mirror of https://gitee.com/openkylin/linux.git
504 lines
11 KiB
C
504 lines
11 KiB
C
#ifndef _M68KNOMMU_BITOPS_H
|
|
#define _M68KNOMMU_BITOPS_H
|
|
|
|
/*
|
|
* Copyright 1992, Linus Torvalds.
|
|
*/
|
|
|
|
#include <linux/config.h>
|
|
#include <linux/compiler.h>
|
|
#include <asm/byteorder.h> /* swab32 */
|
|
#include <asm/system.h> /* save_flags */
|
|
|
|
#ifdef __KERNEL__
|
|
|
|
/*
|
|
* Generic ffs().
|
|
*/
|
|
static inline int ffs(int x)
|
|
{
|
|
int r = 1;
|
|
|
|
if (!x)
|
|
return 0;
|
|
if (!(x & 0xffff)) {
|
|
x >>= 16;
|
|
r += 16;
|
|
}
|
|
if (!(x & 0xff)) {
|
|
x >>= 8;
|
|
r += 8;
|
|
}
|
|
if (!(x & 0xf)) {
|
|
x >>= 4;
|
|
r += 4;
|
|
}
|
|
if (!(x & 3)) {
|
|
x >>= 2;
|
|
r += 2;
|
|
}
|
|
if (!(x & 1)) {
|
|
x >>= 1;
|
|
r += 1;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
* Generic __ffs().
|
|
*/
|
|
static inline int __ffs(int x)
|
|
{
|
|
int r = 0;
|
|
|
|
if (!x)
|
|
return 0;
|
|
if (!(x & 0xffff)) {
|
|
x >>= 16;
|
|
r += 16;
|
|
}
|
|
if (!(x & 0xff)) {
|
|
x >>= 8;
|
|
r += 8;
|
|
}
|
|
if (!(x & 0xf)) {
|
|
x >>= 4;
|
|
r += 4;
|
|
}
|
|
if (!(x & 3)) {
|
|
x >>= 2;
|
|
r += 2;
|
|
}
|
|
if (!(x & 1)) {
|
|
x >>= 1;
|
|
r += 1;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
* Every architecture must define this function. It's the fastest
|
|
* way of searching a 140-bit bitmap where the first 100 bits are
|
|
* unlikely to be set. It's guaranteed that at least one of the 140
|
|
* bits is cleared.
|
|
*/
|
|
static inline int sched_find_first_bit(unsigned long *b)
|
|
{
|
|
if (unlikely(b[0]))
|
|
return __ffs(b[0]);
|
|
if (unlikely(b[1]))
|
|
return __ffs(b[1]) + 32;
|
|
if (unlikely(b[2]))
|
|
return __ffs(b[2]) + 64;
|
|
if (b[3])
|
|
return __ffs(b[3]) + 96;
|
|
return __ffs(b[4]) + 128;
|
|
}
|
|
|
|
/*
|
|
* ffz = Find First Zero in word. Undefined if no zero exists,
|
|
* so code should check against ~0UL first..
|
|
*/
|
|
static __inline__ unsigned long ffz(unsigned long word)
|
|
{
|
|
unsigned long result = 0;
|
|
|
|
while(word & 1) {
|
|
result++;
|
|
word >>= 1;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
static __inline__ void set_bit(int nr, volatile unsigned long * addr)
|
|
{
|
|
#ifdef CONFIG_COLDFIRE
|
|
__asm__ __volatile__ ("lea %0,%%a0; bset %1,(%%a0)"
|
|
: "+m" (((volatile char *)addr)[(nr^31) >> 3])
|
|
: "d" (nr)
|
|
: "%a0", "cc");
|
|
#else
|
|
__asm__ __volatile__ ("bset %1,%0"
|
|
: "+m" (((volatile char *)addr)[(nr^31) >> 3])
|
|
: "di" (nr)
|
|
: "cc");
|
|
#endif
|
|
}
|
|
|
|
#define __set_bit(nr, addr) set_bit(nr, addr)
|
|
|
|
/*
|
|
* clear_bit() doesn't provide any barrier for the compiler.
|
|
*/
|
|
#define smp_mb__before_clear_bit() barrier()
|
|
#define smp_mb__after_clear_bit() barrier()
|
|
|
|
static __inline__ void clear_bit(int nr, volatile unsigned long * addr)
|
|
{
|
|
#ifdef CONFIG_COLDFIRE
|
|
__asm__ __volatile__ ("lea %0,%%a0; bclr %1,(%%a0)"
|
|
: "+m" (((volatile char *)addr)[(nr^31) >> 3])
|
|
: "d" (nr)
|
|
: "%a0", "cc");
|
|
#else
|
|
__asm__ __volatile__ ("bclr %1,%0"
|
|
: "+m" (((volatile char *)addr)[(nr^31) >> 3])
|
|
: "di" (nr)
|
|
: "cc");
|
|
#endif
|
|
}
|
|
|
|
#define __clear_bit(nr, addr) clear_bit(nr, addr)
|
|
|
|
static __inline__ void change_bit(int nr, volatile unsigned long * addr)
|
|
{
|
|
#ifdef CONFIG_COLDFIRE
|
|
__asm__ __volatile__ ("lea %0,%%a0; bchg %1,(%%a0)"
|
|
: "+m" (((volatile char *)addr)[(nr^31) >> 3])
|
|
: "d" (nr)
|
|
: "%a0", "cc");
|
|
#else
|
|
__asm__ __volatile__ ("bchg %1,%0"
|
|
: "+m" (((volatile char *)addr)[(nr^31) >> 3])
|
|
: "di" (nr)
|
|
: "cc");
|
|
#endif
|
|
}
|
|
|
|
#define __change_bit(nr, addr) change_bit(nr, addr)
|
|
|
|
static __inline__ int test_and_set_bit(int nr, volatile unsigned long * addr)
|
|
{
|
|
char retval;
|
|
|
|
#ifdef CONFIG_COLDFIRE
|
|
__asm__ __volatile__ ("lea %1,%%a0; bset %2,(%%a0); sne %0"
|
|
: "=d" (retval), "+m" (((volatile char *)addr)[(nr^31) >> 3])
|
|
: "d" (nr)
|
|
: "%a0");
|
|
#else
|
|
__asm__ __volatile__ ("bset %2,%1; sne %0"
|
|
: "=d" (retval), "+m" (((volatile char *)addr)[(nr^31) >> 3])
|
|
: "di" (nr)
|
|
/* No clobber */);
|
|
#endif
|
|
|
|
return retval;
|
|
}
|
|
|
|
#define __test_and_set_bit(nr, addr) test_and_set_bit(nr, addr)
|
|
|
|
static __inline__ int test_and_clear_bit(int nr, volatile unsigned long * addr)
|
|
{
|
|
char retval;
|
|
|
|
#ifdef CONFIG_COLDFIRE
|
|
__asm__ __volatile__ ("lea %1,%%a0; bclr %2,(%%a0); sne %0"
|
|
: "=d" (retval), "+m" (((volatile char *)addr)[(nr^31) >> 3])
|
|
: "d" (nr)
|
|
: "%a0");
|
|
#else
|
|
__asm__ __volatile__ ("bclr %2,%1; sne %0"
|
|
: "=d" (retval), "+m" (((volatile char *)addr)[(nr^31) >> 3])
|
|
: "di" (nr)
|
|
/* No clobber */);
|
|
#endif
|
|
|
|
return retval;
|
|
}
|
|
|
|
#define __test_and_clear_bit(nr, addr) test_and_clear_bit(nr, addr)
|
|
|
|
static __inline__ int test_and_change_bit(int nr, volatile unsigned long * addr)
|
|
{
|
|
char retval;
|
|
|
|
#ifdef CONFIG_COLDFIRE
|
|
__asm__ __volatile__ ("lea %1,%%a0\n\tbchg %2,(%%a0)\n\tsne %0"
|
|
: "=d" (retval), "+m" (((volatile char *)addr)[(nr^31) >> 3])
|
|
: "d" (nr)
|
|
: "%a0");
|
|
#else
|
|
__asm__ __volatile__ ("bchg %2,%1; sne %0"
|
|
: "=d" (retval), "+m" (((volatile char *)addr)[(nr^31) >> 3])
|
|
: "di" (nr)
|
|
/* No clobber */);
|
|
#endif
|
|
|
|
return retval;
|
|
}
|
|
|
|
#define __test_and_change_bit(nr, addr) test_and_change_bit(nr, addr)
|
|
|
|
/*
|
|
* This routine doesn't need to be atomic.
|
|
*/
|
|
static __inline__ int __constant_test_bit(int nr, const volatile unsigned long * addr)
|
|
{
|
|
return ((1UL << (nr & 31)) & (((const volatile unsigned int *) addr)[nr >> 5])) != 0;
|
|
}
|
|
|
|
static __inline__ int __test_bit(int nr, const volatile unsigned long * addr)
|
|
{
|
|
int * a = (int *) addr;
|
|
int mask;
|
|
|
|
a += nr >> 5;
|
|
mask = 1 << (nr & 0x1f);
|
|
return ((mask & *a) != 0);
|
|
}
|
|
|
|
#define test_bit(nr,addr) \
|
|
(__builtin_constant_p(nr) ? \
|
|
__constant_test_bit((nr),(addr)) : \
|
|
__test_bit((nr),(addr)))
|
|
|
|
#define find_first_zero_bit(addr, size) \
|
|
find_next_zero_bit((addr), (size), 0)
|
|
#define find_first_bit(addr, size) \
|
|
find_next_bit((addr), (size), 0)
|
|
|
|
static __inline__ int find_next_zero_bit (void * addr, int size, int offset)
|
|
{
|
|
unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
|
|
unsigned long result = offset & ~31UL;
|
|
unsigned long tmp;
|
|
|
|
if (offset >= size)
|
|
return size;
|
|
size -= result;
|
|
offset &= 31UL;
|
|
if (offset) {
|
|
tmp = *(p++);
|
|
tmp |= ~0UL >> (32-offset);
|
|
if (size < 32)
|
|
goto found_first;
|
|
if (~tmp)
|
|
goto found_middle;
|
|
size -= 32;
|
|
result += 32;
|
|
}
|
|
while (size & ~31UL) {
|
|
if (~(tmp = *(p++)))
|
|
goto found_middle;
|
|
result += 32;
|
|
size -= 32;
|
|
}
|
|
if (!size)
|
|
return result;
|
|
tmp = *p;
|
|
|
|
found_first:
|
|
tmp |= ~0UL >> size;
|
|
found_middle:
|
|
return result + ffz(tmp);
|
|
}
|
|
|
|
/*
|
|
* Find next one bit in a bitmap reasonably efficiently.
|
|
*/
|
|
static __inline__ unsigned long find_next_bit(const unsigned long *addr,
|
|
unsigned long size, unsigned long offset)
|
|
{
|
|
unsigned int *p = ((unsigned int *) addr) + (offset >> 5);
|
|
unsigned int result = offset & ~31UL;
|
|
unsigned int tmp;
|
|
|
|
if (offset >= size)
|
|
return size;
|
|
size -= result;
|
|
offset &= 31UL;
|
|
if (offset) {
|
|
tmp = *p++;
|
|
tmp &= ~0UL << offset;
|
|
if (size < 32)
|
|
goto found_first;
|
|
if (tmp)
|
|
goto found_middle;
|
|
size -= 32;
|
|
result += 32;
|
|
}
|
|
while (size >= 32) {
|
|
if ((tmp = *p++) != 0)
|
|
goto found_middle;
|
|
result += 32;
|
|
size -= 32;
|
|
}
|
|
if (!size)
|
|
return result;
|
|
tmp = *p;
|
|
|
|
found_first:
|
|
tmp &= ~0UL >> (32 - size);
|
|
if (tmp == 0UL) /* Are any bits set? */
|
|
return result + size; /* Nope. */
|
|
found_middle:
|
|
return result + __ffs(tmp);
|
|
}
|
|
|
|
/*
|
|
* hweightN: returns the hamming weight (i.e. the number
|
|
* of bits set) of a N-bit word
|
|
*/
|
|
|
|
#define hweight32(x) generic_hweight32(x)
|
|
#define hweight16(x) generic_hweight16(x)
|
|
#define hweight8(x) generic_hweight8(x)
|
|
|
|
|
|
static __inline__ int ext2_set_bit(int nr, volatile void * addr)
|
|
{
|
|
char retval;
|
|
|
|
#ifdef CONFIG_COLDFIRE
|
|
__asm__ __volatile__ ("lea %1,%%a0; bset %2,(%%a0); sne %0"
|
|
: "=d" (retval), "+m" (((volatile char *)addr)[nr >> 3])
|
|
: "d" (nr)
|
|
: "%a0");
|
|
#else
|
|
__asm__ __volatile__ ("bset %2,%1; sne %0"
|
|
: "=d" (retval), "+m" (((volatile char *)addr)[nr >> 3])
|
|
: "di" (nr)
|
|
/* No clobber */);
|
|
#endif
|
|
|
|
return retval;
|
|
}
|
|
|
|
static __inline__ int ext2_clear_bit(int nr, volatile void * addr)
|
|
{
|
|
char retval;
|
|
|
|
#ifdef CONFIG_COLDFIRE
|
|
__asm__ __volatile__ ("lea %1,%%a0; bclr %2,(%%a0); sne %0"
|
|
: "=d" (retval), "+m" (((volatile char *)addr)[nr >> 3])
|
|
: "d" (nr)
|
|
: "%a0");
|
|
#else
|
|
__asm__ __volatile__ ("bclr %2,%1; sne %0"
|
|
: "=d" (retval), "+m" (((volatile char *)addr)[nr >> 3])
|
|
: "di" (nr)
|
|
/* No clobber */);
|
|
#endif
|
|
|
|
return retval;
|
|
}
|
|
|
|
#define ext2_set_bit_atomic(lock, nr, addr) \
|
|
({ \
|
|
int ret; \
|
|
spin_lock(lock); \
|
|
ret = ext2_set_bit((nr), (addr)); \
|
|
spin_unlock(lock); \
|
|
ret; \
|
|
})
|
|
|
|
#define ext2_clear_bit_atomic(lock, nr, addr) \
|
|
({ \
|
|
int ret; \
|
|
spin_lock(lock); \
|
|
ret = ext2_clear_bit((nr), (addr)); \
|
|
spin_unlock(lock); \
|
|
ret; \
|
|
})
|
|
|
|
static __inline__ int ext2_test_bit(int nr, const volatile void * addr)
|
|
{
|
|
char retval;
|
|
|
|
#ifdef CONFIG_COLDFIRE
|
|
__asm__ __volatile__ ("lea %1,%%a0; btst %2,(%%a0); sne %0"
|
|
: "=d" (retval)
|
|
: "m" (((const volatile char *)addr)[nr >> 3]), "d" (nr)
|
|
: "%a0");
|
|
#else
|
|
__asm__ __volatile__ ("btst %2,%1; sne %0"
|
|
: "=d" (retval)
|
|
: "m" (((const volatile char *)addr)[nr >> 3]), "di" (nr)
|
|
/* No clobber */);
|
|
#endif
|
|
|
|
return retval;
|
|
}
|
|
|
|
#define ext2_find_first_zero_bit(addr, size) \
|
|
ext2_find_next_zero_bit((addr), (size), 0)
|
|
|
|
static __inline__ unsigned long ext2_find_next_zero_bit(void *addr, unsigned long size, unsigned long offset)
|
|
{
|
|
unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
|
|
unsigned long result = offset & ~31UL;
|
|
unsigned long tmp;
|
|
|
|
if (offset >= size)
|
|
return size;
|
|
size -= result;
|
|
offset &= 31UL;
|
|
if(offset) {
|
|
/* We hold the little endian value in tmp, but then the
|
|
* shift is illegal. So we could keep a big endian value
|
|
* in tmp, like this:
|
|
*
|
|
* tmp = __swab32(*(p++));
|
|
* tmp |= ~0UL >> (32-offset);
|
|
*
|
|
* but this would decrease preformance, so we change the
|
|
* shift:
|
|
*/
|
|
tmp = *(p++);
|
|
tmp |= __swab32(~0UL >> (32-offset));
|
|
if(size < 32)
|
|
goto found_first;
|
|
if(~tmp)
|
|
goto found_middle;
|
|
size -= 32;
|
|
result += 32;
|
|
}
|
|
while(size & ~31UL) {
|
|
if(~(tmp = *(p++)))
|
|
goto found_middle;
|
|
result += 32;
|
|
size -= 32;
|
|
}
|
|
if(!size)
|
|
return result;
|
|
tmp = *p;
|
|
|
|
found_first:
|
|
/* tmp is little endian, so we would have to swab the shift,
|
|
* see above. But then we have to swab tmp below for ffz, so
|
|
* we might as well do this here.
|
|
*/
|
|
return result + ffz(__swab32(tmp) | (~0UL << size));
|
|
found_middle:
|
|
return result + ffz(__swab32(tmp));
|
|
}
|
|
|
|
/* Bitmap functions for the minix filesystem. */
|
|
#define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr)
|
|
#define minix_set_bit(nr,addr) set_bit(nr,addr)
|
|
#define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr)
|
|
#define minix_test_bit(nr,addr) test_bit(nr,addr)
|
|
#define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)
|
|
|
|
/**
|
|
* hweightN - returns the hamming weight of a N-bit word
|
|
* @x: the word to weigh
|
|
*
|
|
* The Hamming Weight of a number is the total number of bits set in it.
|
|
*/
|
|
|
|
#define hweight32(x) generic_hweight32(x)
|
|
#define hweight16(x) generic_hweight16(x)
|
|
#define hweight8(x) generic_hweight8(x)
|
|
|
|
#endif /* __KERNEL__ */
|
|
|
|
/*
|
|
* fls: find last bit set.
|
|
*/
|
|
#define fls(x) generic_fls(x)
|
|
|
|
#endif /* _M68KNOMMU_BITOPS_H */
|