev))
return PTR_ERR(rtc->rtc_dev);
if (devm_request_irq(&pdev->dev, rtc->irq, armada38x_rtc_alarm_irq,
0, pdev->name, rtc) < 0) {
dev_warn(&pdev->dev, "Interrupt not available.\n");
rtc->irq = -1;
}
platform_set_drvdata(pdev, rtc);
if (rtc->irq != -1) {
device_init_wakeup(&pdev->dev, 1);
rtc->rtc_dev->ops = &armada38x_rtc_ops;
} else {
/*
* If there is no interrupt available then we can't
* use the alarm
*/
rtc->rtc_dev->ops = &armada38x_rtc_ops_noirq;
}
/* Update RTC-MBUS bridge timing parameters */
rtc->data->update_mbus_timing(rtc);
rtc->rtc_dev->range_max = U32_MAX;
return rtc_register_device(rtc->rtc_dev);
}
#ifdef CONFIG_PM_SLEEP
static int armada38x_rtc_suspend(struct device *dev)
{
if (device_may_wakeup(dev)) {
struct armada38x_rtc *rtc = dev_get_drvdata(dev);
return enable_irq_wake(rtc->irq);
}
return 0;
}
static int armada38x_rtc_resume(struct device *dev)
{
if (device_may_wakeup(dev)) {
struct armada38x_rtc *rtc = dev_get_drvdata(dev);
/* Update RTC-MBUS bridge timing parameters */
rtc->data->update_mbus_timing(rtc);
return disable_irq_wake(rtc->irq);
}
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(armada38x_rtc_pm_ops,
armada38x_rtc_suspend, armada38x_rtc_resume);
static struct platform_driver armada38x_rtc_driver = {
.driver = {
.name = "armada38x-rtc",
.pm = &armada38x_rtc_pm_ops,
.of_match_table = of_match_ptr(armada38x_rtc_of_match_table),
},
};
module_platform_driver_probe(armada38x_rtc_driver, armada38x_rtc_probe);
MODULE_DESCRIPTION("Marvell Armada 38x RTC driver");
MODULE_AUTHOR("Gregory CLEMENT <gregory.clement@free-electrons.com>");
MODULE_LICENSE("GPL");