mirror of https://gitee.com/openkylin/linux.git
220 lines
5.3 KiB
C
220 lines
5.3 KiB
C
/*
|
|
* linux/arch/arm/mm/fault-armv.c
|
|
*
|
|
* Copyright (C) 1995 Linus Torvalds
|
|
* Modifications for ARM processor (c) 1995-2002 Russell King
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
#include <linux/module.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/init.h>
|
|
#include <linux/pagemap.h>
|
|
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/tlbflush.h>
|
|
|
|
static unsigned long shared_pte_mask = L_PTE_CACHEABLE;
|
|
|
|
/*
|
|
* We take the easy way out of this problem - we make the
|
|
* PTE uncacheable. However, we leave the write buffer on.
|
|
*
|
|
* Note that the pte lock held when calling update_mmu_cache must also
|
|
* guard the pte (somewhere else in the same mm) that we modify here.
|
|
* Therefore those configurations which might call adjust_pte (those
|
|
* without CONFIG_CPU_CACHE_VIPT) cannot support split page_table_lock.
|
|
*/
|
|
static int adjust_pte(struct vm_area_struct *vma, unsigned long address)
|
|
{
|
|
pgd_t *pgd;
|
|
pmd_t *pmd;
|
|
pte_t *pte, entry;
|
|
int ret = 0;
|
|
|
|
pgd = pgd_offset(vma->vm_mm, address);
|
|
if (pgd_none(*pgd))
|
|
goto no_pgd;
|
|
if (pgd_bad(*pgd))
|
|
goto bad_pgd;
|
|
|
|
pmd = pmd_offset(pgd, address);
|
|
if (pmd_none(*pmd))
|
|
goto no_pmd;
|
|
if (pmd_bad(*pmd))
|
|
goto bad_pmd;
|
|
|
|
pte = pte_offset_map(pmd, address);
|
|
entry = *pte;
|
|
|
|
/*
|
|
* If this page isn't present, or is already setup to
|
|
* fault (ie, is old), we can safely ignore any issues.
|
|
*/
|
|
if (pte_present(entry) && pte_val(entry) & shared_pte_mask) {
|
|
flush_cache_page(vma, address, pte_pfn(entry));
|
|
pte_val(entry) &= ~shared_pte_mask;
|
|
set_pte(pte, entry);
|
|
flush_tlb_page(vma, address);
|
|
ret = 1;
|
|
}
|
|
pte_unmap(pte);
|
|
return ret;
|
|
|
|
bad_pgd:
|
|
pgd_ERROR(*pgd);
|
|
pgd_clear(pgd);
|
|
no_pgd:
|
|
return 0;
|
|
|
|
bad_pmd:
|
|
pmd_ERROR(*pmd);
|
|
pmd_clear(pmd);
|
|
no_pmd:
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
make_coherent(struct address_space *mapping, struct vm_area_struct *vma, unsigned long addr, unsigned long pfn)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
struct vm_area_struct *mpnt;
|
|
struct prio_tree_iter iter;
|
|
unsigned long offset;
|
|
pgoff_t pgoff;
|
|
int aliases = 0;
|
|
|
|
pgoff = vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT);
|
|
|
|
/*
|
|
* If we have any shared mappings that are in the same mm
|
|
* space, then we need to handle them specially to maintain
|
|
* cache coherency.
|
|
*/
|
|
flush_dcache_mmap_lock(mapping);
|
|
vma_prio_tree_foreach(mpnt, &iter, &mapping->i_mmap, pgoff, pgoff) {
|
|
/*
|
|
* If this VMA is not in our MM, we can ignore it.
|
|
* Note that we intentionally mask out the VMA
|
|
* that we are fixing up.
|
|
*/
|
|
if (mpnt->vm_mm != mm || mpnt == vma)
|
|
continue;
|
|
if (!(mpnt->vm_flags & VM_MAYSHARE))
|
|
continue;
|
|
offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
|
|
aliases += adjust_pte(mpnt, mpnt->vm_start + offset);
|
|
}
|
|
flush_dcache_mmap_unlock(mapping);
|
|
if (aliases)
|
|
adjust_pte(vma, addr);
|
|
else
|
|
flush_cache_page(vma, addr, pfn);
|
|
}
|
|
|
|
void __flush_dcache_page(struct address_space *mapping, struct page *page);
|
|
|
|
/*
|
|
* Take care of architecture specific things when placing a new PTE into
|
|
* a page table, or changing an existing PTE. Basically, there are two
|
|
* things that we need to take care of:
|
|
*
|
|
* 1. If PG_dcache_dirty is set for the page, we need to ensure
|
|
* that any cache entries for the kernels virtual memory
|
|
* range are written back to the page.
|
|
* 2. If we have multiple shared mappings of the same space in
|
|
* an object, we need to deal with the cache aliasing issues.
|
|
*
|
|
* Note that the pte lock will be held.
|
|
*/
|
|
void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
|
|
{
|
|
unsigned long pfn = pte_pfn(pte);
|
|
struct address_space *mapping;
|
|
struct page *page;
|
|
|
|
if (!pfn_valid(pfn))
|
|
return;
|
|
|
|
page = pfn_to_page(pfn);
|
|
mapping = page_mapping(page);
|
|
if (mapping) {
|
|
int dirty = test_and_clear_bit(PG_dcache_dirty, &page->flags);
|
|
|
|
if (dirty)
|
|
__flush_dcache_page(mapping, page);
|
|
|
|
if (cache_is_vivt())
|
|
make_coherent(mapping, vma, addr, pfn);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check whether the write buffer has physical address aliasing
|
|
* issues. If it has, we need to avoid them for the case where
|
|
* we have several shared mappings of the same object in user
|
|
* space.
|
|
*/
|
|
static int __init check_writebuffer(unsigned long *p1, unsigned long *p2)
|
|
{
|
|
register unsigned long zero = 0, one = 1, val;
|
|
|
|
local_irq_disable();
|
|
mb();
|
|
*p1 = one;
|
|
mb();
|
|
*p2 = zero;
|
|
mb();
|
|
val = *p1;
|
|
mb();
|
|
local_irq_enable();
|
|
return val != zero;
|
|
}
|
|
|
|
void __init check_writebuffer_bugs(void)
|
|
{
|
|
struct page *page;
|
|
const char *reason;
|
|
unsigned long v = 1;
|
|
|
|
printk(KERN_INFO "CPU: Testing write buffer coherency: ");
|
|
|
|
page = alloc_page(GFP_KERNEL);
|
|
if (page) {
|
|
unsigned long *p1, *p2;
|
|
pgprot_t prot = __pgprot(L_PTE_PRESENT|L_PTE_YOUNG|
|
|
L_PTE_DIRTY|L_PTE_WRITE|
|
|
L_PTE_BUFFERABLE);
|
|
|
|
p1 = vmap(&page, 1, VM_IOREMAP, prot);
|
|
p2 = vmap(&page, 1, VM_IOREMAP, prot);
|
|
|
|
if (p1 && p2) {
|
|
v = check_writebuffer(p1, p2);
|
|
reason = "enabling work-around";
|
|
} else {
|
|
reason = "unable to map memory\n";
|
|
}
|
|
|
|
vunmap(p1);
|
|
vunmap(p2);
|
|
put_page(page);
|
|
} else {
|
|
reason = "unable to grab page\n";
|
|
}
|
|
|
|
if (v) {
|
|
printk("failed, %s\n", reason);
|
|
shared_pte_mask |= L_PTE_BUFFERABLE;
|
|
} else {
|
|
printk("ok\n");
|
|
}
|
|
}
|