linux/net/netlink/af_netlink.c

2172 lines
48 KiB
C

/*
* NETLINK Kernel-user communication protocol.
*
* Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
* Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith
* added netlink_proto_exit
* Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br>
* use nlk_sk, as sk->protinfo is on a diet 8)
* Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org>
* - inc module use count of module that owns
* the kernel socket in case userspace opens
* socket of same protocol
* - remove all module support, since netlink is
* mandatory if CONFIG_NET=y these days
*/
#include <linux/module.h>
#include <linux/capability.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/stat.h>
#include <linux/socket.h>
#include <linux/un.h>
#include <linux/fcntl.h>
#include <linux/termios.h>
#include <linux/sockios.h>
#include <linux/net.h>
#include <linux/fs.h>
#include <linux/slab.h>
#include <asm/uaccess.h>
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/rtnetlink.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/notifier.h>
#include <linux/security.h>
#include <linux/jhash.h>
#include <linux/jiffies.h>
#include <linux/random.h>
#include <linux/bitops.h>
#include <linux/mm.h>
#include <linux/types.h>
#include <linux/audit.h>
#include <linux/mutex.h>
#include <net/net_namespace.h>
#include <net/sock.h>
#include <net/scm.h>
#include <net/netlink.h>
#define NLGRPSZ(x) (ALIGN(x, sizeof(unsigned long) * 8) / 8)
#define NLGRPLONGS(x) (NLGRPSZ(x)/sizeof(unsigned long))
struct netlink_sock {
/* struct sock has to be the first member of netlink_sock */
struct sock sk;
u32 pid;
u32 dst_pid;
u32 dst_group;
u32 flags;
u32 subscriptions;
u32 ngroups;
unsigned long *groups;
unsigned long state;
wait_queue_head_t wait;
struct netlink_callback *cb;
struct mutex *cb_mutex;
struct mutex cb_def_mutex;
void (*netlink_rcv)(struct sk_buff *skb);
struct module *module;
};
struct listeners_rcu_head {
struct rcu_head rcu_head;
void *ptr;
};
#define NETLINK_KERNEL_SOCKET 0x1
#define NETLINK_RECV_PKTINFO 0x2
#define NETLINK_BROADCAST_SEND_ERROR 0x4
#define NETLINK_RECV_NO_ENOBUFS 0x8
static inline struct netlink_sock *nlk_sk(struct sock *sk)
{
return container_of(sk, struct netlink_sock, sk);
}
static inline int netlink_is_kernel(struct sock *sk)
{
return nlk_sk(sk)->flags & NETLINK_KERNEL_SOCKET;
}
struct nl_pid_hash {
struct hlist_head *table;
unsigned long rehash_time;
unsigned int mask;
unsigned int shift;
unsigned int entries;
unsigned int max_shift;
u32 rnd;
};
struct netlink_table {
struct nl_pid_hash hash;
struct hlist_head mc_list;
unsigned long *listeners;
unsigned int nl_nonroot;
unsigned int groups;
struct mutex *cb_mutex;
struct module *module;
int registered;
};
static struct netlink_table *nl_table;
static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait);
static int netlink_dump(struct sock *sk);
static void netlink_destroy_callback(struct netlink_callback *cb);
static DEFINE_RWLOCK(nl_table_lock);
static atomic_t nl_table_users = ATOMIC_INIT(0);
static ATOMIC_NOTIFIER_HEAD(netlink_chain);
static u32 netlink_group_mask(u32 group)
{
return group ? 1 << (group - 1) : 0;
}
static struct hlist_head *nl_pid_hashfn(struct nl_pid_hash *hash, u32 pid)
{
return &hash->table[jhash_1word(pid, hash->rnd) & hash->mask];
}
static void netlink_sock_destruct(struct sock *sk)
{
struct netlink_sock *nlk = nlk_sk(sk);
if (nlk->cb) {
if (nlk->cb->done)
nlk->cb->done(nlk->cb);
netlink_destroy_callback(nlk->cb);
}
skb_queue_purge(&sk->sk_receive_queue);
if (!sock_flag(sk, SOCK_DEAD)) {
printk(KERN_ERR "Freeing alive netlink socket %p\n", sk);
return;
}
WARN_ON(atomic_read(&sk->sk_rmem_alloc));
WARN_ON(atomic_read(&sk->sk_wmem_alloc));
WARN_ON(nlk_sk(sk)->groups);
}
/* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on
* SMP. Look, when several writers sleep and reader wakes them up, all but one
* immediately hit write lock and grab all the cpus. Exclusive sleep solves
* this, _but_ remember, it adds useless work on UP machines.
*/
void netlink_table_grab(void)
__acquires(nl_table_lock)
{
might_sleep();
write_lock_irq(&nl_table_lock);
if (atomic_read(&nl_table_users)) {
DECLARE_WAITQUEUE(wait, current);
add_wait_queue_exclusive(&nl_table_wait, &wait);
for (;;) {
set_current_state(TASK_UNINTERRUPTIBLE);
if (atomic_read(&nl_table_users) == 0)
break;
write_unlock_irq(&nl_table_lock);
schedule();
write_lock_irq(&nl_table_lock);
}
__set_current_state(TASK_RUNNING);
remove_wait_queue(&nl_table_wait, &wait);
}
}
void netlink_table_ungrab(void)
__releases(nl_table_lock)
{
write_unlock_irq(&nl_table_lock);
wake_up(&nl_table_wait);
}
static inline void
netlink_lock_table(void)
{
/* read_lock() synchronizes us to netlink_table_grab */
read_lock(&nl_table_lock);
atomic_inc(&nl_table_users);
read_unlock(&nl_table_lock);
}
static inline void
netlink_unlock_table(void)
{
if (atomic_dec_and_test(&nl_table_users))
wake_up(&nl_table_wait);
}
static inline struct sock *netlink_lookup(struct net *net, int protocol,
u32 pid)
{
struct nl_pid_hash *hash = &nl_table[protocol].hash;
struct hlist_head *head;
struct sock *sk;
struct hlist_node *node;
read_lock(&nl_table_lock);
head = nl_pid_hashfn(hash, pid);
sk_for_each(sk, node, head) {
if (net_eq(sock_net(sk), net) && (nlk_sk(sk)->pid == pid)) {
sock_hold(sk);
goto found;
}
}
sk = NULL;
found:
read_unlock(&nl_table_lock);
return sk;
}
static inline struct hlist_head *nl_pid_hash_zalloc(size_t size)
{
if (size <= PAGE_SIZE)
return kzalloc(size, GFP_ATOMIC);
else
return (struct hlist_head *)
__get_free_pages(GFP_ATOMIC | __GFP_ZERO,
get_order(size));
}
static inline void nl_pid_hash_free(struct hlist_head *table, size_t size)
{
if (size <= PAGE_SIZE)
kfree(table);
else
free_pages((unsigned long)table, get_order(size));
}
static int nl_pid_hash_rehash(struct nl_pid_hash *hash, int grow)
{
unsigned int omask, mask, shift;
size_t osize, size;
struct hlist_head *otable, *table;
int i;
omask = mask = hash->mask;
osize = size = (mask + 1) * sizeof(*table);
shift = hash->shift;
if (grow) {
if (++shift > hash->max_shift)
return 0;
mask = mask * 2 + 1;
size *= 2;
}
table = nl_pid_hash_zalloc(size);
if (!table)
return 0;
otable = hash->table;
hash->table = table;
hash->mask = mask;
hash->shift = shift;
get_random_bytes(&hash->rnd, sizeof(hash->rnd));
for (i = 0; i <= omask; i++) {
struct sock *sk;
struct hlist_node *node, *tmp;
sk_for_each_safe(sk, node, tmp, &otable[i])
__sk_add_node(sk, nl_pid_hashfn(hash, nlk_sk(sk)->pid));
}
nl_pid_hash_free(otable, osize);
hash->rehash_time = jiffies + 10 * 60 * HZ;
return 1;
}
static inline int nl_pid_hash_dilute(struct nl_pid_hash *hash, int len)
{
int avg = hash->entries >> hash->shift;
if (unlikely(avg > 1) && nl_pid_hash_rehash(hash, 1))
return 1;
if (unlikely(len > avg) && time_after(jiffies, hash->rehash_time)) {
nl_pid_hash_rehash(hash, 0);
return 1;
}
return 0;
}
static const struct proto_ops netlink_ops;
static void
netlink_update_listeners(struct sock *sk)
{
struct netlink_table *tbl = &nl_table[sk->sk_protocol];
struct hlist_node *node;
unsigned long mask;
unsigned int i;
for (i = 0; i < NLGRPLONGS(tbl->groups); i++) {
mask = 0;
sk_for_each_bound(sk, node, &tbl->mc_list) {
if (i < NLGRPLONGS(nlk_sk(sk)->ngroups))
mask |= nlk_sk(sk)->groups[i];
}
tbl->listeners[i] = mask;
}
/* this function is only called with the netlink table "grabbed", which
* makes sure updates are visible before bind or setsockopt return. */
}
static int netlink_insert(struct sock *sk, struct net *net, u32 pid)
{
struct nl_pid_hash *hash = &nl_table[sk->sk_protocol].hash;
struct hlist_head *head;
int err = -EADDRINUSE;
struct sock *osk;
struct hlist_node *node;
int len;
netlink_table_grab();
head = nl_pid_hashfn(hash, pid);
len = 0;
sk_for_each(osk, node, head) {
if (net_eq(sock_net(osk), net) && (nlk_sk(osk)->pid == pid))
break;
len++;
}
if (node)
goto err;
err = -EBUSY;
if (nlk_sk(sk)->pid)
goto err;
err = -ENOMEM;
if (BITS_PER_LONG > 32 && unlikely(hash->entries >= UINT_MAX))
goto err;
if (len && nl_pid_hash_dilute(hash, len))
head = nl_pid_hashfn(hash, pid);
hash->entries++;
nlk_sk(sk)->pid = pid;
sk_add_node(sk, head);
err = 0;
err:
netlink_table_ungrab();
return err;
}
static void netlink_remove(struct sock *sk)
{
netlink_table_grab();
if (sk_del_node_init(sk))
nl_table[sk->sk_protocol].hash.entries--;
if (nlk_sk(sk)->subscriptions)
__sk_del_bind_node(sk);
netlink_table_ungrab();
}
static struct proto netlink_proto = {
.name = "NETLINK",
.owner = THIS_MODULE,
.obj_size = sizeof(struct netlink_sock),
};
static int __netlink_create(struct net *net, struct socket *sock,
struct mutex *cb_mutex, int protocol)
{
struct sock *sk;
struct netlink_sock *nlk;
sock->ops = &netlink_ops;
sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto);
if (!sk)
return -ENOMEM;
sock_init_data(sock, sk);
nlk = nlk_sk(sk);
if (cb_mutex)
nlk->cb_mutex = cb_mutex;
else {
nlk->cb_mutex = &nlk->cb_def_mutex;
mutex_init(nlk->cb_mutex);
}
init_waitqueue_head(&nlk->wait);
sk->sk_destruct = netlink_sock_destruct;
sk->sk_protocol = protocol;
return 0;
}
static int netlink_create(struct net *net, struct socket *sock, int protocol,
int kern)
{
struct module *module = NULL;
struct mutex *cb_mutex;
struct netlink_sock *nlk;
int err = 0;
sock->state = SS_UNCONNECTED;
if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM)
return -ESOCKTNOSUPPORT;
if (protocol < 0 || protocol >= MAX_LINKS)
return -EPROTONOSUPPORT;
netlink_lock_table();
#ifdef CONFIG_MODULES
if (!nl_table[protocol].registered) {
netlink_unlock_table();
request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol);
netlink_lock_table();
}
#endif
if (nl_table[protocol].registered &&
try_module_get(nl_table[protocol].module))
module = nl_table[protocol].module;
else
err = -EPROTONOSUPPORT;
cb_mutex = nl_table[protocol].cb_mutex;
netlink_unlock_table();
if (err < 0)
goto out;
err = __netlink_create(net, sock, cb_mutex, protocol);
if (err < 0)
goto out_module;
local_bh_disable();
sock_prot_inuse_add(net, &netlink_proto, 1);
local_bh_enable();
nlk = nlk_sk(sock->sk);
nlk->module = module;
out:
return err;
out_module:
module_put(module);
goto out;
}
static int netlink_release(struct socket *sock)
{
struct sock *sk = sock->sk;
struct netlink_sock *nlk;
if (!sk)
return 0;
netlink_remove(sk);
sock_orphan(sk);
nlk = nlk_sk(sk);
/*
* OK. Socket is unlinked, any packets that arrive now
* will be purged.
*/
sock->sk = NULL;
wake_up_interruptible_all(&nlk->wait);
skb_queue_purge(&sk->sk_write_queue);
if (nlk->pid) {
struct netlink_notify n = {
.net = sock_net(sk),
.protocol = sk->sk_protocol,
.pid = nlk->pid,
};
atomic_notifier_call_chain(&netlink_chain,
NETLINK_URELEASE, &n);
}
module_put(nlk->module);
netlink_table_grab();
if (netlink_is_kernel(sk)) {
BUG_ON(nl_table[sk->sk_protocol].registered == 0);
if (--nl_table[sk->sk_protocol].registered == 0) {
kfree(nl_table[sk->sk_protocol].listeners);
nl_table[sk->sk_protocol].module = NULL;
nl_table[sk->sk_protocol].registered = 0;
}
} else if (nlk->subscriptions)
netlink_update_listeners(sk);
netlink_table_ungrab();
kfree(nlk->groups);
nlk->groups = NULL;
local_bh_disable();
sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1);
local_bh_enable();
sock_put(sk);
return 0;
}
static int netlink_autobind(struct socket *sock)
{
struct sock *sk = sock->sk;
struct net *net = sock_net(sk);
struct nl_pid_hash *hash = &nl_table[sk->sk_protocol].hash;
struct hlist_head *head;
struct sock *osk;
struct hlist_node *node;
s32 pid = task_tgid_vnr(current);
int err;
static s32 rover = -4097;
retry:
cond_resched();
netlink_table_grab();
head = nl_pid_hashfn(hash, pid);
sk_for_each(osk, node, head) {
if (!net_eq(sock_net(osk), net))
continue;
if (nlk_sk(osk)->pid == pid) {
/* Bind collision, search negative pid values. */
pid = rover--;
if (rover > -4097)
rover = -4097;
netlink_table_ungrab();
goto retry;
}
}
netlink_table_ungrab();
err = netlink_insert(sk, net, pid);
if (err == -EADDRINUSE)
goto retry;
/* If 2 threads race to autobind, that is fine. */
if (err == -EBUSY)
err = 0;
return err;
}
static inline int netlink_capable(struct socket *sock, unsigned int flag)
{
return (nl_table[sock->sk->sk_protocol].nl_nonroot & flag) ||
capable(CAP_NET_ADMIN);
}
static void
netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions)
{
struct netlink_sock *nlk = nlk_sk(sk);
if (nlk->subscriptions && !subscriptions)
__sk_del_bind_node(sk);
else if (!nlk->subscriptions && subscriptions)
sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list);
nlk->subscriptions = subscriptions;
}
static int netlink_realloc_groups(struct sock *sk)
{
struct netlink_sock *nlk = nlk_sk(sk);
unsigned int groups;
unsigned long *new_groups;
int err = 0;
netlink_table_grab();
groups = nl_table[sk->sk_protocol].groups;
if (!nl_table[sk->sk_protocol].registered) {
err = -ENOENT;
goto out_unlock;
}
if (nlk->ngroups >= groups)
goto out_unlock;
new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC);
if (new_groups == NULL) {
err = -ENOMEM;
goto out_unlock;
}
memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0,
NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups));
nlk->groups = new_groups;
nlk->ngroups = groups;
out_unlock:
netlink_table_ungrab();
return err;
}
static int netlink_bind(struct socket *sock, struct sockaddr *addr,
int addr_len)
{
struct sock *sk = sock->sk;
struct net *net = sock_net(sk);
struct netlink_sock *nlk = nlk_sk(sk);
struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
int err;
if (nladdr->nl_family != AF_NETLINK)
return -EINVAL;
/* Only superuser is allowed to listen multicasts */
if (nladdr->nl_groups) {
if (!netlink_capable(sock, NL_NONROOT_RECV))
return -EPERM;
err = netlink_realloc_groups(sk);
if (err)
return err;
}
if (nlk->pid) {
if (nladdr->nl_pid != nlk->pid)
return -EINVAL;
} else {
err = nladdr->nl_pid ?
netlink_insert(sk, net, nladdr->nl_pid) :
netlink_autobind(sock);
if (err)
return err;
}
if (!nladdr->nl_groups && (nlk->groups == NULL || !(u32)nlk->groups[0]))
return 0;
netlink_table_grab();
netlink_update_subscriptions(sk, nlk->subscriptions +
hweight32(nladdr->nl_groups) -
hweight32(nlk->groups[0]));
nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | nladdr->nl_groups;
netlink_update_listeners(sk);
netlink_table_ungrab();
return 0;
}
static int netlink_connect(struct socket *sock, struct sockaddr *addr,
int alen, int flags)
{
int err = 0;
struct sock *sk = sock->sk;
struct netlink_sock *nlk = nlk_sk(sk);
struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
if (alen < sizeof(addr->sa_family))
return -EINVAL;
if (addr->sa_family == AF_UNSPEC) {
sk->sk_state = NETLINK_UNCONNECTED;
nlk->dst_pid = 0;
nlk->dst_group = 0;
return 0;
}
if (addr->sa_family != AF_NETLINK)
return -EINVAL;
/* Only superuser is allowed to send multicasts */
if (nladdr->nl_groups && !netlink_capable(sock, NL_NONROOT_SEND))
return -EPERM;
if (!nlk->pid)
err = netlink_autobind(sock);
if (err == 0) {
sk->sk_state = NETLINK_CONNECTED;
nlk->dst_pid = nladdr->nl_pid;
nlk->dst_group = ffs(nladdr->nl_groups);
}
return err;
}
static int netlink_getname(struct socket *sock, struct sockaddr *addr,
int *addr_len, int peer)
{
struct sock *sk = sock->sk;
struct netlink_sock *nlk = nlk_sk(sk);
DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr);
nladdr->nl_family = AF_NETLINK;
nladdr->nl_pad = 0;
*addr_len = sizeof(*nladdr);
if (peer) {
nladdr->nl_pid = nlk->dst_pid;
nladdr->nl_groups = netlink_group_mask(nlk->dst_group);
} else {
nladdr->nl_pid = nlk->pid;
nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0;
}
return 0;
}
static void netlink_overrun(struct sock *sk)
{
struct netlink_sock *nlk = nlk_sk(sk);
if (!(nlk->flags & NETLINK_RECV_NO_ENOBUFS)) {
if (!test_and_set_bit(0, &nlk_sk(sk)->state)) {
sk->sk_err = ENOBUFS;
sk->sk_error_report(sk);
}
}
atomic_inc(&sk->sk_drops);
}
static struct sock *netlink_getsockbypid(struct sock *ssk, u32 pid)
{
struct sock *sock;
struct netlink_sock *nlk;
sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, pid);
if (!sock)
return ERR_PTR(-ECONNREFUSED);
/* Don't bother queuing skb if kernel socket has no input function */
nlk = nlk_sk(sock);
if (sock->sk_state == NETLINK_CONNECTED &&
nlk->dst_pid != nlk_sk(ssk)->pid) {
sock_put(sock);
return ERR_PTR(-ECONNREFUSED);
}
return sock;
}
struct sock *netlink_getsockbyfilp(struct file *filp)
{
struct inode *inode = filp->f_path.dentry->d_inode;
struct sock *sock;
if (!S_ISSOCK(inode->i_mode))
return ERR_PTR(-ENOTSOCK);
sock = SOCKET_I(inode)->sk;
if (sock->sk_family != AF_NETLINK)
return ERR_PTR(-EINVAL);
sock_hold(sock);
return sock;
}
/*
* Attach a skb to a netlink socket.
* The caller must hold a reference to the destination socket. On error, the
* reference is dropped. The skb is not send to the destination, just all
* all error checks are performed and memory in the queue is reserved.
* Return values:
* < 0: error. skb freed, reference to sock dropped.
* 0: continue
* 1: repeat lookup - reference dropped while waiting for socket memory.
*/
int netlink_attachskb(struct sock *sk, struct sk_buff *skb,
long *timeo, struct sock *ssk)
{
struct netlink_sock *nlk;
nlk = nlk_sk(sk);
if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
test_bit(0, &nlk->state)) {
DECLARE_WAITQUEUE(wait, current);
if (!*timeo) {
if (!ssk || netlink_is_kernel(ssk))
netlink_overrun(sk);
sock_put(sk);
kfree_skb(skb);
return -EAGAIN;
}
__set_current_state(TASK_INTERRUPTIBLE);
add_wait_queue(&nlk->wait, &wait);
if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
test_bit(0, &nlk->state)) &&
!sock_flag(sk, SOCK_DEAD))
*timeo = schedule_timeout(*timeo);
__set_current_state(TASK_RUNNING);
remove_wait_queue(&nlk->wait, &wait);
sock_put(sk);
if (signal_pending(current)) {
kfree_skb(skb);
return sock_intr_errno(*timeo);
}
return 1;
}
skb_set_owner_r(skb, sk);
return 0;
}
int netlink_sendskb(struct sock *sk, struct sk_buff *skb)
{
int len = skb->len;
skb_queue_tail(&sk->sk_receive_queue, skb);
sk->sk_data_ready(sk, len);
sock_put(sk);
return len;
}
void netlink_detachskb(struct sock *sk, struct sk_buff *skb)
{
kfree_skb(skb);
sock_put(sk);
}
static inline struct sk_buff *netlink_trim(struct sk_buff *skb,
gfp_t allocation)
{
int delta;
skb_orphan(skb);
delta = skb->end - skb->tail;
if (delta * 2 < skb->truesize)
return skb;
if (skb_shared(skb)) {
struct sk_buff *nskb = skb_clone(skb, allocation);
if (!nskb)
return skb;
kfree_skb(skb);
skb = nskb;
}
if (!pskb_expand_head(skb, 0, -delta, allocation))
skb->truesize -= delta;
return skb;
}
static inline void netlink_rcv_wake(struct sock *sk)
{
struct netlink_sock *nlk = nlk_sk(sk);
if (skb_queue_empty(&sk->sk_receive_queue))
clear_bit(0, &nlk->state);
if (!test_bit(0, &nlk->state))
wake_up_interruptible(&nlk->wait);
}
static inline int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb)
{
int ret;
struct netlink_sock *nlk = nlk_sk(sk);
ret = -ECONNREFUSED;
if (nlk->netlink_rcv != NULL) {
ret = skb->len;
skb_set_owner_r(skb, sk);
nlk->netlink_rcv(skb);
}
kfree_skb(skb);
sock_put(sk);
return ret;
}
int netlink_unicast(struct sock *ssk, struct sk_buff *skb,
u32 pid, int nonblock)
{
struct sock *sk;
int err;
long timeo;
skb = netlink_trim(skb, gfp_any());
timeo = sock_sndtimeo(ssk, nonblock);
retry:
sk = netlink_getsockbypid(ssk, pid);
if (IS_ERR(sk)) {
kfree_skb(skb);
return PTR_ERR(sk);
}
if (netlink_is_kernel(sk))
return netlink_unicast_kernel(sk, skb);
if (sk_filter(sk, skb)) {
err = skb->len;
kfree_skb(skb);
sock_put(sk);
return err;
}
err = netlink_attachskb(sk, skb, &timeo, ssk);
if (err == 1)
goto retry;
if (err)
return err;
return netlink_sendskb(sk, skb);
}
EXPORT_SYMBOL(netlink_unicast);
int netlink_has_listeners(struct sock *sk, unsigned int group)
{
int res = 0;
unsigned long *listeners;
BUG_ON(!netlink_is_kernel(sk));
rcu_read_lock();
listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners);
if (group - 1 < nl_table[sk->sk_protocol].groups)
res = test_bit(group - 1, listeners);
rcu_read_unlock();
return res;
}
EXPORT_SYMBOL_GPL(netlink_has_listeners);
static inline int netlink_broadcast_deliver(struct sock *sk,
struct sk_buff *skb)
{
struct netlink_sock *nlk = nlk_sk(sk);
if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
!test_bit(0, &nlk->state)) {
skb_set_owner_r(skb, sk);
skb_queue_tail(&sk->sk_receive_queue, skb);
sk->sk_data_ready(sk, skb->len);
return atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf;
}
return -1;
}
struct netlink_broadcast_data {
struct sock *exclude_sk;
struct net *net;
u32 pid;
u32 group;
int failure;
int delivery_failure;
int congested;
int delivered;
gfp_t allocation;
struct sk_buff *skb, *skb2;
int (*tx_filter)(struct sock *dsk, struct sk_buff *skb, void *data);
void *tx_data;
};
static inline int do_one_broadcast(struct sock *sk,
struct netlink_broadcast_data *p)
{
struct netlink_sock *nlk = nlk_sk(sk);
int val;
if (p->exclude_sk == sk)
goto out;
if (nlk->pid == p->pid || p->group - 1 >= nlk->ngroups ||
!test_bit(p->group - 1, nlk->groups))
goto out;
if (!net_eq(sock_net(sk), p->net))
goto out;
if (p->failure) {
netlink_overrun(sk);
goto out;
}
sock_hold(sk);
if (p->skb2 == NULL) {
if (skb_shared(p->skb)) {
p->skb2 = skb_clone(p->skb, p->allocation);
} else {
p->skb2 = skb_get(p->skb);
/*
* skb ownership may have been set when
* delivered to a previous socket.
*/
skb_orphan(p->skb2);
}
}
if (p->skb2 == NULL) {
netlink_overrun(sk);
/* Clone failed. Notify ALL listeners. */
p->failure = 1;
if (nlk->flags & NETLINK_BROADCAST_SEND_ERROR)
p->delivery_failure = 1;
} else if (p->tx_filter && p->tx_filter(sk, p->skb2, p->tx_data)) {
kfree_skb(p->skb2);
p->skb2 = NULL;
} else if (sk_filter(sk, p->skb2)) {
kfree_skb(p->skb2);
p->skb2 = NULL;
} else if ((val = netlink_broadcast_deliver(sk, p->skb2)) < 0) {
netlink_overrun(sk);
if (nlk->flags & NETLINK_BROADCAST_SEND_ERROR)
p->delivery_failure = 1;
} else {
p->congested |= val;
p->delivered = 1;
p->skb2 = NULL;
}
sock_put(sk);
out:
return 0;
}
int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, u32 pid,
u32 group, gfp_t allocation,
int (*filter)(struct sock *dsk, struct sk_buff *skb, void *data),
void *filter_data)
{
struct net *net = sock_net(ssk);
struct netlink_broadcast_data info;
struct hlist_node *node;
struct sock *sk;
skb = netlink_trim(skb, allocation);
info.exclude_sk = ssk;
info.net = net;
info.pid = pid;
info.group = group;
info.failure = 0;
info.delivery_failure = 0;
info.congested = 0;
info.delivered = 0;
info.allocation = allocation;
info.skb = skb;
info.skb2 = NULL;
info.tx_filter = filter;
info.tx_data = filter_data;
/* While we sleep in clone, do not allow to change socket list */
netlink_lock_table();
sk_for_each_bound(sk, node, &nl_table[ssk->sk_protocol].mc_list)
do_one_broadcast(sk, &info);
kfree_skb(skb);
netlink_unlock_table();
kfree_skb(info.skb2);
if (info.delivery_failure)
return -ENOBUFS;
if (info.delivered) {
if (info.congested && (allocation & __GFP_WAIT))
yield();
return 0;
}
return -ESRCH;
}
EXPORT_SYMBOL(netlink_broadcast_filtered);
int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 pid,
u32 group, gfp_t allocation)
{
return netlink_broadcast_filtered(ssk, skb, pid, group, allocation,
NULL, NULL);
}
EXPORT_SYMBOL(netlink_broadcast);
struct netlink_set_err_data {
struct sock *exclude_sk;
u32 pid;
u32 group;
int code;
};
static inline int do_one_set_err(struct sock *sk,
struct netlink_set_err_data *p)
{
struct netlink_sock *nlk = nlk_sk(sk);
int ret = 0;
if (sk == p->exclude_sk)
goto out;
if (!net_eq(sock_net(sk), sock_net(p->exclude_sk)))
goto out;
if (nlk->pid == p->pid || p->group - 1 >= nlk->ngroups ||
!test_bit(p->group - 1, nlk->groups))
goto out;
if (p->code == ENOBUFS && nlk->flags & NETLINK_RECV_NO_ENOBUFS) {
ret = 1;
goto out;
}
sk->sk_err = p->code;
sk->sk_error_report(sk);
out:
return ret;
}
/**
* netlink_set_err - report error to broadcast listeners
* @ssk: the kernel netlink socket, as returned by netlink_kernel_create()
* @pid: the PID of a process that we want to skip (if any)
* @groups: the broadcast group that will notice the error
* @code: error code, must be negative (as usual in kernelspace)
*
* This function returns the number of broadcast listeners that have set the
* NETLINK_RECV_NO_ENOBUFS socket option.
*/
int netlink_set_err(struct sock *ssk, u32 pid, u32 group, int code)
{
struct netlink_set_err_data info;
struct hlist_node *node;
struct sock *sk;
int ret = 0;
info.exclude_sk = ssk;
info.pid = pid;
info.group = group;
/* sk->sk_err wants a positive error value */
info.code = -code;
read_lock(&nl_table_lock);
sk_for_each_bound(sk, node, &nl_table[ssk->sk_protocol].mc_list)
ret += do_one_set_err(sk, &info);
read_unlock(&nl_table_lock);
return ret;
}
EXPORT_SYMBOL(netlink_set_err);
/* must be called with netlink table grabbed */
static void netlink_update_socket_mc(struct netlink_sock *nlk,
unsigned int group,
int is_new)
{
int old, new = !!is_new, subscriptions;
old = test_bit(group - 1, nlk->groups);
subscriptions = nlk->subscriptions - old + new;
if (new)
__set_bit(group - 1, nlk->groups);
else
__clear_bit(group - 1, nlk->groups);
netlink_update_subscriptions(&nlk->sk, subscriptions);
netlink_update_listeners(&nlk->sk);
}
static int netlink_setsockopt(struct socket *sock, int level, int optname,
char __user *optval, unsigned int optlen)
{
struct sock *sk = sock->sk;
struct netlink_sock *nlk = nlk_sk(sk);
unsigned int val = 0;
int err;
if (level != SOL_NETLINK)
return -ENOPROTOOPT;
if (optlen >= sizeof(int) &&
get_user(val, (unsigned int __user *)optval))
return -EFAULT;
switch (optname) {
case NETLINK_PKTINFO:
if (val)
nlk->flags |= NETLINK_RECV_PKTINFO;
else
nlk->flags &= ~NETLINK_RECV_PKTINFO;
err = 0;
break;
case NETLINK_ADD_MEMBERSHIP:
case NETLINK_DROP_MEMBERSHIP: {
if (!netlink_capable(sock, NL_NONROOT_RECV))
return -EPERM;
err = netlink_realloc_groups(sk);
if (err)
return err;
if (!val || val - 1 >= nlk->ngroups)
return -EINVAL;
netlink_table_grab();
netlink_update_socket_mc(nlk, val,
optname == NETLINK_ADD_MEMBERSHIP);
netlink_table_ungrab();
err = 0;
break;
}
case NETLINK_BROADCAST_ERROR:
if (val)
nlk->flags |= NETLINK_BROADCAST_SEND_ERROR;
else
nlk->flags &= ~NETLINK_BROADCAST_SEND_ERROR;
err = 0;
break;
case NETLINK_NO_ENOBUFS:
if (val) {
nlk->flags |= NETLINK_RECV_NO_ENOBUFS;
clear_bit(0, &nlk->state);
wake_up_interruptible(&nlk->wait);
} else
nlk->flags &= ~NETLINK_RECV_NO_ENOBUFS;
err = 0;
break;
default:
err = -ENOPROTOOPT;
}
return err;
}
static int netlink_getsockopt(struct socket *sock, int level, int optname,
char __user *optval, int __user *optlen)
{
struct sock *sk = sock->sk;
struct netlink_sock *nlk = nlk_sk(sk);
int len, val, err;
if (level != SOL_NETLINK)
return -ENOPROTOOPT;
if (get_user(len, optlen))
return -EFAULT;
if (len < 0)
return -EINVAL;
switch (optname) {
case NETLINK_PKTINFO:
if (len < sizeof(int))
return -EINVAL;
len = sizeof(int);
val = nlk->flags & NETLINK_RECV_PKTINFO ? 1 : 0;
if (put_user(len, optlen) ||
put_user(val, optval))
return -EFAULT;
err = 0;
break;
case NETLINK_BROADCAST_ERROR:
if (len < sizeof(int))
return -EINVAL;
len = sizeof(int);
val = nlk->flags & NETLINK_BROADCAST_SEND_ERROR ? 1 : 0;
if (put_user(len, optlen) ||
put_user(val, optval))
return -EFAULT;
err = 0;
break;
case NETLINK_NO_ENOBUFS:
if (len < sizeof(int))
return -EINVAL;
len = sizeof(int);
val = nlk->flags & NETLINK_RECV_NO_ENOBUFS ? 1 : 0;
if (put_user(len, optlen) ||
put_user(val, optval))
return -EFAULT;
err = 0;
break;
default:
err = -ENOPROTOOPT;
}
return err;
}
static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb)
{
struct nl_pktinfo info;
info.group = NETLINK_CB(skb).dst_group;
put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info);
}
static int netlink_sendmsg(struct kiocb *kiocb, struct socket *sock,
struct msghdr *msg, size_t len)
{
struct sock_iocb *siocb = kiocb_to_siocb(kiocb);
struct sock *sk = sock->sk;
struct netlink_sock *nlk = nlk_sk(sk);
struct sockaddr_nl *addr = msg->msg_name;
u32 dst_pid;
u32 dst_group;
struct sk_buff *skb;
int err;
struct scm_cookie scm;
if (msg->msg_flags&MSG_OOB)
return -EOPNOTSUPP;
if (NULL == siocb->scm)
siocb->scm = &scm;
err = scm_send(sock, msg, siocb->scm);
if (err < 0)
return err;
if (msg->msg_namelen) {
if (addr->nl_family != AF_NETLINK)
return -EINVAL;
dst_pid = addr->nl_pid;
dst_group = ffs(addr->nl_groups);
if (dst_group && !netlink_capable(sock, NL_NONROOT_SEND))
return -EPERM;
} else {
dst_pid = nlk->dst_pid;
dst_group = nlk->dst_group;
}
if (!nlk->pid) {
err = netlink_autobind(sock);
if (err)
goto out;
}
err = -EMSGSIZE;
if (len > sk->sk_sndbuf - 32)
goto out;
err = -ENOBUFS;
skb = alloc_skb(len, GFP_KERNEL);
if (skb == NULL)
goto out;
NETLINK_CB(skb).pid = nlk->pid;
NETLINK_CB(skb).dst_group = dst_group;
NETLINK_CB(skb).loginuid = audit_get_loginuid(current);
NETLINK_CB(skb).sessionid = audit_get_sessionid(current);
security_task_getsecid(current, &(NETLINK_CB(skb).sid));
memcpy(NETLINK_CREDS(skb), &siocb->scm->creds, sizeof(struct ucred));
/* What can I do? Netlink is asynchronous, so that
we will have to save current capabilities to
check them, when this message will be delivered
to corresponding kernel module. --ANK (980802)
*/
err = -EFAULT;
if (memcpy_fromiovec(skb_put(skb, len), msg->msg_iov, len)) {
kfree_skb(skb);
goto out;
}
err = security_netlink_send(sk, skb);
if (err) {
kfree_skb(skb);
goto out;
}
if (dst_group) {
atomic_inc(&skb->users);
netlink_broadcast(sk, skb, dst_pid, dst_group, GFP_KERNEL);
}
err = netlink_unicast(sk, skb, dst_pid, msg->msg_flags&MSG_DONTWAIT);
out:
return err;
}
static int netlink_recvmsg(struct kiocb *kiocb, struct socket *sock,
struct msghdr *msg, size_t len,
int flags)
{
struct sock_iocb *siocb = kiocb_to_siocb(kiocb);
struct scm_cookie scm;
struct sock *sk = sock->sk;
struct netlink_sock *nlk = nlk_sk(sk);
int noblock = flags&MSG_DONTWAIT;
size_t copied;
struct sk_buff *skb, *frag __maybe_unused = NULL;
int err;
if (flags&MSG_OOB)
return -EOPNOTSUPP;
copied = 0;
skb = skb_recv_datagram(sk, flags, noblock, &err);
if (skb == NULL)
goto out;
#ifdef CONFIG_COMPAT_NETLINK_MESSAGES
if (unlikely(skb_shinfo(skb)->frag_list)) {
bool need_compat = !!(flags & MSG_CMSG_COMPAT);
/*
* If this skb has a frag_list, then here that means that
* we will have to use the frag_list skb for compat tasks
* and the regular skb for non-compat tasks.
*
* The skb might (and likely will) be cloned, so we can't
* just reset frag_list and go on with things -- we need to
* keep that. For the compat case that's easy -- simply get
* a reference to the compat skb and free the regular one
* including the frag. For the non-compat case, we need to
* avoid sending the frag to the user -- so assign NULL but
* restore it below before freeing the skb.
*/
if (need_compat) {
struct sk_buff *compskb = skb_shinfo(skb)->frag_list;
skb_get(compskb);
kfree_skb(skb);
skb = compskb;
} else {
frag = skb_shinfo(skb)->frag_list;
skb_shinfo(skb)->frag_list = NULL;
}
}
#endif
msg->msg_namelen = 0;
copied = skb->len;
if (len < copied) {
msg->msg_flags |= MSG_TRUNC;
copied = len;
}
skb_reset_transport_header(skb);
err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
if (msg->msg_name) {
struct sockaddr_nl *addr = (struct sockaddr_nl *)msg->msg_name;
addr->nl_family = AF_NETLINK;
addr->nl_pad = 0;
addr->nl_pid = NETLINK_CB(skb).pid;
addr->nl_groups = netlink_group_mask(NETLINK_CB(skb).dst_group);
msg->msg_namelen = sizeof(*addr);
}
if (nlk->flags & NETLINK_RECV_PKTINFO)
netlink_cmsg_recv_pktinfo(msg, skb);
if (NULL == siocb->scm) {
memset(&scm, 0, sizeof(scm));
siocb->scm = &scm;
}
siocb->scm->creds = *NETLINK_CREDS(skb);
if (flags & MSG_TRUNC)
copied = skb->len;
#ifdef CONFIG_COMPAT_NETLINK_MESSAGES
skb_shinfo(skb)->frag_list = frag;
#endif
skb_free_datagram(sk, skb);
if (nlk->cb && atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2)
netlink_dump(sk);
scm_recv(sock, msg, siocb->scm, flags);
out:
netlink_rcv_wake(sk);
return err ? : copied;
}
static void netlink_data_ready(struct sock *sk, int len)
{
BUG();
}
/*
* We export these functions to other modules. They provide a
* complete set of kernel non-blocking support for message
* queueing.
*/
struct sock *
netlink_kernel_create(struct net *net, int unit, unsigned int groups,
void (*input)(struct sk_buff *skb),
struct mutex *cb_mutex, struct module *module)
{
struct socket *sock;
struct sock *sk;
struct netlink_sock *nlk;
unsigned long *listeners = NULL;
BUG_ON(!nl_table);
if (unit < 0 || unit >= MAX_LINKS)
return NULL;
if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock))
return NULL;
/*
* We have to just have a reference on the net from sk, but don't
* get_net it. Besides, we cannot get and then put the net here.
* So we create one inside init_net and the move it to net.
*/
if (__netlink_create(&init_net, sock, cb_mutex, unit) < 0)
goto out_sock_release_nosk;
sk = sock->sk;
sk_change_net(sk, net);
if (groups < 32)
groups = 32;
listeners = kzalloc(NLGRPSZ(groups) + sizeof(struct listeners_rcu_head),
GFP_KERNEL);
if (!listeners)
goto out_sock_release;
sk->sk_data_ready = netlink_data_ready;
if (input)
nlk_sk(sk)->netlink_rcv = input;
if (netlink_insert(sk, net, 0))
goto out_sock_release;
nlk = nlk_sk(sk);
nlk->flags |= NETLINK_KERNEL_SOCKET;
netlink_table_grab();
if (!nl_table[unit].registered) {
nl_table[unit].groups = groups;
nl_table[unit].listeners = listeners;
nl_table[unit].cb_mutex = cb_mutex;
nl_table[unit].module = module;
nl_table[unit].registered = 1;
} else {
kfree(listeners);
nl_table[unit].registered++;
}
netlink_table_ungrab();
return sk;
out_sock_release:
kfree(listeners);
netlink_kernel_release(sk);
return NULL;
out_sock_release_nosk:
sock_release(sock);
return NULL;
}
EXPORT_SYMBOL(netlink_kernel_create);
void
netlink_kernel_release(struct sock *sk)
{
sk_release_kernel(sk);
}
EXPORT_SYMBOL(netlink_kernel_release);
static void netlink_free_old_listeners(struct rcu_head *rcu_head)
{
struct listeners_rcu_head *lrh;
lrh = container_of(rcu_head, struct listeners_rcu_head, rcu_head);
kfree(lrh->ptr);
}
int __netlink_change_ngroups(struct sock *sk, unsigned int groups)
{
unsigned long *listeners, *old = NULL;
struct listeners_rcu_head *old_rcu_head;
struct netlink_table *tbl = &nl_table[sk->sk_protocol];
if (groups < 32)
groups = 32;
if (NLGRPSZ(tbl->groups) < NLGRPSZ(groups)) {
listeners = kzalloc(NLGRPSZ(groups) +
sizeof(struct listeners_rcu_head),
GFP_ATOMIC);
if (!listeners)
return -ENOMEM;
old = tbl->listeners;
memcpy(listeners, old, NLGRPSZ(tbl->groups));
rcu_assign_pointer(tbl->listeners, listeners);
/*
* Free the old memory after an RCU grace period so we
* don't leak it. We use call_rcu() here in order to be
* able to call this function from atomic contexts. The
* allocation of this memory will have reserved enough
* space for struct listeners_rcu_head at the end.
*/
old_rcu_head = (void *)(tbl->listeners +
NLGRPLONGS(tbl->groups));
old_rcu_head->ptr = old;
call_rcu(&old_rcu_head->rcu_head, netlink_free_old_listeners);
}
tbl->groups = groups;
return 0;
}
/**
* netlink_change_ngroups - change number of multicast groups
*
* This changes the number of multicast groups that are available
* on a certain netlink family. Note that it is not possible to
* change the number of groups to below 32. Also note that it does
* not implicitly call netlink_clear_multicast_users() when the
* number of groups is reduced.
*
* @sk: The kernel netlink socket, as returned by netlink_kernel_create().
* @groups: The new number of groups.
*/
int netlink_change_ngroups(struct sock *sk, unsigned int groups)
{
int err;
netlink_table_grab();
err = __netlink_change_ngroups(sk, groups);
netlink_table_ungrab();
return err;
}
void __netlink_clear_multicast_users(struct sock *ksk, unsigned int group)
{
struct sock *sk;
struct hlist_node *node;
struct netlink_table *tbl = &nl_table[ksk->sk_protocol];
sk_for_each_bound(sk, node, &tbl->mc_list)
netlink_update_socket_mc(nlk_sk(sk), group, 0);
}
/**
* netlink_clear_multicast_users - kick off multicast listeners
*
* This function removes all listeners from the given group.
* @ksk: The kernel netlink socket, as returned by
* netlink_kernel_create().
* @group: The multicast group to clear.
*/
void netlink_clear_multicast_users(struct sock *ksk, unsigned int group)
{
netlink_table_grab();
__netlink_clear_multicast_users(ksk, group);
netlink_table_ungrab();
}
void netlink_set_nonroot(int protocol, unsigned int flags)
{
if ((unsigned int)protocol < MAX_LINKS)
nl_table[protocol].nl_nonroot = flags;
}
EXPORT_SYMBOL(netlink_set_nonroot);
static void netlink_destroy_callback(struct netlink_callback *cb)
{
kfree_skb(cb->skb);
kfree(cb);
}
/*
* It looks a bit ugly.
* It would be better to create kernel thread.
*/
static int netlink_dump(struct sock *sk)
{
struct netlink_sock *nlk = nlk_sk(sk);
struct netlink_callback *cb;
struct sk_buff *skb;
struct nlmsghdr *nlh;
int len, err = -ENOBUFS;
skb = sock_rmalloc(sk, NLMSG_GOODSIZE, 0, GFP_KERNEL);
if (!skb)
goto errout;
mutex_lock(nlk->cb_mutex);
cb = nlk->cb;
if (cb == NULL) {
err = -EINVAL;
goto errout_skb;
}
len = cb->dump(skb, cb);
if (len > 0) {
mutex_unlock(nlk->cb_mutex);
if (sk_filter(sk, skb))
kfree_skb(skb);
else {
skb_queue_tail(&sk->sk_receive_queue, skb);
sk->sk_data_ready(sk, skb->len);
}
return 0;
}
nlh = nlmsg_put_answer(skb, cb, NLMSG_DONE, sizeof(len), NLM_F_MULTI);
if (!nlh)
goto errout_skb;
memcpy(nlmsg_data(nlh), &len, sizeof(len));
if (sk_filter(sk, skb))
kfree_skb(skb);
else {
skb_queue_tail(&sk->sk_receive_queue, skb);
sk->sk_data_ready(sk, skb->len);
}
if (cb->done)
cb->done(cb);
nlk->cb = NULL;
mutex_unlock(nlk->cb_mutex);
netlink_destroy_callback(cb);
return 0;
errout_skb:
mutex_unlock(nlk->cb_mutex);
kfree_skb(skb);
errout:
return err;
}
int netlink_dump_start(struct sock *ssk, struct sk_buff *skb,
const struct nlmsghdr *nlh,
int (*dump)(struct sk_buff *skb,
struct netlink_callback *),
int (*done)(struct netlink_callback *))
{
struct netlink_callback *cb;
struct sock *sk;
struct netlink_sock *nlk;
cb = kzalloc(sizeof(*cb), GFP_KERNEL);
if (cb == NULL)
return -ENOBUFS;
cb->dump = dump;
cb->done = done;
cb->nlh = nlh;
atomic_inc(&skb->users);
cb->skb = skb;
sk = netlink_lookup(sock_net(ssk), ssk->sk_protocol, NETLINK_CB(skb).pid);
if (sk == NULL) {
netlink_destroy_callback(cb);
return -ECONNREFUSED;
}
nlk = nlk_sk(sk);
/* A dump is in progress... */
mutex_lock(nlk->cb_mutex);
if (nlk->cb) {
mutex_unlock(nlk->cb_mutex);
netlink_destroy_callback(cb);
sock_put(sk);
return -EBUSY;
}
nlk->cb = cb;
mutex_unlock(nlk->cb_mutex);
netlink_dump(sk);
sock_put(sk);
/* We successfully started a dump, by returning -EINTR we
* signal not to send ACK even if it was requested.
*/
return -EINTR;
}
EXPORT_SYMBOL(netlink_dump_start);
void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err)
{
struct sk_buff *skb;
struct nlmsghdr *rep;
struct nlmsgerr *errmsg;
size_t payload = sizeof(*errmsg);
/* error messages get the original request appened */
if (err)
payload += nlmsg_len(nlh);
skb = nlmsg_new(payload, GFP_KERNEL);
if (!skb) {
struct sock *sk;
sk = netlink_lookup(sock_net(in_skb->sk),
in_skb->sk->sk_protocol,
NETLINK_CB(in_skb).pid);
if (sk) {
sk->sk_err = ENOBUFS;
sk->sk_error_report(sk);
sock_put(sk);
}
return;
}
rep = __nlmsg_put(skb, NETLINK_CB(in_skb).pid, nlh->nlmsg_seq,
NLMSG_ERROR, payload, 0);
errmsg = nlmsg_data(rep);
errmsg->error = err;
memcpy(&errmsg->msg, nlh, err ? nlh->nlmsg_len : sizeof(*nlh));
netlink_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).pid, MSG_DONTWAIT);
}
EXPORT_SYMBOL(netlink_ack);
int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *,
struct nlmsghdr *))
{
struct nlmsghdr *nlh;
int err;
while (skb->len >= nlmsg_total_size(0)) {
int msglen;
nlh = nlmsg_hdr(skb);
err = 0;
if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len)
return 0;
/* Only requests are handled by the kernel */
if (!(nlh->nlmsg_flags & NLM_F_REQUEST))
goto ack;
/* Skip control messages */
if (nlh->nlmsg_type < NLMSG_MIN_TYPE)
goto ack;
err = cb(skb, nlh);
if (err == -EINTR)
goto skip;
ack:
if (nlh->nlmsg_flags & NLM_F_ACK || err)
netlink_ack(skb, nlh, err);
skip:
msglen = NLMSG_ALIGN(nlh->nlmsg_len);
if (msglen > skb->len)
msglen = skb->len;
skb_pull(skb, msglen);
}
return 0;
}
EXPORT_SYMBOL(netlink_rcv_skb);
/**
* nlmsg_notify - send a notification netlink message
* @sk: netlink socket to use
* @skb: notification message
* @pid: destination netlink pid for reports or 0
* @group: destination multicast group or 0
* @report: 1 to report back, 0 to disable
* @flags: allocation flags
*/
int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 pid,
unsigned int group, int report, gfp_t flags)
{
int err = 0;
if (group) {
int exclude_pid = 0;
if (report) {
atomic_inc(&skb->users);
exclude_pid = pid;
}
/* errors reported via destination sk->sk_err, but propagate
* delivery errors if NETLINK_BROADCAST_ERROR flag is set */
err = nlmsg_multicast(sk, skb, exclude_pid, group, flags);
}
if (report) {
int err2;
err2 = nlmsg_unicast(sk, skb, pid);
if (!err || err == -ESRCH)
err = err2;
}
return err;
}
EXPORT_SYMBOL(nlmsg_notify);
#ifdef CONFIG_PROC_FS
struct nl_seq_iter {
struct seq_net_private p;
int link;
int hash_idx;
};
static struct sock *netlink_seq_socket_idx(struct seq_file *seq, loff_t pos)
{
struct nl_seq_iter *iter = seq->private;
int i, j;
struct sock *s;
struct hlist_node *node;
loff_t off = 0;
for (i = 0; i < MAX_LINKS; i++) {
struct nl_pid_hash *hash = &nl_table[i].hash;
for (j = 0; j <= hash->mask; j++) {
sk_for_each(s, node, &hash->table[j]) {
if (sock_net(s) != seq_file_net(seq))
continue;
if (off == pos) {
iter->link = i;
iter->hash_idx = j;
return s;
}
++off;
}
}
}
return NULL;
}
static void *netlink_seq_start(struct seq_file *seq, loff_t *pos)
__acquires(nl_table_lock)
{
read_lock(&nl_table_lock);
return *pos ? netlink_seq_socket_idx(seq, *pos - 1) : SEQ_START_TOKEN;
}
static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
struct sock *s;
struct nl_seq_iter *iter;
int i, j;
++*pos;
if (v == SEQ_START_TOKEN)
return netlink_seq_socket_idx(seq, 0);
iter = seq->private;
s = v;
do {
s = sk_next(s);
} while (s && sock_net(s) != seq_file_net(seq));
if (s)
return s;
i = iter->link;
j = iter->hash_idx + 1;
do {
struct nl_pid_hash *hash = &nl_table[i].hash;
for (; j <= hash->mask; j++) {
s = sk_head(&hash->table[j]);
while (s && sock_net(s) != seq_file_net(seq))
s = sk_next(s);
if (s) {
iter->link = i;
iter->hash_idx = j;
return s;
}
}
j = 0;
} while (++i < MAX_LINKS);
return NULL;
}
static void netlink_seq_stop(struct seq_file *seq, void *v)
__releases(nl_table_lock)
{
read_unlock(&nl_table_lock);
}
static int netlink_seq_show(struct seq_file *seq, void *v)
{
if (v == SEQ_START_TOKEN)
seq_puts(seq,
"sk Eth Pid Groups "
"Rmem Wmem Dump Locks Drops Inode\n");
else {
struct sock *s = v;
struct netlink_sock *nlk = nlk_sk(s);
seq_printf(seq, "%p %-3d %-6d %08x %-8d %-8d %p %-8d %-8d %-8lu\n",
s,
s->sk_protocol,
nlk->pid,
nlk->groups ? (u32)nlk->groups[0] : 0,
sk_rmem_alloc_get(s),
sk_wmem_alloc_get(s),
nlk->cb,
atomic_read(&s->sk_refcnt),
atomic_read(&s->sk_drops),
sock_i_ino(s)
);
}
return 0;
}
static const struct seq_operations netlink_seq_ops = {
.start = netlink_seq_start,
.next = netlink_seq_next,
.stop = netlink_seq_stop,
.show = netlink_seq_show,
};
static int netlink_seq_open(struct inode *inode, struct file *file)
{
return seq_open_net(inode, file, &netlink_seq_ops,
sizeof(struct nl_seq_iter));
}
static const struct file_operations netlink_seq_fops = {
.owner = THIS_MODULE,
.open = netlink_seq_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release_net,
};
#endif
int netlink_register_notifier(struct notifier_block *nb)
{
return atomic_notifier_chain_register(&netlink_chain, nb);
}
EXPORT_SYMBOL(netlink_register_notifier);
int netlink_unregister_notifier(struct notifier_block *nb)
{
return atomic_notifier_chain_unregister(&netlink_chain, nb);
}
EXPORT_SYMBOL(netlink_unregister_notifier);
static const struct proto_ops netlink_ops = {
.family = PF_NETLINK,
.owner = THIS_MODULE,
.release = netlink_release,
.bind = netlink_bind,
.connect = netlink_connect,
.socketpair = sock_no_socketpair,
.accept = sock_no_accept,
.getname = netlink_getname,
.poll = datagram_poll,
.ioctl = sock_no_ioctl,
.listen = sock_no_listen,
.shutdown = sock_no_shutdown,
.setsockopt = netlink_setsockopt,
.getsockopt = netlink_getsockopt,
.sendmsg = netlink_sendmsg,
.recvmsg = netlink_recvmsg,
.mmap = sock_no_mmap,
.sendpage = sock_no_sendpage,
};
static const struct net_proto_family netlink_family_ops = {
.family = PF_NETLINK,
.create = netlink_create,
.owner = THIS_MODULE, /* for consistency 8) */
};
static int __net_init netlink_net_init(struct net *net)
{
#ifdef CONFIG_PROC_FS
if (!proc_net_fops_create(net, "netlink", 0, &netlink_seq_fops))
return -ENOMEM;
#endif
return 0;
}
static void __net_exit netlink_net_exit(struct net *net)
{
#ifdef CONFIG_PROC_FS
proc_net_remove(net, "netlink");
#endif
}
static struct pernet_operations __net_initdata netlink_net_ops = {
.init = netlink_net_init,
.exit = netlink_net_exit,
};
static int __init netlink_proto_init(void)
{
struct sk_buff *dummy_skb;
int i;
unsigned long limit;
unsigned int order;
int err = proto_register(&netlink_proto, 0);
if (err != 0)
goto out;
BUILD_BUG_ON(sizeof(struct netlink_skb_parms) > sizeof(dummy_skb->cb));
nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL);
if (!nl_table)
goto panic;
if (totalram_pages >= (128 * 1024))
limit = totalram_pages >> (21 - PAGE_SHIFT);
else
limit = totalram_pages >> (23 - PAGE_SHIFT);
order = get_bitmask_order(limit) - 1 + PAGE_SHIFT;
limit = (1UL << order) / sizeof(struct hlist_head);
order = get_bitmask_order(min(limit, (unsigned long)UINT_MAX)) - 1;
for (i = 0; i < MAX_LINKS; i++) {
struct nl_pid_hash *hash = &nl_table[i].hash;
hash->table = nl_pid_hash_zalloc(1 * sizeof(*hash->table));
if (!hash->table) {
while (i-- > 0)
nl_pid_hash_free(nl_table[i].hash.table,
1 * sizeof(*hash->table));
kfree(nl_table);
goto panic;
}
hash->max_shift = order;
hash->shift = 0;
hash->mask = 0;
hash->rehash_time = jiffies;
}
sock_register(&netlink_family_ops);
register_pernet_subsys(&netlink_net_ops);
/* The netlink device handler may be needed early. */
rtnetlink_init();
out:
return err;
panic:
panic("netlink_init: Cannot allocate nl_table\n");
}
core_initcall(netlink_proto_init);