linux/fs/ocfs2/file.c

2758 lines
66 KiB
C

/* -*- mode: c; c-basic-offset: 8; -*-
* vim: noexpandtab sw=8 ts=8 sts=0:
*
* file.c
*
* File open, close, extend, truncate
*
* Copyright (C) 2002, 2004 Oracle. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include <linux/capability.h>
#include <linux/fs.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/highmem.h>
#include <linux/pagemap.h>
#include <linux/uio.h>
#include <linux/sched.h>
#include <linux/splice.h>
#include <linux/mount.h>
#include <linux/writeback.h>
#include <linux/falloc.h>
#include <linux/quotaops.h>
#include <linux/blkdev.h>
#include <cluster/masklog.h>
#include "ocfs2.h"
#include "alloc.h"
#include "aops.h"
#include "dir.h"
#include "dlmglue.h"
#include "extent_map.h"
#include "file.h"
#include "sysfile.h"
#include "inode.h"
#include "ioctl.h"
#include "journal.h"
#include "locks.h"
#include "mmap.h"
#include "suballoc.h"
#include "super.h"
#include "xattr.h"
#include "acl.h"
#include "quota.h"
#include "refcounttree.h"
#include "ocfs2_trace.h"
#include "buffer_head_io.h"
static int ocfs2_init_file_private(struct inode *inode, struct file *file)
{
struct ocfs2_file_private *fp;
fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL);
if (!fp)
return -ENOMEM;
fp->fp_file = file;
mutex_init(&fp->fp_mutex);
ocfs2_file_lock_res_init(&fp->fp_flock, fp);
file->private_data = fp;
return 0;
}
static void ocfs2_free_file_private(struct inode *inode, struct file *file)
{
struct ocfs2_file_private *fp = file->private_data;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
if (fp) {
ocfs2_simple_drop_lockres(osb, &fp->fp_flock);
ocfs2_lock_res_free(&fp->fp_flock);
kfree(fp);
file->private_data = NULL;
}
}
static int ocfs2_file_open(struct inode *inode, struct file *file)
{
int status;
int mode = file->f_flags;
struct ocfs2_inode_info *oi = OCFS2_I(inode);
trace_ocfs2_file_open(inode, file, file->f_path.dentry,
(unsigned long long)OCFS2_I(inode)->ip_blkno,
file->f_path.dentry->d_name.len,
file->f_path.dentry->d_name.name, mode);
if (file->f_mode & FMODE_WRITE)
dquot_initialize(inode);
spin_lock(&oi->ip_lock);
/* Check that the inode hasn't been wiped from disk by another
* node. If it hasn't then we're safe as long as we hold the
* spin lock until our increment of open count. */
if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_DELETED) {
spin_unlock(&oi->ip_lock);
status = -ENOENT;
goto leave;
}
if (mode & O_DIRECT)
oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT;
oi->ip_open_count++;
spin_unlock(&oi->ip_lock);
status = ocfs2_init_file_private(inode, file);
if (status) {
/*
* We want to set open count back if we're failing the
* open.
*/
spin_lock(&oi->ip_lock);
oi->ip_open_count--;
spin_unlock(&oi->ip_lock);
}
leave:
return status;
}
static int ocfs2_file_release(struct inode *inode, struct file *file)
{
struct ocfs2_inode_info *oi = OCFS2_I(inode);
spin_lock(&oi->ip_lock);
if (!--oi->ip_open_count)
oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT;
trace_ocfs2_file_release(inode, file, file->f_path.dentry,
oi->ip_blkno,
file->f_path.dentry->d_name.len,
file->f_path.dentry->d_name.name,
oi->ip_open_count);
spin_unlock(&oi->ip_lock);
ocfs2_free_file_private(inode, file);
return 0;
}
static int ocfs2_dir_open(struct inode *inode, struct file *file)
{
return ocfs2_init_file_private(inode, file);
}
static int ocfs2_dir_release(struct inode *inode, struct file *file)
{
ocfs2_free_file_private(inode, file);
return 0;
}
static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end,
int datasync)
{
int err = 0;
journal_t *journal;
struct inode *inode = file->f_mapping->host;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
trace_ocfs2_sync_file(inode, file, file->f_path.dentry,
OCFS2_I(inode)->ip_blkno,
file->f_path.dentry->d_name.len,
file->f_path.dentry->d_name.name,
(unsigned long long)datasync);
err = filemap_write_and_wait_range(inode->i_mapping, start, end);
if (err)
return err;
/*
* Probably don't need the i_mutex at all in here, just putting it here
* to be consistent with how fsync used to be called, someone more
* familiar with the fs could possibly remove it.
*/
mutex_lock(&inode->i_mutex);
if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) {
/*
* We still have to flush drive's caches to get data to the
* platter
*/
if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
goto bail;
}
journal = osb->journal->j_journal;
err = jbd2_journal_force_commit(journal);
bail:
if (err)
mlog_errno(err);
mutex_unlock(&inode->i_mutex);
return (err < 0) ? -EIO : 0;
}
int ocfs2_should_update_atime(struct inode *inode,
struct vfsmount *vfsmnt)
{
struct timespec now;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
return 0;
if ((inode->i_flags & S_NOATIME) ||
((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)))
return 0;
/*
* We can be called with no vfsmnt structure - NFSD will
* sometimes do this.
*
* Note that our action here is different than touch_atime() -
* if we can't tell whether this is a noatime mount, then we
* don't know whether to trust the value of s_atime_quantum.
*/
if (vfsmnt == NULL)
return 0;
if ((vfsmnt->mnt_flags & MNT_NOATIME) ||
((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
return 0;
if (vfsmnt->mnt_flags & MNT_RELATIME) {
if ((timespec_compare(&inode->i_atime, &inode->i_mtime) <= 0) ||
(timespec_compare(&inode->i_atime, &inode->i_ctime) <= 0))
return 1;
return 0;
}
now = CURRENT_TIME;
if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum))
return 0;
else
return 1;
}
int ocfs2_update_inode_atime(struct inode *inode,
struct buffer_head *bh)
{
int ret;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
handle_t *handle;
struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data;
handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
if (IS_ERR(handle)) {
ret = PTR_ERR(handle);
mlog_errno(ret);
goto out;
}
ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (ret) {
mlog_errno(ret);
goto out_commit;
}
/*
* Don't use ocfs2_mark_inode_dirty() here as we don't always
* have i_mutex to guard against concurrent changes to other
* inode fields.
*/
inode->i_atime = CURRENT_TIME;
di->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
ocfs2_journal_dirty(handle, bh);
out_commit:
ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
out:
return ret;
}
static int ocfs2_set_inode_size(handle_t *handle,
struct inode *inode,
struct buffer_head *fe_bh,
u64 new_i_size)
{
int status;
i_size_write(inode, new_i_size);
inode->i_blocks = ocfs2_inode_sector_count(inode);
inode->i_ctime = inode->i_mtime = CURRENT_TIME;
status = ocfs2_mark_inode_dirty(handle, inode, fe_bh);
if (status < 0) {
mlog_errno(status);
goto bail;
}
bail:
return status;
}
int ocfs2_simple_size_update(struct inode *inode,
struct buffer_head *di_bh,
u64 new_i_size)
{
int ret;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
handle_t *handle = NULL;
handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
if (IS_ERR(handle)) {
ret = PTR_ERR(handle);
mlog_errno(ret);
goto out;
}
ret = ocfs2_set_inode_size(handle, inode, di_bh,
new_i_size);
if (ret < 0)
mlog_errno(ret);
ocfs2_commit_trans(osb, handle);
out:
return ret;
}
static int ocfs2_cow_file_pos(struct inode *inode,
struct buffer_head *fe_bh,
u64 offset)
{
int status;
u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
unsigned int num_clusters = 0;
unsigned int ext_flags = 0;
/*
* If the new offset is aligned to the range of the cluster, there is
* no space for ocfs2_zero_range_for_truncate to fill, so no need to
* CoW either.
*/
if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0)
return 0;
status = ocfs2_get_clusters(inode, cpos, &phys,
&num_clusters, &ext_flags);
if (status) {
mlog_errno(status);
goto out;
}
if (!(ext_flags & OCFS2_EXT_REFCOUNTED))
goto out;
return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1);
out:
return status;
}
static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb,
struct inode *inode,
struct buffer_head *fe_bh,
u64 new_i_size)
{
int status;
handle_t *handle;
struct ocfs2_dinode *di;
u64 cluster_bytes;
/*
* We need to CoW the cluster contains the offset if it is reflinked
* since we will call ocfs2_zero_range_for_truncate later which will
* write "0" from offset to the end of the cluster.
*/
status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size);
if (status) {
mlog_errno(status);
return status;
}
/* TODO: This needs to actually orphan the inode in this
* transaction. */
handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
if (IS_ERR(handle)) {
status = PTR_ERR(handle);
mlog_errno(status);
goto out;
}
status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (status < 0) {
mlog_errno(status);
goto out_commit;
}
/*
* Do this before setting i_size.
*/
cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size);
status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size,
cluster_bytes);
if (status) {
mlog_errno(status);
goto out_commit;
}
i_size_write(inode, new_i_size);
inode->i_ctime = inode->i_mtime = CURRENT_TIME;
di = (struct ocfs2_dinode *) fe_bh->b_data;
di->i_size = cpu_to_le64(new_i_size);
di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
ocfs2_journal_dirty(handle, fe_bh);
out_commit:
ocfs2_commit_trans(osb, handle);
out:
return status;
}
static int ocfs2_truncate_file(struct inode *inode,
struct buffer_head *di_bh,
u64 new_i_size)
{
int status = 0;
struct ocfs2_dinode *fe = NULL;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
/* We trust di_bh because it comes from ocfs2_inode_lock(), which
* already validated it */
fe = (struct ocfs2_dinode *) di_bh->b_data;
trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno,
(unsigned long long)le64_to_cpu(fe->i_size),
(unsigned long long)new_i_size);
mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode),
"Inode %llu, inode i_size = %lld != di "
"i_size = %llu, i_flags = 0x%x\n",
(unsigned long long)OCFS2_I(inode)->ip_blkno,
i_size_read(inode),
(unsigned long long)le64_to_cpu(fe->i_size),
le32_to_cpu(fe->i_flags));
if (new_i_size > le64_to_cpu(fe->i_size)) {
trace_ocfs2_truncate_file_error(
(unsigned long long)le64_to_cpu(fe->i_size),
(unsigned long long)new_i_size);
status = -EINVAL;
mlog_errno(status);
goto bail;
}
/* lets handle the simple truncate cases before doing any more
* cluster locking. */
if (new_i_size == le64_to_cpu(fe->i_size))
goto bail;
down_write(&OCFS2_I(inode)->ip_alloc_sem);
ocfs2_resv_discard(&osb->osb_la_resmap,
&OCFS2_I(inode)->ip_la_data_resv);
/*
* The inode lock forced other nodes to sync and drop their
* pages, which (correctly) happens even if we have a truncate
* without allocation change - ocfs2 cluster sizes can be much
* greater than page size, so we have to truncate them
* anyway.
*/
unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1);
truncate_inode_pages(inode->i_mapping, new_i_size);
if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
status = ocfs2_truncate_inline(inode, di_bh, new_i_size,
i_size_read(inode), 1);
if (status)
mlog_errno(status);
goto bail_unlock_sem;
}
/* alright, we're going to need to do a full blown alloc size
* change. Orphan the inode so that recovery can complete the
* truncate if necessary. This does the task of marking
* i_size. */
status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size);
if (status < 0) {
mlog_errno(status);
goto bail_unlock_sem;
}
status = ocfs2_commit_truncate(osb, inode, di_bh);
if (status < 0) {
mlog_errno(status);
goto bail_unlock_sem;
}
/* TODO: orphan dir cleanup here. */
bail_unlock_sem:
up_write(&OCFS2_I(inode)->ip_alloc_sem);
bail:
if (!status && OCFS2_I(inode)->ip_clusters == 0)
status = ocfs2_try_remove_refcount_tree(inode, di_bh);
return status;
}
/*
* extend file allocation only here.
* we'll update all the disk stuff, and oip->alloc_size
*
* expect stuff to be locked, a transaction started and enough data /
* metadata reservations in the contexts.
*
* Will return -EAGAIN, and a reason if a restart is needed.
* If passed in, *reason will always be set, even in error.
*/
int ocfs2_add_inode_data(struct ocfs2_super *osb,
struct inode *inode,
u32 *logical_offset,
u32 clusters_to_add,
int mark_unwritten,
struct buffer_head *fe_bh,
handle_t *handle,
struct ocfs2_alloc_context *data_ac,
struct ocfs2_alloc_context *meta_ac,
enum ocfs2_alloc_restarted *reason_ret)
{
int ret;
struct ocfs2_extent_tree et;
ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh);
ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset,
clusters_to_add, mark_unwritten,
data_ac, meta_ac, reason_ret);
return ret;
}
static int __ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
u32 clusters_to_add, int mark_unwritten)
{
int status = 0;
int restart_func = 0;
int credits;
u32 prev_clusters;
struct buffer_head *bh = NULL;
struct ocfs2_dinode *fe = NULL;
handle_t *handle = NULL;
struct ocfs2_alloc_context *data_ac = NULL;
struct ocfs2_alloc_context *meta_ac = NULL;
enum ocfs2_alloc_restarted why;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
struct ocfs2_extent_tree et;
int did_quota = 0;
/*
* Unwritten extent only exists for file systems which
* support holes.
*/
BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb));
status = ocfs2_read_inode_block(inode, &bh);
if (status < 0) {
mlog_errno(status);
goto leave;
}
fe = (struct ocfs2_dinode *) bh->b_data;
restart_all:
BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters);
ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh);
status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0,
&data_ac, &meta_ac);
if (status) {
mlog_errno(status);
goto leave;
}
credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list);
handle = ocfs2_start_trans(osb, credits);
if (IS_ERR(handle)) {
status = PTR_ERR(handle);
handle = NULL;
mlog_errno(status);
goto leave;
}
restarted_transaction:
trace_ocfs2_extend_allocation(
(unsigned long long)OCFS2_I(inode)->ip_blkno,
(unsigned long long)i_size_read(inode),
le32_to_cpu(fe->i_clusters), clusters_to_add,
why, restart_func);
status = dquot_alloc_space_nodirty(inode,
ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
if (status)
goto leave;
did_quota = 1;
/* reserve a write to the file entry early on - that we if we
* run out of credits in the allocation path, we can still
* update i_size. */
status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (status < 0) {
mlog_errno(status);
goto leave;
}
prev_clusters = OCFS2_I(inode)->ip_clusters;
status = ocfs2_add_inode_data(osb,
inode,
&logical_start,
clusters_to_add,
mark_unwritten,
bh,
handle,
data_ac,
meta_ac,
&why);
if ((status < 0) && (status != -EAGAIN)) {
if (status != -ENOSPC)
mlog_errno(status);
goto leave;
}
ocfs2_journal_dirty(handle, bh);
spin_lock(&OCFS2_I(inode)->ip_lock);
clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters);
spin_unlock(&OCFS2_I(inode)->ip_lock);
/* Release unused quota reservation */
dquot_free_space(inode,
ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
did_quota = 0;
if (why != RESTART_NONE && clusters_to_add) {
if (why == RESTART_META) {
restart_func = 1;
status = 0;
} else {
BUG_ON(why != RESTART_TRANS);
status = ocfs2_allocate_extend_trans(handle, 1);
if (status < 0) {
/* handle still has to be committed at
* this point. */
status = -ENOMEM;
mlog_errno(status);
goto leave;
}
goto restarted_transaction;
}
}
trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno,
le32_to_cpu(fe->i_clusters),
(unsigned long long)le64_to_cpu(fe->i_size),
OCFS2_I(inode)->ip_clusters,
(unsigned long long)i_size_read(inode));
leave:
if (status < 0 && did_quota)
dquot_free_space(inode,
ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
if (handle) {
ocfs2_commit_trans(osb, handle);
handle = NULL;
}
if (data_ac) {
ocfs2_free_alloc_context(data_ac);
data_ac = NULL;
}
if (meta_ac) {
ocfs2_free_alloc_context(meta_ac);
meta_ac = NULL;
}
if ((!status) && restart_func) {
restart_func = 0;
goto restart_all;
}
brelse(bh);
bh = NULL;
return status;
}
/*
* While a write will already be ordering the data, a truncate will not.
* Thus, we need to explicitly order the zeroed pages.
*/
static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode)
{
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
handle_t *handle = NULL;
int ret = 0;
if (!ocfs2_should_order_data(inode))
goto out;
handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
if (IS_ERR(handle)) {
ret = -ENOMEM;
mlog_errno(ret);
goto out;
}
ret = ocfs2_jbd2_file_inode(handle, inode);
if (ret < 0)
mlog_errno(ret);
out:
if (ret) {
if (!IS_ERR(handle))
ocfs2_commit_trans(osb, handle);
handle = ERR_PTR(ret);
}
return handle;
}
/* Some parts of this taken from generic_cont_expand, which turned out
* to be too fragile to do exactly what we need without us having to
* worry about recursive locking in ->write_begin() and ->write_end(). */
static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from,
u64 abs_to)
{
struct address_space *mapping = inode->i_mapping;
struct page *page;
unsigned long index = abs_from >> PAGE_CACHE_SHIFT;
handle_t *handle = NULL;
int ret = 0;
unsigned zero_from, zero_to, block_start, block_end;
BUG_ON(abs_from >= abs_to);
BUG_ON(abs_to > (((u64)index + 1) << PAGE_CACHE_SHIFT));
BUG_ON(abs_from & (inode->i_blkbits - 1));
page = find_or_create_page(mapping, index, GFP_NOFS);
if (!page) {
ret = -ENOMEM;
mlog_errno(ret);
goto out;
}
/* Get the offsets within the page that we want to zero */
zero_from = abs_from & (PAGE_CACHE_SIZE - 1);
zero_to = abs_to & (PAGE_CACHE_SIZE - 1);
if (!zero_to)
zero_to = PAGE_CACHE_SIZE;
trace_ocfs2_write_zero_page(
(unsigned long long)OCFS2_I(inode)->ip_blkno,
(unsigned long long)abs_from,
(unsigned long long)abs_to,
index, zero_from, zero_to);
/* We know that zero_from is block aligned */
for (block_start = zero_from; block_start < zero_to;
block_start = block_end) {
block_end = block_start + (1 << inode->i_blkbits);
/*
* block_start is block-aligned. Bump it by one to force
* __block_write_begin and block_commit_write to zero the
* whole block.
*/
ret = __block_write_begin(page, block_start + 1, 0,
ocfs2_get_block);
if (ret < 0) {
mlog_errno(ret);
goto out_unlock;
}
if (!handle) {
handle = ocfs2_zero_start_ordered_transaction(inode);
if (IS_ERR(handle)) {
ret = PTR_ERR(handle);
handle = NULL;
break;
}
}
/* must not update i_size! */
ret = block_commit_write(page, block_start + 1,
block_start + 1);
if (ret < 0)
mlog_errno(ret);
else
ret = 0;
}
if (handle)
ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
out_unlock:
unlock_page(page);
page_cache_release(page);
out:
return ret;
}
/*
* Find the next range to zero. We do this in terms of bytes because
* that's what ocfs2_zero_extend() wants, and it is dealing with the
* pagecache. We may return multiple extents.
*
* zero_start and zero_end are ocfs2_zero_extend()s current idea of what
* needs to be zeroed. range_start and range_end return the next zeroing
* range. A subsequent call should pass the previous range_end as its
* zero_start. If range_end is 0, there's nothing to do.
*
* Unwritten extents are skipped over. Refcounted extents are CoWd.
*/
static int ocfs2_zero_extend_get_range(struct inode *inode,
struct buffer_head *di_bh,
u64 zero_start, u64 zero_end,
u64 *range_start, u64 *range_end)
{
int rc = 0, needs_cow = 0;
u32 p_cpos, zero_clusters = 0;
u32 zero_cpos =
zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end);
unsigned int num_clusters = 0;
unsigned int ext_flags = 0;
while (zero_cpos < last_cpos) {
rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos,
&num_clusters, &ext_flags);
if (rc) {
mlog_errno(rc);
goto out;
}
if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
zero_clusters = num_clusters;
if (ext_flags & OCFS2_EXT_REFCOUNTED)
needs_cow = 1;
break;
}
zero_cpos += num_clusters;
}
if (!zero_clusters) {
*range_end = 0;
goto out;
}
while ((zero_cpos + zero_clusters) < last_cpos) {
rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters,
&p_cpos, &num_clusters,
&ext_flags);
if (rc) {
mlog_errno(rc);
goto out;
}
if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN))
break;
if (ext_flags & OCFS2_EXT_REFCOUNTED)
needs_cow = 1;
zero_clusters += num_clusters;
}
if ((zero_cpos + zero_clusters) > last_cpos)
zero_clusters = last_cpos - zero_cpos;
if (needs_cow) {
rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos,
zero_clusters, UINT_MAX);
if (rc) {
mlog_errno(rc);
goto out;
}
}
*range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos);
*range_end = ocfs2_clusters_to_bytes(inode->i_sb,
zero_cpos + zero_clusters);
out:
return rc;
}
/*
* Zero one range returned from ocfs2_zero_extend_get_range(). The caller
* has made sure that the entire range needs zeroing.
*/
static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start,
u64 range_end)
{
int rc = 0;
u64 next_pos;
u64 zero_pos = range_start;
trace_ocfs2_zero_extend_range(
(unsigned long long)OCFS2_I(inode)->ip_blkno,
(unsigned long long)range_start,
(unsigned long long)range_end);
BUG_ON(range_start >= range_end);
while (zero_pos < range_end) {
next_pos = (zero_pos & PAGE_CACHE_MASK) + PAGE_CACHE_SIZE;
if (next_pos > range_end)
next_pos = range_end;
rc = ocfs2_write_zero_page(inode, zero_pos, next_pos);
if (rc < 0) {
mlog_errno(rc);
break;
}
zero_pos = next_pos;
/*
* Very large extends have the potential to lock up
* the cpu for extended periods of time.
*/
cond_resched();
}
return rc;
}
int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh,
loff_t zero_to_size)
{
int ret = 0;
u64 zero_start, range_start = 0, range_end = 0;
struct super_block *sb = inode->i_sb;
zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode));
trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno,
(unsigned long long)zero_start,
(unsigned long long)i_size_read(inode));
while (zero_start < zero_to_size) {
ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start,
zero_to_size,
&range_start,
&range_end);
if (ret) {
mlog_errno(ret);
break;
}
if (!range_end)
break;
/* Trim the ends */
if (range_start < zero_start)
range_start = zero_start;
if (range_end > zero_to_size)
range_end = zero_to_size;
ret = ocfs2_zero_extend_range(inode, range_start,
range_end);
if (ret) {
mlog_errno(ret);
break;
}
zero_start = range_end;
}
return ret;
}
int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh,
u64 new_i_size, u64 zero_to)
{
int ret;
u32 clusters_to_add;
struct ocfs2_inode_info *oi = OCFS2_I(inode);
/*
* Only quota files call this without a bh, and they can't be
* refcounted.
*/
BUG_ON(!di_bh && (oi->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL));
BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE));
clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size);
if (clusters_to_add < oi->ip_clusters)
clusters_to_add = 0;
else
clusters_to_add -= oi->ip_clusters;
if (clusters_to_add) {
ret = __ocfs2_extend_allocation(inode, oi->ip_clusters,
clusters_to_add, 0);
if (ret) {
mlog_errno(ret);
goto out;
}
}
/*
* Call this even if we don't add any clusters to the tree. We
* still need to zero the area between the old i_size and the
* new i_size.
*/
ret = ocfs2_zero_extend(inode, di_bh, zero_to);
if (ret < 0)
mlog_errno(ret);
out:
return ret;
}
static int ocfs2_extend_file(struct inode *inode,
struct buffer_head *di_bh,
u64 new_i_size)
{
int ret = 0;
struct ocfs2_inode_info *oi = OCFS2_I(inode);
BUG_ON(!di_bh);
/* setattr sometimes calls us like this. */
if (new_i_size == 0)
goto out;
if (i_size_read(inode) == new_i_size)
goto out;
BUG_ON(new_i_size < i_size_read(inode));
/*
* The alloc sem blocks people in read/write from reading our
* allocation until we're done changing it. We depend on
* i_mutex to block other extend/truncate calls while we're
* here. We even have to hold it for sparse files because there
* might be some tail zeroing.
*/
down_write(&oi->ip_alloc_sem);
if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
/*
* We can optimize small extends by keeping the inodes
* inline data.
*/
if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) {
up_write(&oi->ip_alloc_sem);
goto out_update_size;
}
ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
if (ret) {
up_write(&oi->ip_alloc_sem);
mlog_errno(ret);
goto out;
}
}
if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
ret = ocfs2_zero_extend(inode, di_bh, new_i_size);
else
ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size,
new_i_size);
up_write(&oi->ip_alloc_sem);
if (ret < 0) {
mlog_errno(ret);
goto out;
}
out_update_size:
ret = ocfs2_simple_size_update(inode, di_bh, new_i_size);
if (ret < 0)
mlog_errno(ret);
out:
return ret;
}
int ocfs2_setattr(struct dentry *dentry, struct iattr *attr)
{
int status = 0, size_change;
struct inode *inode = dentry->d_inode;
struct super_block *sb = inode->i_sb;
struct ocfs2_super *osb = OCFS2_SB(sb);
struct buffer_head *bh = NULL;
handle_t *handle = NULL;
struct dquot *transfer_to[MAXQUOTAS] = { };
int qtype;
trace_ocfs2_setattr(inode, dentry,
(unsigned long long)OCFS2_I(inode)->ip_blkno,
dentry->d_name.len, dentry->d_name.name,
attr->ia_valid, attr->ia_mode,
from_kuid(&init_user_ns, attr->ia_uid),
from_kgid(&init_user_ns, attr->ia_gid));
/* ensuring we don't even attempt to truncate a symlink */
if (S_ISLNK(inode->i_mode))
attr->ia_valid &= ~ATTR_SIZE;
#define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
| ATTR_GID | ATTR_UID | ATTR_MODE)
if (!(attr->ia_valid & OCFS2_VALID_ATTRS))
return 0;
status = inode_change_ok(inode, attr);
if (status)
return status;
if (is_quota_modification(inode, attr))
dquot_initialize(inode);
size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE;
if (size_change) {
status = ocfs2_rw_lock(inode, 1);
if (status < 0) {
mlog_errno(status);
goto bail;
}
}
status = ocfs2_inode_lock(inode, &bh, 1);
if (status < 0) {
if (status != -ENOENT)
mlog_errno(status);
goto bail_unlock_rw;
}
if (size_change && attr->ia_size != i_size_read(inode)) {
status = inode_newsize_ok(inode, attr->ia_size);
if (status)
goto bail_unlock;
inode_dio_wait(inode);
if (i_size_read(inode) > attr->ia_size) {
if (ocfs2_should_order_data(inode)) {
status = ocfs2_begin_ordered_truncate(inode,
attr->ia_size);
if (status)
goto bail_unlock;
}
status = ocfs2_truncate_file(inode, bh, attr->ia_size);
} else
status = ocfs2_extend_file(inode, bh, attr->ia_size);
if (status < 0) {
if (status != -ENOSPC)
mlog_errno(status);
status = -ENOSPC;
goto bail_unlock;
}
}
if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
(attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
/*
* Gather pointers to quota structures so that allocation /
* freeing of quota structures happens here and not inside
* dquot_transfer() where we have problems with lock ordering
*/
if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)
&& OCFS2_HAS_RO_COMPAT_FEATURE(sb,
OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) {
transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid));
if (!transfer_to[USRQUOTA]) {
status = -ESRCH;
goto bail_unlock;
}
}
if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid)
&& OCFS2_HAS_RO_COMPAT_FEATURE(sb,
OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) {
transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid));
if (!transfer_to[GRPQUOTA]) {
status = -ESRCH;
goto bail_unlock;
}
}
handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS +
2 * ocfs2_quota_trans_credits(sb));
if (IS_ERR(handle)) {
status = PTR_ERR(handle);
mlog_errno(status);
goto bail_unlock;
}
status = __dquot_transfer(inode, transfer_to);
if (status < 0)
goto bail_commit;
} else {
handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
if (IS_ERR(handle)) {
status = PTR_ERR(handle);
mlog_errno(status);
goto bail_unlock;
}
}
setattr_copy(inode, attr);
mark_inode_dirty(inode);
status = ocfs2_mark_inode_dirty(handle, inode, bh);
if (status < 0)
mlog_errno(status);
bail_commit:
ocfs2_commit_trans(osb, handle);
bail_unlock:
ocfs2_inode_unlock(inode, 1);
bail_unlock_rw:
if (size_change)
ocfs2_rw_unlock(inode, 1);
bail:
brelse(bh);
/* Release quota pointers in case we acquired them */
for (qtype = 0; qtype < MAXQUOTAS; qtype++)
dqput(transfer_to[qtype]);
if (!status && attr->ia_valid & ATTR_MODE) {
status = ocfs2_acl_chmod(inode);
if (status < 0)
mlog_errno(status);
}
return status;
}
int ocfs2_getattr(struct vfsmount *mnt,
struct dentry *dentry,
struct kstat *stat)
{
struct inode *inode = dentry->d_inode;
struct super_block *sb = dentry->d_inode->i_sb;
struct ocfs2_super *osb = sb->s_fs_info;
int err;
err = ocfs2_inode_revalidate(dentry);
if (err) {
if (err != -ENOENT)
mlog_errno(err);
goto bail;
}
generic_fillattr(inode, stat);
/* We set the blksize from the cluster size for performance */
stat->blksize = osb->s_clustersize;
bail:
return err;
}
int ocfs2_permission(struct inode *inode, int mask)
{
int ret;
if (mask & MAY_NOT_BLOCK)
return -ECHILD;
ret = ocfs2_inode_lock(inode, NULL, 0);
if (ret) {
if (ret != -ENOENT)
mlog_errno(ret);
goto out;
}
ret = generic_permission(inode, mask);
ocfs2_inode_unlock(inode, 0);
out:
return ret;
}
static int __ocfs2_write_remove_suid(struct inode *inode,
struct buffer_head *bh)
{
int ret;
handle_t *handle;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
struct ocfs2_dinode *di;
trace_ocfs2_write_remove_suid(
(unsigned long long)OCFS2_I(inode)->ip_blkno,
inode->i_mode);
handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
if (IS_ERR(handle)) {
ret = PTR_ERR(handle);
mlog_errno(ret);
goto out;
}
ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (ret < 0) {
mlog_errno(ret);
goto out_trans;
}
inode->i_mode &= ~S_ISUID;
if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP))
inode->i_mode &= ~S_ISGID;
di = (struct ocfs2_dinode *) bh->b_data;
di->i_mode = cpu_to_le16(inode->i_mode);
ocfs2_journal_dirty(handle, bh);
out_trans:
ocfs2_commit_trans(osb, handle);
out:
return ret;
}
/*
* Will look for holes and unwritten extents in the range starting at
* pos for count bytes (inclusive).
*/
static int ocfs2_check_range_for_holes(struct inode *inode, loff_t pos,
size_t count)
{
int ret = 0;
unsigned int extent_flags;
u32 cpos, clusters, extent_len, phys_cpos;
struct super_block *sb = inode->i_sb;
cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
while (clusters) {
ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
&extent_flags);
if (ret < 0) {
mlog_errno(ret);
goto out;
}
if (phys_cpos == 0 || (extent_flags & OCFS2_EXT_UNWRITTEN)) {
ret = 1;
break;
}
if (extent_len > clusters)
extent_len = clusters;
clusters -= extent_len;
cpos += extent_len;
}
out:
return ret;
}
static int ocfs2_write_remove_suid(struct inode *inode)
{
int ret;
struct buffer_head *bh = NULL;
ret = ocfs2_read_inode_block(inode, &bh);
if (ret < 0) {
mlog_errno(ret);
goto out;
}
ret = __ocfs2_write_remove_suid(inode, bh);
out:
brelse(bh);
return ret;
}
/*
* Allocate enough extents to cover the region starting at byte offset
* start for len bytes. Existing extents are skipped, any extents
* added are marked as "unwritten".
*/
static int ocfs2_allocate_unwritten_extents(struct inode *inode,
u64 start, u64 len)
{
int ret;
u32 cpos, phys_cpos, clusters, alloc_size;
u64 end = start + len;
struct buffer_head *di_bh = NULL;
if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
ret = ocfs2_read_inode_block(inode, &di_bh);
if (ret) {
mlog_errno(ret);
goto out;
}
/*
* Nothing to do if the requested reservation range
* fits within the inode.
*/
if (ocfs2_size_fits_inline_data(di_bh, end))
goto out;
ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
if (ret) {
mlog_errno(ret);
goto out;
}
}
/*
* We consider both start and len to be inclusive.
*/
cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len);
clusters -= cpos;
while (clusters) {
ret = ocfs2_get_clusters(inode, cpos, &phys_cpos,
&alloc_size, NULL);
if (ret) {
mlog_errno(ret);
goto out;
}
/*
* Hole or existing extent len can be arbitrary, so
* cap it to our own allocation request.
*/
if (alloc_size > clusters)
alloc_size = clusters;
if (phys_cpos) {
/*
* We already have an allocation at this
* region so we can safely skip it.
*/
goto next;
}
ret = __ocfs2_extend_allocation(inode, cpos, alloc_size, 1);
if (ret) {
if (ret != -ENOSPC)
mlog_errno(ret);
goto out;
}
next:
cpos += alloc_size;
clusters -= alloc_size;
}
ret = 0;
out:
brelse(di_bh);
return ret;
}
/*
* Truncate a byte range, avoiding pages within partial clusters. This
* preserves those pages for the zeroing code to write to.
*/
static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start,
u64 byte_len)
{
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
loff_t start, end;
struct address_space *mapping = inode->i_mapping;
start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start);
end = byte_start + byte_len;
end = end & ~(osb->s_clustersize - 1);
if (start < end) {
unmap_mapping_range(mapping, start, end - start, 0);
truncate_inode_pages_range(mapping, start, end - 1);
}
}
static int ocfs2_zero_partial_clusters(struct inode *inode,
u64 start, u64 len)
{
int ret = 0;
u64 tmpend, end = start + len;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
unsigned int csize = osb->s_clustersize;
handle_t *handle;
/*
* The "start" and "end" values are NOT necessarily part of
* the range whose allocation is being deleted. Rather, this
* is what the user passed in with the request. We must zero
* partial clusters here. There's no need to worry about
* physical allocation - the zeroing code knows to skip holes.
*/
trace_ocfs2_zero_partial_clusters(
(unsigned long long)OCFS2_I(inode)->ip_blkno,
(unsigned long long)start, (unsigned long long)end);
/*
* If both edges are on a cluster boundary then there's no
* zeroing required as the region is part of the allocation to
* be truncated.
*/
if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0)
goto out;
handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
if (IS_ERR(handle)) {
ret = PTR_ERR(handle);
mlog_errno(ret);
goto out;
}
/*
* We want to get the byte offset of the end of the 1st cluster.
*/
tmpend = (u64)osb->s_clustersize + (start & ~(osb->s_clustersize - 1));
if (tmpend > end)
tmpend = end;
trace_ocfs2_zero_partial_clusters_range1((unsigned long long)start,
(unsigned long long)tmpend);
ret = ocfs2_zero_range_for_truncate(inode, handle, start, tmpend);
if (ret)
mlog_errno(ret);
if (tmpend < end) {
/*
* This may make start and end equal, but the zeroing
* code will skip any work in that case so there's no
* need to catch it up here.
*/
start = end & ~(osb->s_clustersize - 1);
trace_ocfs2_zero_partial_clusters_range2(
(unsigned long long)start, (unsigned long long)end);
ret = ocfs2_zero_range_for_truncate(inode, handle, start, end);
if (ret)
mlog_errno(ret);
}
ocfs2_commit_trans(osb, handle);
out:
return ret;
}
static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos)
{
int i;
struct ocfs2_extent_rec *rec = NULL;
for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) {
rec = &el->l_recs[i];
if (le32_to_cpu(rec->e_cpos) < pos)
break;
}
return i;
}
/*
* Helper to calculate the punching pos and length in one run, we handle the
* following three cases in order:
*
* - remove the entire record
* - remove a partial record
* - no record needs to be removed (hole-punching completed)
*/
static void ocfs2_calc_trunc_pos(struct inode *inode,
struct ocfs2_extent_list *el,
struct ocfs2_extent_rec *rec,
u32 trunc_start, u32 *trunc_cpos,
u32 *trunc_len, u32 *trunc_end,
u64 *blkno, int *done)
{
int ret = 0;
u32 coff, range;
range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
if (le32_to_cpu(rec->e_cpos) >= trunc_start) {
/*
* remove an entire extent record.
*/
*trunc_cpos = le32_to_cpu(rec->e_cpos);
/*
* Skip holes if any.
*/
if (range < *trunc_end)
*trunc_end = range;
*trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos);
*blkno = le64_to_cpu(rec->e_blkno);
*trunc_end = le32_to_cpu(rec->e_cpos);
} else if (range > trunc_start) {
/*
* remove a partial extent record, which means we're
* removing the last extent record.
*/
*trunc_cpos = trunc_start;
/*
* skip hole if any.
*/
if (range < *trunc_end)
*trunc_end = range;
*trunc_len = *trunc_end - trunc_start;
coff = trunc_start - le32_to_cpu(rec->e_cpos);
*blkno = le64_to_cpu(rec->e_blkno) +
ocfs2_clusters_to_blocks(inode->i_sb, coff);
*trunc_end = trunc_start;
} else {
/*
* It may have two following possibilities:
*
* - last record has been removed
* - trunc_start was within a hole
*
* both two cases mean the completion of hole punching.
*/
ret = 1;
}
*done = ret;
}
static int ocfs2_remove_inode_range(struct inode *inode,
struct buffer_head *di_bh, u64 byte_start,
u64 byte_len)
{
int ret = 0, flags = 0, done = 0, i;
u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos;
u32 cluster_in_el;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
struct ocfs2_cached_dealloc_ctxt dealloc;
struct address_space *mapping = inode->i_mapping;
struct ocfs2_extent_tree et;
struct ocfs2_path *path = NULL;
struct ocfs2_extent_list *el = NULL;
struct ocfs2_extent_rec *rec = NULL;
struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc);
ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
ocfs2_init_dealloc_ctxt(&dealloc);
trace_ocfs2_remove_inode_range(
(unsigned long long)OCFS2_I(inode)->ip_blkno,
(unsigned long long)byte_start,
(unsigned long long)byte_len);
if (byte_len == 0)
return 0;
if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
ret = ocfs2_truncate_inline(inode, di_bh, byte_start,
byte_start + byte_len, 0);
if (ret) {
mlog_errno(ret);
goto out;
}
/*
* There's no need to get fancy with the page cache
* truncate of an inline-data inode. We're talking
* about less than a page here, which will be cached
* in the dinode buffer anyway.
*/
unmap_mapping_range(mapping, 0, 0, 0);
truncate_inode_pages(mapping, 0);
goto out;
}
/*
* For reflinks, we may need to CoW 2 clusters which might be
* partially zero'd later, if hole's start and end offset were
* within one cluster(means is not exactly aligned to clustersize).
*/
if (OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) {
ret = ocfs2_cow_file_pos(inode, di_bh, byte_start);
if (ret) {
mlog_errno(ret);
goto out;
}
ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len);
if (ret) {
mlog_errno(ret);
goto out;
}
}
trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start);
trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits;
cluster_in_el = trunc_end;
ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len);
if (ret) {
mlog_errno(ret);
goto out;
}
path = ocfs2_new_path_from_et(&et);
if (!path) {
ret = -ENOMEM;
mlog_errno(ret);
goto out;
}
while (trunc_end > trunc_start) {
ret = ocfs2_find_path(INODE_CACHE(inode), path,
cluster_in_el);
if (ret) {
mlog_errno(ret);
goto out;
}
el = path_leaf_el(path);
i = ocfs2_find_rec(el, trunc_end);
/*
* Need to go to previous extent block.
*/
if (i < 0) {
if (path->p_tree_depth == 0)
break;
ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
path,
&cluster_in_el);
if (ret) {
mlog_errno(ret);
goto out;
}
/*
* We've reached the leftmost extent block,
* it's safe to leave.
*/
if (cluster_in_el == 0)
break;
/*
* The 'pos' searched for previous extent block is
* always one cluster less than actual trunc_end.
*/
trunc_end = cluster_in_el + 1;
ocfs2_reinit_path(path, 1);
continue;
} else
rec = &el->l_recs[i];
ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos,
&trunc_len, &trunc_end, &blkno, &done);
if (done)
break;
flags = rec->e_flags;
phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
phys_cpos, trunc_len, flags,
&dealloc, refcount_loc);
if (ret < 0) {
mlog_errno(ret);
goto out;
}
cluster_in_el = trunc_end;
ocfs2_reinit_path(path, 1);
}
ocfs2_truncate_cluster_pages(inode, byte_start, byte_len);
out:
ocfs2_free_path(path);
ocfs2_schedule_truncate_log_flush(osb, 1);
ocfs2_run_deallocs(osb, &dealloc);
return ret;
}
/*
* Parts of this function taken from xfs_change_file_space()
*/
static int __ocfs2_change_file_space(struct file *file, struct inode *inode,
loff_t f_pos, unsigned int cmd,
struct ocfs2_space_resv *sr,
int change_size)
{
int ret;
s64 llen;
loff_t size;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
struct buffer_head *di_bh = NULL;
handle_t *handle;
unsigned long long max_off = inode->i_sb->s_maxbytes;
if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
return -EROFS;
mutex_lock(&inode->i_mutex);
/*
* This prevents concurrent writes on other nodes
*/
ret = ocfs2_rw_lock(inode, 1);
if (ret) {
mlog_errno(ret);
goto out;
}
ret = ocfs2_inode_lock(inode, &di_bh, 1);
if (ret) {
mlog_errno(ret);
goto out_rw_unlock;
}
if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) {
ret = -EPERM;
goto out_inode_unlock;
}
switch (sr->l_whence) {
case 0: /*SEEK_SET*/
break;
case 1: /*SEEK_CUR*/
sr->l_start += f_pos;
break;
case 2: /*SEEK_END*/
sr->l_start += i_size_read(inode);
break;
default:
ret = -EINVAL;
goto out_inode_unlock;
}
sr->l_whence = 0;
llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len;
if (sr->l_start < 0
|| sr->l_start > max_off
|| (sr->l_start + llen) < 0
|| (sr->l_start + llen) > max_off) {
ret = -EINVAL;
goto out_inode_unlock;
}
size = sr->l_start + sr->l_len;
if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) {
if (sr->l_len <= 0) {
ret = -EINVAL;
goto out_inode_unlock;
}
}
if (file && should_remove_suid(file->f_path.dentry)) {
ret = __ocfs2_write_remove_suid(inode, di_bh);
if (ret) {
mlog_errno(ret);
goto out_inode_unlock;
}
}
down_write(&OCFS2_I(inode)->ip_alloc_sem);
switch (cmd) {
case OCFS2_IOC_RESVSP:
case OCFS2_IOC_RESVSP64:
/*
* This takes unsigned offsets, but the signed ones we
* pass have been checked against overflow above.
*/
ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start,
sr->l_len);
break;
case OCFS2_IOC_UNRESVSP:
case OCFS2_IOC_UNRESVSP64:
ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start,
sr->l_len);
break;
default:
ret = -EINVAL;
}
up_write(&OCFS2_I(inode)->ip_alloc_sem);
if (ret) {
mlog_errno(ret);
goto out_inode_unlock;
}
/*
* We update c/mtime for these changes
*/
handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
if (IS_ERR(handle)) {
ret = PTR_ERR(handle);
mlog_errno(ret);
goto out_inode_unlock;
}
if (change_size && i_size_read(inode) < size)
i_size_write(inode, size);
inode->i_ctime = inode->i_mtime = CURRENT_TIME;
ret = ocfs2_mark_inode_dirty(handle, inode, di_bh);
if (ret < 0)
mlog_errno(ret);
if (file && (file->f_flags & O_SYNC))
handle->h_sync = 1;
ocfs2_commit_trans(osb, handle);
out_inode_unlock:
brelse(di_bh);
ocfs2_inode_unlock(inode, 1);
out_rw_unlock:
ocfs2_rw_unlock(inode, 1);
out:
mutex_unlock(&inode->i_mutex);
return ret;
}
int ocfs2_change_file_space(struct file *file, unsigned int cmd,
struct ocfs2_space_resv *sr)
{
struct inode *inode = file_inode(file);
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
int ret;
if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) &&
!ocfs2_writes_unwritten_extents(osb))
return -ENOTTY;
else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) &&
!ocfs2_sparse_alloc(osb))
return -ENOTTY;
if (!S_ISREG(inode->i_mode))
return -EINVAL;
if (!(file->f_mode & FMODE_WRITE))
return -EBADF;
ret = mnt_want_write_file(file);
if (ret)
return ret;
ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0);
mnt_drop_write_file(file);
return ret;
}
static long ocfs2_fallocate(struct file *file, int mode, loff_t offset,
loff_t len)
{
struct inode *inode = file_inode(file);
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
struct ocfs2_space_resv sr;
int change_size = 1;
int cmd = OCFS2_IOC_RESVSP64;
if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
return -EOPNOTSUPP;
if (!ocfs2_writes_unwritten_extents(osb))
return -EOPNOTSUPP;
if (mode & FALLOC_FL_KEEP_SIZE)
change_size = 0;
if (mode & FALLOC_FL_PUNCH_HOLE)
cmd = OCFS2_IOC_UNRESVSP64;
sr.l_whence = 0;
sr.l_start = (s64)offset;
sr.l_len = (s64)len;
return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr,
change_size);
}
int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos,
size_t count)
{
int ret = 0;
unsigned int extent_flags;
u32 cpos, clusters, extent_len, phys_cpos;
struct super_block *sb = inode->i_sb;
if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) ||
!(OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) ||
OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
return 0;
cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
while (clusters) {
ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
&extent_flags);
if (ret < 0) {
mlog_errno(ret);
goto out;
}
if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) {
ret = 1;
break;
}
if (extent_len > clusters)
extent_len = clusters;
clusters -= extent_len;
cpos += extent_len;
}
out:
return ret;
}
static void ocfs2_aiodio_wait(struct inode *inode)
{
wait_queue_head_t *wq = ocfs2_ioend_wq(inode);
wait_event(*wq, (atomic_read(&OCFS2_I(inode)->ip_unaligned_aio) == 0));
}
static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos)
{
int blockmask = inode->i_sb->s_blocksize - 1;
loff_t final_size = pos + count;
if ((pos & blockmask) || (final_size & blockmask))
return 1;
return 0;
}
static int ocfs2_prepare_inode_for_refcount(struct inode *inode,
struct file *file,
loff_t pos, size_t count,
int *meta_level)
{
int ret;
struct buffer_head *di_bh = NULL;
u32 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
u32 clusters =
ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos;
ret = ocfs2_inode_lock(inode, &di_bh, 1);
if (ret) {
mlog_errno(ret);
goto out;
}
*meta_level = 1;
ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX);
if (ret)
mlog_errno(ret);
out:
brelse(di_bh);
return ret;
}
static int ocfs2_prepare_inode_for_write(struct file *file,
loff_t *ppos,
size_t count,
int appending,
int *direct_io,
int *has_refcount)
{
int ret = 0, meta_level = 0;
struct dentry *dentry = file->f_path.dentry;
struct inode *inode = dentry->d_inode;
loff_t saved_pos = 0, end;
/*
* We start with a read level meta lock and only jump to an ex
* if we need to make modifications here.
*/
for(;;) {
ret = ocfs2_inode_lock(inode, NULL, meta_level);
if (ret < 0) {
meta_level = -1;
mlog_errno(ret);
goto out;
}
/* Clear suid / sgid if necessary. We do this here
* instead of later in the write path because
* remove_suid() calls ->setattr without any hint that
* we may have already done our cluster locking. Since
* ocfs2_setattr() *must* take cluster locks to
* proceed, this will lead us to recursively lock the
* inode. There's also the dinode i_size state which
* can be lost via setattr during extending writes (we
* set inode->i_size at the end of a write. */
if (should_remove_suid(dentry)) {
if (meta_level == 0) {
ocfs2_inode_unlock(inode, meta_level);
meta_level = 1;
continue;
}
ret = ocfs2_write_remove_suid(inode);
if (ret < 0) {
mlog_errno(ret);
goto out_unlock;
}
}
/* work on a copy of ppos until we're sure that we won't have
* to recalculate it due to relocking. */
if (appending)
saved_pos = i_size_read(inode);
else
saved_pos = *ppos;
end = saved_pos + count;
ret = ocfs2_check_range_for_refcount(inode, saved_pos, count);
if (ret == 1) {
ocfs2_inode_unlock(inode, meta_level);
meta_level = -1;
ret = ocfs2_prepare_inode_for_refcount(inode,
file,
saved_pos,
count,
&meta_level);
if (has_refcount)
*has_refcount = 1;
if (direct_io)
*direct_io = 0;
}
if (ret < 0) {
mlog_errno(ret);
goto out_unlock;
}
/*
* Skip the O_DIRECT checks if we don't need
* them.
*/
if (!direct_io || !(*direct_io))
break;
/*
* There's no sane way to do direct writes to an inode
* with inline data.
*/
if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
*direct_io = 0;
break;
}
/*
* Allowing concurrent direct writes means
* i_size changes wouldn't be synchronized, so
* one node could wind up truncating another
* nodes writes.
*/
if (end > i_size_read(inode)) {
*direct_io = 0;
break;
}
/*
* We don't fill holes during direct io, so
* check for them here. If any are found, the
* caller will have to retake some cluster
* locks and initiate the io as buffered.
*/
ret = ocfs2_check_range_for_holes(inode, saved_pos, count);
if (ret == 1) {
*direct_io = 0;
ret = 0;
} else if (ret < 0)
mlog_errno(ret);
break;
}
if (appending)
*ppos = saved_pos;
out_unlock:
trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno,
saved_pos, appending, count,
direct_io, has_refcount);
if (meta_level >= 0)
ocfs2_inode_unlock(inode, meta_level);
out:
return ret;
}
static ssize_t ocfs2_file_aio_write(struct kiocb *iocb,
const struct iovec *iov,
unsigned long nr_segs,
loff_t pos)
{
int ret, direct_io, appending, rw_level, have_alloc_sem = 0;
int can_do_direct, has_refcount = 0;
ssize_t written = 0;
size_t ocount; /* original count */
size_t count; /* after file limit checks */
loff_t old_size, *ppos = &iocb->ki_pos;
u32 old_clusters;
struct file *file = iocb->ki_filp;
struct inode *inode = file_inode(file);
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
int full_coherency = !(osb->s_mount_opt &
OCFS2_MOUNT_COHERENCY_BUFFERED);
int unaligned_dio = 0;
trace_ocfs2_file_aio_write(inode, file, file->f_path.dentry,
(unsigned long long)OCFS2_I(inode)->ip_blkno,
file->f_path.dentry->d_name.len,
file->f_path.dentry->d_name.name,
(unsigned int)nr_segs);
if (iocb->ki_nbytes == 0)
return 0;
appending = file->f_flags & O_APPEND ? 1 : 0;
direct_io = file->f_flags & O_DIRECT ? 1 : 0;
mutex_lock(&inode->i_mutex);
ocfs2_iocb_clear_sem_locked(iocb);
relock:
/* to match setattr's i_mutex -> rw_lock ordering */
if (direct_io) {
have_alloc_sem = 1;
/* communicate with ocfs2_dio_end_io */
ocfs2_iocb_set_sem_locked(iocb);
}
/*
* Concurrent O_DIRECT writes are allowed with
* mount_option "coherency=buffered".
*/
rw_level = (!direct_io || full_coherency);
ret = ocfs2_rw_lock(inode, rw_level);
if (ret < 0) {
mlog_errno(ret);
goto out_sems;
}
/*
* O_DIRECT writes with "coherency=full" need to take EX cluster
* inode_lock to guarantee coherency.
*/
if (direct_io && full_coherency) {
/*
* We need to take and drop the inode lock to force
* other nodes to drop their caches. Buffered I/O
* already does this in write_begin().
*/
ret = ocfs2_inode_lock(inode, NULL, 1);
if (ret < 0) {
mlog_errno(ret);
goto out;
}
ocfs2_inode_unlock(inode, 1);
}
can_do_direct = direct_io;
ret = ocfs2_prepare_inode_for_write(file, ppos,
iocb->ki_nbytes, appending,
&can_do_direct, &has_refcount);
if (ret < 0) {
mlog_errno(ret);
goto out;
}
if (direct_io && !is_sync_kiocb(iocb))
unaligned_dio = ocfs2_is_io_unaligned(inode, iocb->ki_nbytes,
*ppos);
/*
* We can't complete the direct I/O as requested, fall back to
* buffered I/O.
*/
if (direct_io && !can_do_direct) {
ocfs2_rw_unlock(inode, rw_level);
have_alloc_sem = 0;
rw_level = -1;
direct_io = 0;
goto relock;
}
if (unaligned_dio) {
/*
* Wait on previous unaligned aio to complete before
* proceeding.
*/
ocfs2_aiodio_wait(inode);
/* Mark the iocb as needing a decrement in ocfs2_dio_end_io */
atomic_inc(&OCFS2_I(inode)->ip_unaligned_aio);
ocfs2_iocb_set_unaligned_aio(iocb);
}
/*
* To later detect whether a journal commit for sync writes is
* necessary, we sample i_size, and cluster count here.
*/
old_size = i_size_read(inode);
old_clusters = OCFS2_I(inode)->ip_clusters;
/* communicate with ocfs2_dio_end_io */
ocfs2_iocb_set_rw_locked(iocb, rw_level);
ret = generic_segment_checks(iov, &nr_segs, &ocount,
VERIFY_READ);
if (ret)
goto out_dio;
count = ocount;
ret = generic_write_checks(file, ppos, &count,
S_ISBLK(inode->i_mode));
if (ret)
goto out_dio;
if (direct_io) {
written = generic_file_direct_write(iocb, iov, &nr_segs, *ppos,
ppos, count, ocount);
if (written < 0) {
ret = written;
goto out_dio;
}
} else {
current->backing_dev_info = file->f_mapping->backing_dev_info;
written = generic_file_buffered_write(iocb, iov, nr_segs, *ppos,
ppos, count, 0);
current->backing_dev_info = NULL;
}
out_dio:
/* buffered aio wouldn't have proper lock coverage today */
BUG_ON(ret == -EIOCBQUEUED && !(file->f_flags & O_DIRECT));
if (((file->f_flags & O_DSYNC) && !direct_io) || IS_SYNC(inode) ||
((file->f_flags & O_DIRECT) && !direct_io)) {
ret = filemap_fdatawrite_range(file->f_mapping, pos,
pos + count - 1);
if (ret < 0)
written = ret;
if (!ret && ((old_size != i_size_read(inode)) ||
(old_clusters != OCFS2_I(inode)->ip_clusters) ||
has_refcount)) {
ret = jbd2_journal_force_commit(osb->journal->j_journal);
if (ret < 0)
written = ret;
}
if (!ret)
ret = filemap_fdatawait_range(file->f_mapping, pos,
pos + count - 1);
}
/*
* deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
* function pointer which is called when o_direct io completes so that
* it can unlock our rw lock.
* Unfortunately there are error cases which call end_io and others
* that don't. so we don't have to unlock the rw_lock if either an
* async dio is going to do it in the future or an end_io after an
* error has already done it.
*/
if ((ret == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) {
rw_level = -1;
have_alloc_sem = 0;
unaligned_dio = 0;
}
if (unaligned_dio) {
ocfs2_iocb_clear_unaligned_aio(iocb);
atomic_dec(&OCFS2_I(inode)->ip_unaligned_aio);
}
out:
if (rw_level != -1)
ocfs2_rw_unlock(inode, rw_level);
out_sems:
if (have_alloc_sem)
ocfs2_iocb_clear_sem_locked(iocb);
mutex_unlock(&inode->i_mutex);
if (written)
ret = written;
return ret;
}
static int ocfs2_splice_to_file(struct pipe_inode_info *pipe,
struct file *out,
struct splice_desc *sd)
{
int ret;
ret = ocfs2_prepare_inode_for_write(out, &sd->pos,
sd->total_len, 0, NULL, NULL);
if (ret < 0) {
mlog_errno(ret);
return ret;
}
return splice_from_pipe_feed(pipe, sd, pipe_to_file);
}
static ssize_t ocfs2_file_splice_write(struct pipe_inode_info *pipe,
struct file *out,
loff_t *ppos,
size_t len,
unsigned int flags)
{
int ret;
struct address_space *mapping = out->f_mapping;
struct inode *inode = mapping->host;
struct splice_desc sd = {
.total_len = len,
.flags = flags,
.pos = *ppos,
.u.file = out,
};
trace_ocfs2_file_splice_write(inode, out, out->f_path.dentry,
(unsigned long long)OCFS2_I(inode)->ip_blkno,
out->f_path.dentry->d_name.len,
out->f_path.dentry->d_name.name, len);
pipe_lock(pipe);
splice_from_pipe_begin(&sd);
do {
ret = splice_from_pipe_next(pipe, &sd);
if (ret <= 0)
break;
mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
ret = ocfs2_rw_lock(inode, 1);
if (ret < 0)
mlog_errno(ret);
else {
ret = ocfs2_splice_to_file(pipe, out, &sd);
ocfs2_rw_unlock(inode, 1);
}
mutex_unlock(&inode->i_mutex);
} while (ret > 0);
splice_from_pipe_end(pipe, &sd);
pipe_unlock(pipe);
if (sd.num_spliced)
ret = sd.num_spliced;
if (ret > 0) {
int err;
err = generic_write_sync(out, *ppos, ret);
if (err)
ret = err;
else
*ppos += ret;
balance_dirty_pages_ratelimited(mapping);
}
return ret;
}
static ssize_t ocfs2_file_splice_read(struct file *in,
loff_t *ppos,
struct pipe_inode_info *pipe,
size_t len,
unsigned int flags)
{
int ret = 0, lock_level = 0;
struct inode *inode = file_inode(in);
trace_ocfs2_file_splice_read(inode, in, in->f_path.dentry,
(unsigned long long)OCFS2_I(inode)->ip_blkno,
in->f_path.dentry->d_name.len,
in->f_path.dentry->d_name.name, len);
/*
* See the comment in ocfs2_file_aio_read()
*/
ret = ocfs2_inode_lock_atime(inode, in->f_path.mnt, &lock_level);
if (ret < 0) {
mlog_errno(ret);
goto bail;
}
ocfs2_inode_unlock(inode, lock_level);
ret = generic_file_splice_read(in, ppos, pipe, len, flags);
bail:
return ret;
}
static ssize_t ocfs2_file_aio_read(struct kiocb *iocb,
const struct iovec *iov,
unsigned long nr_segs,
loff_t pos)
{
int ret = 0, rw_level = -1, have_alloc_sem = 0, lock_level = 0;
struct file *filp = iocb->ki_filp;
struct inode *inode = file_inode(filp);
trace_ocfs2_file_aio_read(inode, filp, filp->f_path.dentry,
(unsigned long long)OCFS2_I(inode)->ip_blkno,
filp->f_path.dentry->d_name.len,
filp->f_path.dentry->d_name.name, nr_segs);
if (!inode) {
ret = -EINVAL;
mlog_errno(ret);
goto bail;
}
ocfs2_iocb_clear_sem_locked(iocb);
/*
* buffered reads protect themselves in ->readpage(). O_DIRECT reads
* need locks to protect pending reads from racing with truncate.
*/
if (filp->f_flags & O_DIRECT) {
have_alloc_sem = 1;
ocfs2_iocb_set_sem_locked(iocb);
ret = ocfs2_rw_lock(inode, 0);
if (ret < 0) {
mlog_errno(ret);
goto bail;
}
rw_level = 0;
/* communicate with ocfs2_dio_end_io */
ocfs2_iocb_set_rw_locked(iocb, rw_level);
}
/*
* We're fine letting folks race truncates and extending
* writes with read across the cluster, just like they can
* locally. Hence no rw_lock during read.
*
* Take and drop the meta data lock to update inode fields
* like i_size. This allows the checks down below
* generic_file_aio_read() a chance of actually working.
*/
ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level);
if (ret < 0) {
mlog_errno(ret);
goto bail;
}
ocfs2_inode_unlock(inode, lock_level);
ret = generic_file_aio_read(iocb, iov, nr_segs, iocb->ki_pos);
trace_generic_file_aio_read_ret(ret);
/* buffered aio wouldn't have proper lock coverage today */
BUG_ON(ret == -EIOCBQUEUED && !(filp->f_flags & O_DIRECT));
/* see ocfs2_file_aio_write */
if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) {
rw_level = -1;
have_alloc_sem = 0;
}
bail:
if (have_alloc_sem)
ocfs2_iocb_clear_sem_locked(iocb);
if (rw_level != -1)
ocfs2_rw_unlock(inode, rw_level);
return ret;
}
/* Refer generic_file_llseek_unlocked() */
static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence)
{
struct inode *inode = file->f_mapping->host;
int ret = 0;
mutex_lock(&inode->i_mutex);
switch (whence) {
case SEEK_SET:
break;
case SEEK_END:
offset += inode->i_size;
break;
case SEEK_CUR:
if (offset == 0) {
offset = file->f_pos;
goto out;
}
offset += file->f_pos;
break;
case SEEK_DATA:
case SEEK_HOLE:
ret = ocfs2_seek_data_hole_offset(file, &offset, whence);
if (ret)
goto out;
break;
default:
ret = -EINVAL;
goto out;
}
offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
out:
mutex_unlock(&inode->i_mutex);
if (ret)
return ret;
return offset;
}
const struct inode_operations ocfs2_file_iops = {
.setattr = ocfs2_setattr,
.getattr = ocfs2_getattr,
.permission = ocfs2_permission,
.setxattr = generic_setxattr,
.getxattr = generic_getxattr,
.listxattr = ocfs2_listxattr,
.removexattr = generic_removexattr,
.fiemap = ocfs2_fiemap,
.get_acl = ocfs2_iop_get_acl,
};
const struct inode_operations ocfs2_special_file_iops = {
.setattr = ocfs2_setattr,
.getattr = ocfs2_getattr,
.permission = ocfs2_permission,
.get_acl = ocfs2_iop_get_acl,
};
/*
* Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
* ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
*/
const struct file_operations ocfs2_fops = {
.llseek = ocfs2_file_llseek,
.read = do_sync_read,
.write = do_sync_write,
.mmap = ocfs2_mmap,
.fsync = ocfs2_sync_file,
.release = ocfs2_file_release,
.open = ocfs2_file_open,
.aio_read = ocfs2_file_aio_read,
.aio_write = ocfs2_file_aio_write,
.unlocked_ioctl = ocfs2_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = ocfs2_compat_ioctl,
#endif
.lock = ocfs2_lock,
.flock = ocfs2_flock,
.splice_read = ocfs2_file_splice_read,
.splice_write = ocfs2_file_splice_write,
.fallocate = ocfs2_fallocate,
};
const struct file_operations ocfs2_dops = {
.llseek = generic_file_llseek,
.read = generic_read_dir,
.iterate = ocfs2_readdir,
.fsync = ocfs2_sync_file,
.release = ocfs2_dir_release,
.open = ocfs2_dir_open,
.unlocked_ioctl = ocfs2_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = ocfs2_compat_ioctl,
#endif
.lock = ocfs2_lock,
.flock = ocfs2_flock,
};
/*
* POSIX-lockless variants of our file_operations.
*
* These will be used if the underlying cluster stack does not support
* posix file locking, if the user passes the "localflocks" mount
* option, or if we have a local-only fs.
*
* ocfs2_flock is in here because all stacks handle UNIX file locks,
* so we still want it in the case of no stack support for
* plocks. Internally, it will do the right thing when asked to ignore
* the cluster.
*/
const struct file_operations ocfs2_fops_no_plocks = {
.llseek = ocfs2_file_llseek,
.read = do_sync_read,
.write = do_sync_write,
.mmap = ocfs2_mmap,
.fsync = ocfs2_sync_file,
.release = ocfs2_file_release,
.open = ocfs2_file_open,
.aio_read = ocfs2_file_aio_read,
.aio_write = ocfs2_file_aio_write,
.unlocked_ioctl = ocfs2_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = ocfs2_compat_ioctl,
#endif
.flock = ocfs2_flock,
.splice_read = ocfs2_file_splice_read,
.splice_write = ocfs2_file_splice_write,
.fallocate = ocfs2_fallocate,
};
const struct file_operations ocfs2_dops_no_plocks = {
.llseek = generic_file_llseek,
.read = generic_read_dir,
.iterate = ocfs2_readdir,
.fsync = ocfs2_sync_file,
.release = ocfs2_dir_release,
.open = ocfs2_dir_open,
.unlocked_ioctl = ocfs2_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = ocfs2_compat_ioctl,
#endif
.flock = ocfs2_flock,
};