mirror of https://gitee.com/openkylin/linux.git
382 lines
12 KiB
ArmAsm
382 lines
12 KiB
ArmAsm
//
|
|
// Accelerated CRC-T10DIF using ARM NEON and Crypto Extensions instructions
|
|
//
|
|
// Copyright (C) 2016 Linaro Ltd <ard.biesheuvel@linaro.org>
|
|
// Copyright (C) 2019 Google LLC <ebiggers@google.com>
|
|
//
|
|
// This program is free software; you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License version 2 as
|
|
// published by the Free Software Foundation.
|
|
//
|
|
|
|
// Derived from the x86 version:
|
|
//
|
|
// Implement fast CRC-T10DIF computation with SSE and PCLMULQDQ instructions
|
|
//
|
|
// Copyright (c) 2013, Intel Corporation
|
|
//
|
|
// Authors:
|
|
// Erdinc Ozturk <erdinc.ozturk@intel.com>
|
|
// Vinodh Gopal <vinodh.gopal@intel.com>
|
|
// James Guilford <james.guilford@intel.com>
|
|
// Tim Chen <tim.c.chen@linux.intel.com>
|
|
//
|
|
// This software is available to you under a choice of one of two
|
|
// licenses. You may choose to be licensed under the terms of the GNU
|
|
// General Public License (GPL) Version 2, available from the file
|
|
// COPYING in the main directory of this source tree, or the
|
|
// OpenIB.org BSD license below:
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistributions in binary form must reproduce the above copyright
|
|
// notice, this list of conditions and the following disclaimer in the
|
|
// documentation and/or other materials provided with the
|
|
// distribution.
|
|
//
|
|
// * Neither the name of the Intel Corporation nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY INTEL CORPORATION ""AS IS"" AND ANY
|
|
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION OR
|
|
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Reference paper titled "Fast CRC Computation for Generic
|
|
// Polynomials Using PCLMULQDQ Instruction"
|
|
// URL: http://www.intel.com/content/dam/www/public/us/en/documents
|
|
// /white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf
|
|
//
|
|
|
|
#include <linux/linkage.h>
|
|
#include <asm/assembler.h>
|
|
|
|
#ifdef CONFIG_CPU_ENDIAN_BE8
|
|
#define CPU_LE(code...)
|
|
#else
|
|
#define CPU_LE(code...) code
|
|
#endif
|
|
|
|
.text
|
|
.arch armv8-a
|
|
.fpu crypto-neon-fp-armv8
|
|
|
|
init_crc .req r0
|
|
buf .req r1
|
|
len .req r2
|
|
|
|
fold_consts_ptr .req ip
|
|
|
|
q0l .req d0
|
|
q0h .req d1
|
|
q1l .req d2
|
|
q1h .req d3
|
|
q2l .req d4
|
|
q2h .req d5
|
|
q3l .req d6
|
|
q3h .req d7
|
|
q4l .req d8
|
|
q4h .req d9
|
|
q5l .req d10
|
|
q5h .req d11
|
|
q6l .req d12
|
|
q6h .req d13
|
|
q7l .req d14
|
|
q7h .req d15
|
|
q8l .req d16
|
|
q8h .req d17
|
|
q9l .req d18
|
|
q9h .req d19
|
|
q10l .req d20
|
|
q10h .req d21
|
|
q11l .req d22
|
|
q11h .req d23
|
|
q12l .req d24
|
|
q12h .req d25
|
|
|
|
FOLD_CONSTS .req q10
|
|
FOLD_CONST_L .req q10l
|
|
FOLD_CONST_H .req q10h
|
|
|
|
// Fold reg1, reg2 into the next 32 data bytes, storing the result back
|
|
// into reg1, reg2.
|
|
.macro fold_32_bytes, reg1, reg2
|
|
vld1.64 {q11-q12}, [buf]!
|
|
|
|
vmull.p64 q8, \reg1\()h, FOLD_CONST_H
|
|
vmull.p64 \reg1, \reg1\()l, FOLD_CONST_L
|
|
vmull.p64 q9, \reg2\()h, FOLD_CONST_H
|
|
vmull.p64 \reg2, \reg2\()l, FOLD_CONST_L
|
|
|
|
CPU_LE( vrev64.8 q11, q11 )
|
|
CPU_LE( vrev64.8 q12, q12 )
|
|
vswp q11l, q11h
|
|
vswp q12l, q12h
|
|
|
|
veor.8 \reg1, \reg1, q8
|
|
veor.8 \reg2, \reg2, q9
|
|
veor.8 \reg1, \reg1, q11
|
|
veor.8 \reg2, \reg2, q12
|
|
.endm
|
|
|
|
// Fold src_reg into dst_reg, optionally loading the next fold constants
|
|
.macro fold_16_bytes, src_reg, dst_reg, load_next_consts
|
|
vmull.p64 q8, \src_reg\()l, FOLD_CONST_L
|
|
vmull.p64 \src_reg, \src_reg\()h, FOLD_CONST_H
|
|
.ifnb \load_next_consts
|
|
vld1.64 {FOLD_CONSTS}, [fold_consts_ptr, :128]!
|
|
.endif
|
|
veor.8 \dst_reg, \dst_reg, q8
|
|
veor.8 \dst_reg, \dst_reg, \src_reg
|
|
.endm
|
|
|
|
.macro __adrl, out, sym
|
|
movw \out, #:lower16:\sym
|
|
movt \out, #:upper16:\sym
|
|
.endm
|
|
|
|
//
|
|
// u16 crc_t10dif_pmull(u16 init_crc, const u8 *buf, size_t len);
|
|
//
|
|
// Assumes len >= 16.
|
|
//
|
|
ENTRY(crc_t10dif_pmull)
|
|
|
|
// For sizes less than 256 bytes, we can't fold 128 bytes at a time.
|
|
cmp len, #256
|
|
blt .Lless_than_256_bytes
|
|
|
|
__adrl fold_consts_ptr, .Lfold_across_128_bytes_consts
|
|
|
|
// Load the first 128 data bytes. Byte swapping is necessary to make
|
|
// the bit order match the polynomial coefficient order.
|
|
vld1.64 {q0-q1}, [buf]!
|
|
vld1.64 {q2-q3}, [buf]!
|
|
vld1.64 {q4-q5}, [buf]!
|
|
vld1.64 {q6-q7}, [buf]!
|
|
CPU_LE( vrev64.8 q0, q0 )
|
|
CPU_LE( vrev64.8 q1, q1 )
|
|
CPU_LE( vrev64.8 q2, q2 )
|
|
CPU_LE( vrev64.8 q3, q3 )
|
|
CPU_LE( vrev64.8 q4, q4 )
|
|
CPU_LE( vrev64.8 q5, q5 )
|
|
CPU_LE( vrev64.8 q6, q6 )
|
|
CPU_LE( vrev64.8 q7, q7 )
|
|
vswp q0l, q0h
|
|
vswp q1l, q1h
|
|
vswp q2l, q2h
|
|
vswp q3l, q3h
|
|
vswp q4l, q4h
|
|
vswp q5l, q5h
|
|
vswp q6l, q6h
|
|
vswp q7l, q7h
|
|
|
|
// XOR the first 16 data *bits* with the initial CRC value.
|
|
vmov.i8 q8h, #0
|
|
vmov.u16 q8h[3], init_crc
|
|
veor q0h, q0h, q8h
|
|
|
|
// Load the constants for folding across 128 bytes.
|
|
vld1.64 {FOLD_CONSTS}, [fold_consts_ptr, :128]!
|
|
|
|
// Subtract 128 for the 128 data bytes just consumed. Subtract another
|
|
// 128 to simplify the termination condition of the following loop.
|
|
sub len, len, #256
|
|
|
|
// While >= 128 data bytes remain (not counting q0-q7), fold the 128
|
|
// bytes q0-q7 into them, storing the result back into q0-q7.
|
|
.Lfold_128_bytes_loop:
|
|
fold_32_bytes q0, q1
|
|
fold_32_bytes q2, q3
|
|
fold_32_bytes q4, q5
|
|
fold_32_bytes q6, q7
|
|
subs len, len, #128
|
|
bge .Lfold_128_bytes_loop
|
|
|
|
// Now fold the 112 bytes in q0-q6 into the 16 bytes in q7.
|
|
|
|
// Fold across 64 bytes.
|
|
vld1.64 {FOLD_CONSTS}, [fold_consts_ptr, :128]!
|
|
fold_16_bytes q0, q4
|
|
fold_16_bytes q1, q5
|
|
fold_16_bytes q2, q6
|
|
fold_16_bytes q3, q7, 1
|
|
// Fold across 32 bytes.
|
|
fold_16_bytes q4, q6
|
|
fold_16_bytes q5, q7, 1
|
|
// Fold across 16 bytes.
|
|
fold_16_bytes q6, q7
|
|
|
|
// Add 128 to get the correct number of data bytes remaining in 0...127
|
|
// (not counting q7), following the previous extra subtraction by 128.
|
|
// Then subtract 16 to simplify the termination condition of the
|
|
// following loop.
|
|
adds len, len, #(128-16)
|
|
|
|
// While >= 16 data bytes remain (not counting q7), fold the 16 bytes q7
|
|
// into them, storing the result back into q7.
|
|
blt .Lfold_16_bytes_loop_done
|
|
.Lfold_16_bytes_loop:
|
|
vmull.p64 q8, q7l, FOLD_CONST_L
|
|
vmull.p64 q7, q7h, FOLD_CONST_H
|
|
veor.8 q7, q7, q8
|
|
vld1.64 {q0}, [buf]!
|
|
CPU_LE( vrev64.8 q0, q0 )
|
|
vswp q0l, q0h
|
|
veor.8 q7, q7, q0
|
|
subs len, len, #16
|
|
bge .Lfold_16_bytes_loop
|
|
|
|
.Lfold_16_bytes_loop_done:
|
|
// Add 16 to get the correct number of data bytes remaining in 0...15
|
|
// (not counting q7), following the previous extra subtraction by 16.
|
|
adds len, len, #16
|
|
beq .Lreduce_final_16_bytes
|
|
|
|
.Lhandle_partial_segment:
|
|
// Reduce the last '16 + len' bytes where 1 <= len <= 15 and the first
|
|
// 16 bytes are in q7 and the rest are the remaining data in 'buf'. To
|
|
// do this without needing a fold constant for each possible 'len',
|
|
// redivide the bytes into a first chunk of 'len' bytes and a second
|
|
// chunk of 16 bytes, then fold the first chunk into the second.
|
|
|
|
// q0 = last 16 original data bytes
|
|
add buf, buf, len
|
|
sub buf, buf, #16
|
|
vld1.64 {q0}, [buf]
|
|
CPU_LE( vrev64.8 q0, q0 )
|
|
vswp q0l, q0h
|
|
|
|
// q1 = high order part of second chunk: q7 left-shifted by 'len' bytes.
|
|
__adrl r3, .Lbyteshift_table + 16
|
|
sub r3, r3, len
|
|
vld1.8 {q2}, [r3]
|
|
vtbl.8 q1l, {q7l-q7h}, q2l
|
|
vtbl.8 q1h, {q7l-q7h}, q2h
|
|
|
|
// q3 = first chunk: q7 right-shifted by '16-len' bytes.
|
|
vmov.i8 q3, #0x80
|
|
veor.8 q2, q2, q3
|
|
vtbl.8 q3l, {q7l-q7h}, q2l
|
|
vtbl.8 q3h, {q7l-q7h}, q2h
|
|
|
|
// Convert to 8-bit masks: 'len' 0x00 bytes, then '16-len' 0xff bytes.
|
|
vshr.s8 q2, q2, #7
|
|
|
|
// q2 = second chunk: 'len' bytes from q0 (low-order bytes),
|
|
// then '16-len' bytes from q1 (high-order bytes).
|
|
vbsl.8 q2, q1, q0
|
|
|
|
// Fold the first chunk into the second chunk, storing the result in q7.
|
|
vmull.p64 q0, q3l, FOLD_CONST_L
|
|
vmull.p64 q7, q3h, FOLD_CONST_H
|
|
veor.8 q7, q7, q0
|
|
veor.8 q7, q7, q2
|
|
|
|
.Lreduce_final_16_bytes:
|
|
// Reduce the 128-bit value M(x), stored in q7, to the final 16-bit CRC.
|
|
|
|
// Load 'x^48 * (x^48 mod G(x))' and 'x^48 * (x^80 mod G(x))'.
|
|
vld1.64 {FOLD_CONSTS}, [fold_consts_ptr, :128]!
|
|
|
|
// Fold the high 64 bits into the low 64 bits, while also multiplying by
|
|
// x^64. This produces a 128-bit value congruent to x^64 * M(x) and
|
|
// whose low 48 bits are 0.
|
|
vmull.p64 q0, q7h, FOLD_CONST_H // high bits * x^48 * (x^80 mod G(x))
|
|
veor.8 q0h, q0h, q7l // + low bits * x^64
|
|
|
|
// Fold the high 32 bits into the low 96 bits. This produces a 96-bit
|
|
// value congruent to x^64 * M(x) and whose low 48 bits are 0.
|
|
vmov.i8 q1, #0
|
|
vmov s4, s3 // extract high 32 bits
|
|
vmov s3, s5 // zero high 32 bits
|
|
vmull.p64 q1, q1l, FOLD_CONST_L // high 32 bits * x^48 * (x^48 mod G(x))
|
|
veor.8 q0, q0, q1 // + low bits
|
|
|
|
// Load G(x) and floor(x^48 / G(x)).
|
|
vld1.64 {FOLD_CONSTS}, [fold_consts_ptr, :128]
|
|
|
|
// Use Barrett reduction to compute the final CRC value.
|
|
vmull.p64 q1, q0h, FOLD_CONST_H // high 32 bits * floor(x^48 / G(x))
|
|
vshr.u64 q1l, q1l, #32 // /= x^32
|
|
vmull.p64 q1, q1l, FOLD_CONST_L // *= G(x)
|
|
vshr.u64 q0l, q0l, #48
|
|
veor.8 q0l, q0l, q1l // + low 16 nonzero bits
|
|
// Final CRC value (x^16 * M(x)) mod G(x) is in low 16 bits of q0.
|
|
|
|
vmov.u16 r0, q0l[0]
|
|
bx lr
|
|
|
|
.Lless_than_256_bytes:
|
|
// Checksumming a buffer of length 16...255 bytes
|
|
|
|
__adrl fold_consts_ptr, .Lfold_across_16_bytes_consts
|
|
|
|
// Load the first 16 data bytes.
|
|
vld1.64 {q7}, [buf]!
|
|
CPU_LE( vrev64.8 q7, q7 )
|
|
vswp q7l, q7h
|
|
|
|
// XOR the first 16 data *bits* with the initial CRC value.
|
|
vmov.i8 q0h, #0
|
|
vmov.u16 q0h[3], init_crc
|
|
veor.8 q7h, q7h, q0h
|
|
|
|
// Load the fold-across-16-bytes constants.
|
|
vld1.64 {FOLD_CONSTS}, [fold_consts_ptr, :128]!
|
|
|
|
cmp len, #16
|
|
beq .Lreduce_final_16_bytes // len == 16
|
|
subs len, len, #32
|
|
addlt len, len, #16
|
|
blt .Lhandle_partial_segment // 17 <= len <= 31
|
|
b .Lfold_16_bytes_loop // 32 <= len <= 255
|
|
ENDPROC(crc_t10dif_pmull)
|
|
|
|
.section ".rodata", "a"
|
|
.align 4
|
|
|
|
// Fold constants precomputed from the polynomial 0x18bb7
|
|
// G(x) = x^16 + x^15 + x^11 + x^9 + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + x^0
|
|
.Lfold_across_128_bytes_consts:
|
|
.quad 0x0000000000006123 // x^(8*128) mod G(x)
|
|
.quad 0x0000000000002295 // x^(8*128+64) mod G(x)
|
|
// .Lfold_across_64_bytes_consts:
|
|
.quad 0x0000000000001069 // x^(4*128) mod G(x)
|
|
.quad 0x000000000000dd31 // x^(4*128+64) mod G(x)
|
|
// .Lfold_across_32_bytes_consts:
|
|
.quad 0x000000000000857d // x^(2*128) mod G(x)
|
|
.quad 0x0000000000007acc // x^(2*128+64) mod G(x)
|
|
.Lfold_across_16_bytes_consts:
|
|
.quad 0x000000000000a010 // x^(1*128) mod G(x)
|
|
.quad 0x0000000000001faa // x^(1*128+64) mod G(x)
|
|
// .Lfinal_fold_consts:
|
|
.quad 0x1368000000000000 // x^48 * (x^48 mod G(x))
|
|
.quad 0x2d56000000000000 // x^48 * (x^80 mod G(x))
|
|
// .Lbarrett_reduction_consts:
|
|
.quad 0x0000000000018bb7 // G(x)
|
|
.quad 0x00000001f65a57f8 // floor(x^48 / G(x))
|
|
|
|
// For 1 <= len <= 15, the 16-byte vector beginning at &byteshift_table[16 -
|
|
// len] is the index vector to shift left by 'len' bytes, and is also {0x80,
|
|
// ..., 0x80} XOR the index vector to shift right by '16 - len' bytes.
|
|
.Lbyteshift_table:
|
|
.byte 0x0, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87
|
|
.byte 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f
|
|
.byte 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7
|
|
.byte 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe , 0x0
|