linux/drivers/clk/qcom/clk-smd-rpm.c

648 lines
19 KiB
C

/*
* Copyright (c) 2016, Linaro Limited
* Copyright (c) 2014, The Linux Foundation. All rights reserved.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/clk-provider.h>
#include <linux/err.h>
#include <linux/export.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/soc/qcom/smd-rpm.h>
#include <dt-bindings/clock/qcom,rpmcc.h>
#include <dt-bindings/mfd/qcom-rpm.h>
#define QCOM_RPM_KEY_SOFTWARE_ENABLE 0x6e657773
#define QCOM_RPM_KEY_PIN_CTRL_CLK_BUFFER_ENABLE_KEY 0x62636370
#define QCOM_RPM_SMD_KEY_RATE 0x007a484b
#define QCOM_RPM_SMD_KEY_ENABLE 0x62616e45
#define QCOM_RPM_SMD_KEY_STATE 0x54415453
#define QCOM_RPM_SCALING_ENABLE_ID 0x2
#define __DEFINE_CLK_SMD_RPM(_platform, _name, _active, type, r_id, stat_id, \
key) \
static struct clk_smd_rpm _platform##_##_active; \
static struct clk_smd_rpm _platform##_##_name = { \
.rpm_res_type = (type), \
.rpm_clk_id = (r_id), \
.rpm_status_id = (stat_id), \
.rpm_key = (key), \
.peer = &_platform##_##_active, \
.rate = INT_MAX, \
.hw.init = &(struct clk_init_data){ \
.ops = &clk_smd_rpm_ops, \
.name = #_name, \
.parent_names = (const char *[]){ "xo_board" }, \
.num_parents = 1, \
}, \
}; \
static struct clk_smd_rpm _platform##_##_active = { \
.rpm_res_type = (type), \
.rpm_clk_id = (r_id), \
.rpm_status_id = (stat_id), \
.active_only = true, \
.rpm_key = (key), \
.peer = &_platform##_##_name, \
.rate = INT_MAX, \
.hw.init = &(struct clk_init_data){ \
.ops = &clk_smd_rpm_ops, \
.name = #_active, \
.parent_names = (const char *[]){ "xo_board" }, \
.num_parents = 1, \
}, \
}
#define __DEFINE_CLK_SMD_RPM_BRANCH(_platform, _name, _active, type, r_id, \
stat_id, r, key) \
static struct clk_smd_rpm _platform##_##_active; \
static struct clk_smd_rpm _platform##_##_name = { \
.rpm_res_type = (type), \
.rpm_clk_id = (r_id), \
.rpm_status_id = (stat_id), \
.rpm_key = (key), \
.branch = true, \
.peer = &_platform##_##_active, \
.rate = (r), \
.hw.init = &(struct clk_init_data){ \
.ops = &clk_smd_rpm_branch_ops, \
.name = #_name, \
.parent_names = (const char *[]){ "xo_board" }, \
.num_parents = 1, \
}, \
}; \
static struct clk_smd_rpm _platform##_##_active = { \
.rpm_res_type = (type), \
.rpm_clk_id = (r_id), \
.rpm_status_id = (stat_id), \
.active_only = true, \
.rpm_key = (key), \
.branch = true, \
.peer = &_platform##_##_name, \
.rate = (r), \
.hw.init = &(struct clk_init_data){ \
.ops = &clk_smd_rpm_branch_ops, \
.name = #_active, \
.parent_names = (const char *[]){ "xo_board" }, \
.num_parents = 1, \
}, \
}
#define DEFINE_CLK_SMD_RPM(_platform, _name, _active, type, r_id) \
__DEFINE_CLK_SMD_RPM(_platform, _name, _active, type, r_id, \
0, QCOM_RPM_SMD_KEY_RATE)
#define DEFINE_CLK_SMD_RPM_BRANCH(_platform, _name, _active, type, r_id, r) \
__DEFINE_CLK_SMD_RPM_BRANCH(_platform, _name, _active, type, \
r_id, 0, r, QCOM_RPM_SMD_KEY_ENABLE)
#define DEFINE_CLK_SMD_RPM_QDSS(_platform, _name, _active, type, r_id) \
__DEFINE_CLK_SMD_RPM(_platform, _name, _active, type, r_id, \
0, QCOM_RPM_SMD_KEY_STATE)
#define DEFINE_CLK_SMD_RPM_XO_BUFFER(_platform, _name, _active, r_id) \
__DEFINE_CLK_SMD_RPM_BRANCH(_platform, _name, _active, \
QCOM_SMD_RPM_CLK_BUF_A, r_id, 0, 1000, \
QCOM_RPM_KEY_SOFTWARE_ENABLE)
#define DEFINE_CLK_SMD_RPM_XO_BUFFER_PINCTRL(_platform, _name, _active, r_id) \
__DEFINE_CLK_SMD_RPM_BRANCH(_platform, _name, _active, \
QCOM_SMD_RPM_CLK_BUF_A, r_id, 0, 1000, \
QCOM_RPM_KEY_PIN_CTRL_CLK_BUFFER_ENABLE_KEY)
#define to_clk_smd_rpm(_hw) container_of(_hw, struct clk_smd_rpm, hw)
struct clk_smd_rpm {
const int rpm_res_type;
const int rpm_key;
const int rpm_clk_id;
const int rpm_status_id;
const bool active_only;
bool enabled;
bool branch;
struct clk_smd_rpm *peer;
struct clk_hw hw;
unsigned long rate;
struct qcom_smd_rpm *rpm;
};
struct clk_smd_rpm_req {
__le32 key;
__le32 nbytes;
__le32 value;
};
struct rpm_cc {
struct qcom_rpm *rpm;
struct clk_smd_rpm **clks;
size_t num_clks;
};
struct rpm_smd_clk_desc {
struct clk_smd_rpm **clks;
size_t num_clks;
};
static DEFINE_MUTEX(rpm_smd_clk_lock);
static int clk_smd_rpm_handoff(struct clk_smd_rpm *r)
{
int ret;
struct clk_smd_rpm_req req = {
.key = cpu_to_le32(r->rpm_key),
.nbytes = cpu_to_le32(sizeof(u32)),
.value = cpu_to_le32(r->branch ? 1 : INT_MAX),
};
ret = qcom_rpm_smd_write(r->rpm, QCOM_SMD_RPM_ACTIVE_STATE,
r->rpm_res_type, r->rpm_clk_id, &req,
sizeof(req));
if (ret)
return ret;
ret = qcom_rpm_smd_write(r->rpm, QCOM_SMD_RPM_SLEEP_STATE,
r->rpm_res_type, r->rpm_clk_id, &req,
sizeof(req));
if (ret)
return ret;
return 0;
}
static int clk_smd_rpm_set_rate_active(struct clk_smd_rpm *r,
unsigned long rate)
{
struct clk_smd_rpm_req req = {
.key = cpu_to_le32(r->rpm_key),
.nbytes = cpu_to_le32(sizeof(u32)),
.value = cpu_to_le32(DIV_ROUND_UP(rate, 1000)), /* to kHz */
};
return qcom_rpm_smd_write(r->rpm, QCOM_SMD_RPM_ACTIVE_STATE,
r->rpm_res_type, r->rpm_clk_id, &req,
sizeof(req));
}
static int clk_smd_rpm_set_rate_sleep(struct clk_smd_rpm *r,
unsigned long rate)
{
struct clk_smd_rpm_req req = {
.key = cpu_to_le32(r->rpm_key),
.nbytes = cpu_to_le32(sizeof(u32)),
.value = cpu_to_le32(DIV_ROUND_UP(rate, 1000)), /* to kHz */
};
return qcom_rpm_smd_write(r->rpm, QCOM_SMD_RPM_SLEEP_STATE,
r->rpm_res_type, r->rpm_clk_id, &req,
sizeof(req));
}
static void to_active_sleep(struct clk_smd_rpm *r, unsigned long rate,
unsigned long *active, unsigned long *sleep)
{
*active = rate;
/*
* Active-only clocks don't care what the rate is during sleep. So,
* they vote for zero.
*/
if (r->active_only)
*sleep = 0;
else
*sleep = *active;
}
static int clk_smd_rpm_prepare(struct clk_hw *hw)
{
struct clk_smd_rpm *r = to_clk_smd_rpm(hw);
struct clk_smd_rpm *peer = r->peer;
unsigned long this_rate = 0, this_sleep_rate = 0;
unsigned long peer_rate = 0, peer_sleep_rate = 0;
unsigned long active_rate, sleep_rate;
int ret = 0;
mutex_lock(&rpm_smd_clk_lock);
/* Don't send requests to the RPM if the rate has not been set. */
if (!r->rate)
goto out;
to_active_sleep(r, r->rate, &this_rate, &this_sleep_rate);
/* Take peer clock's rate into account only if it's enabled. */
if (peer->enabled)
to_active_sleep(peer, peer->rate,
&peer_rate, &peer_sleep_rate);
active_rate = max(this_rate, peer_rate);
if (r->branch)
active_rate = !!active_rate;
ret = clk_smd_rpm_set_rate_active(r, active_rate);
if (ret)
goto out;
sleep_rate = max(this_sleep_rate, peer_sleep_rate);
if (r->branch)
sleep_rate = !!sleep_rate;
ret = clk_smd_rpm_set_rate_sleep(r, sleep_rate);
if (ret)
/* Undo the active set vote and restore it */
ret = clk_smd_rpm_set_rate_active(r, peer_rate);
out:
if (!ret)
r->enabled = true;
mutex_unlock(&rpm_smd_clk_lock);
return ret;
}
static void clk_smd_rpm_unprepare(struct clk_hw *hw)
{
struct clk_smd_rpm *r = to_clk_smd_rpm(hw);
struct clk_smd_rpm *peer = r->peer;
unsigned long peer_rate = 0, peer_sleep_rate = 0;
unsigned long active_rate, sleep_rate;
int ret;
mutex_lock(&rpm_smd_clk_lock);
if (!r->rate)
goto out;
/* Take peer clock's rate into account only if it's enabled. */
if (peer->enabled)
to_active_sleep(peer, peer->rate, &peer_rate,
&peer_sleep_rate);
active_rate = r->branch ? !!peer_rate : peer_rate;
ret = clk_smd_rpm_set_rate_active(r, active_rate);
if (ret)
goto out;
sleep_rate = r->branch ? !!peer_sleep_rate : peer_sleep_rate;
ret = clk_smd_rpm_set_rate_sleep(r, sleep_rate);
if (ret)
goto out;
r->enabled = false;
out:
mutex_unlock(&rpm_smd_clk_lock);
}
static int clk_smd_rpm_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_smd_rpm *r = to_clk_smd_rpm(hw);
struct clk_smd_rpm *peer = r->peer;
unsigned long active_rate, sleep_rate;
unsigned long this_rate = 0, this_sleep_rate = 0;
unsigned long peer_rate = 0, peer_sleep_rate = 0;
int ret = 0;
mutex_lock(&rpm_smd_clk_lock);
if (!r->enabled)
goto out;
to_active_sleep(r, rate, &this_rate, &this_sleep_rate);
/* Take peer clock's rate into account only if it's enabled. */
if (peer->enabled)
to_active_sleep(peer, peer->rate,
&peer_rate, &peer_sleep_rate);
active_rate = max(this_rate, peer_rate);
ret = clk_smd_rpm_set_rate_active(r, active_rate);
if (ret)
goto out;
sleep_rate = max(this_sleep_rate, peer_sleep_rate);
ret = clk_smd_rpm_set_rate_sleep(r, sleep_rate);
if (ret)
goto out;
r->rate = rate;
out:
mutex_unlock(&rpm_smd_clk_lock);
return ret;
}
static long clk_smd_rpm_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *parent_rate)
{
/*
* RPM handles rate rounding and we don't have a way to
* know what the rate will be, so just return whatever
* rate is requested.
*/
return rate;
}
static unsigned long clk_smd_rpm_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct clk_smd_rpm *r = to_clk_smd_rpm(hw);
/*
* RPM handles rate rounding and we don't have a way to
* know what the rate will be, so just return whatever
* rate was set.
*/
return r->rate;
}
static int clk_smd_rpm_enable_scaling(struct qcom_smd_rpm *rpm)
{
int ret;
struct clk_smd_rpm_req req = {
.key = cpu_to_le32(QCOM_RPM_SMD_KEY_ENABLE),
.nbytes = cpu_to_le32(sizeof(u32)),
.value = cpu_to_le32(1),
};
ret = qcom_rpm_smd_write(rpm, QCOM_SMD_RPM_SLEEP_STATE,
QCOM_SMD_RPM_MISC_CLK,
QCOM_RPM_SCALING_ENABLE_ID, &req, sizeof(req));
if (ret) {
pr_err("RPM clock scaling (sleep set) not enabled!\n");
return ret;
}
ret = qcom_rpm_smd_write(rpm, QCOM_SMD_RPM_ACTIVE_STATE,
QCOM_SMD_RPM_MISC_CLK,
QCOM_RPM_SCALING_ENABLE_ID, &req, sizeof(req));
if (ret) {
pr_err("RPM clock scaling (active set) not enabled!\n");
return ret;
}
pr_debug("%s: RPM clock scaling is enabled\n", __func__);
return 0;
}
static const struct clk_ops clk_smd_rpm_ops = {
.prepare = clk_smd_rpm_prepare,
.unprepare = clk_smd_rpm_unprepare,
.set_rate = clk_smd_rpm_set_rate,
.round_rate = clk_smd_rpm_round_rate,
.recalc_rate = clk_smd_rpm_recalc_rate,
};
static const struct clk_ops clk_smd_rpm_branch_ops = {
.prepare = clk_smd_rpm_prepare,
.unprepare = clk_smd_rpm_unprepare,
};
/* msm8916 */
DEFINE_CLK_SMD_RPM(msm8916, pcnoc_clk, pcnoc_a_clk, QCOM_SMD_RPM_BUS_CLK, 0);
DEFINE_CLK_SMD_RPM(msm8916, snoc_clk, snoc_a_clk, QCOM_SMD_RPM_BUS_CLK, 1);
DEFINE_CLK_SMD_RPM(msm8916, bimc_clk, bimc_a_clk, QCOM_SMD_RPM_MEM_CLK, 0);
DEFINE_CLK_SMD_RPM_QDSS(msm8916, qdss_clk, qdss_a_clk, QCOM_SMD_RPM_MISC_CLK, 1);
DEFINE_CLK_SMD_RPM_XO_BUFFER(msm8916, bb_clk1, bb_clk1_a, 1);
DEFINE_CLK_SMD_RPM_XO_BUFFER(msm8916, bb_clk2, bb_clk2_a, 2);
DEFINE_CLK_SMD_RPM_XO_BUFFER(msm8916, rf_clk1, rf_clk1_a, 4);
DEFINE_CLK_SMD_RPM_XO_BUFFER(msm8916, rf_clk2, rf_clk2_a, 5);
DEFINE_CLK_SMD_RPM_XO_BUFFER_PINCTRL(msm8916, bb_clk1_pin, bb_clk1_a_pin, 1);
DEFINE_CLK_SMD_RPM_XO_BUFFER_PINCTRL(msm8916, bb_clk2_pin, bb_clk2_a_pin, 2);
DEFINE_CLK_SMD_RPM_XO_BUFFER_PINCTRL(msm8916, rf_clk1_pin, rf_clk1_a_pin, 4);
DEFINE_CLK_SMD_RPM_XO_BUFFER_PINCTRL(msm8916, rf_clk2_pin, rf_clk2_a_pin, 5);
static struct clk_smd_rpm *msm8916_clks[] = {
[RPM_SMD_PCNOC_CLK] = &msm8916_pcnoc_clk,
[RPM_SMD_PCNOC_A_CLK] = &msm8916_pcnoc_a_clk,
[RPM_SMD_SNOC_CLK] = &msm8916_snoc_clk,
[RPM_SMD_SNOC_A_CLK] = &msm8916_snoc_a_clk,
[RPM_SMD_BIMC_CLK] = &msm8916_bimc_clk,
[RPM_SMD_BIMC_A_CLK] = &msm8916_bimc_a_clk,
[RPM_SMD_QDSS_CLK] = &msm8916_qdss_clk,
[RPM_SMD_QDSS_A_CLK] = &msm8916_qdss_a_clk,
[RPM_SMD_BB_CLK1] = &msm8916_bb_clk1,
[RPM_SMD_BB_CLK1_A] = &msm8916_bb_clk1_a,
[RPM_SMD_BB_CLK2] = &msm8916_bb_clk2,
[RPM_SMD_BB_CLK2_A] = &msm8916_bb_clk2_a,
[RPM_SMD_RF_CLK1] = &msm8916_rf_clk1,
[RPM_SMD_RF_CLK1_A] = &msm8916_rf_clk1_a,
[RPM_SMD_RF_CLK2] = &msm8916_rf_clk2,
[RPM_SMD_RF_CLK2_A] = &msm8916_rf_clk2_a,
[RPM_SMD_BB_CLK1_PIN] = &msm8916_bb_clk1_pin,
[RPM_SMD_BB_CLK1_A_PIN] = &msm8916_bb_clk1_a_pin,
[RPM_SMD_BB_CLK2_PIN] = &msm8916_bb_clk2_pin,
[RPM_SMD_BB_CLK2_A_PIN] = &msm8916_bb_clk2_a_pin,
[RPM_SMD_RF_CLK1_PIN] = &msm8916_rf_clk1_pin,
[RPM_SMD_RF_CLK1_A_PIN] = &msm8916_rf_clk1_a_pin,
[RPM_SMD_RF_CLK2_PIN] = &msm8916_rf_clk2_pin,
[RPM_SMD_RF_CLK2_A_PIN] = &msm8916_rf_clk2_a_pin,
};
static const struct rpm_smd_clk_desc rpm_clk_msm8916 = {
.clks = msm8916_clks,
.num_clks = ARRAY_SIZE(msm8916_clks),
};
/* msm8974 */
DEFINE_CLK_SMD_RPM(msm8974, pnoc_clk, pnoc_a_clk, QCOM_SMD_RPM_BUS_CLK, 0);
DEFINE_CLK_SMD_RPM(msm8974, snoc_clk, snoc_a_clk, QCOM_SMD_RPM_BUS_CLK, 1);
DEFINE_CLK_SMD_RPM(msm8974, cnoc_clk, cnoc_a_clk, QCOM_SMD_RPM_BUS_CLK, 2);
DEFINE_CLK_SMD_RPM(msm8974, mmssnoc_ahb_clk, mmssnoc_ahb_a_clk, QCOM_SMD_RPM_BUS_CLK, 3);
DEFINE_CLK_SMD_RPM(msm8974, bimc_clk, bimc_a_clk, QCOM_SMD_RPM_MEM_CLK, 0);
DEFINE_CLK_SMD_RPM(msm8974, gfx3d_clk_src, gfx3d_a_clk_src, QCOM_SMD_RPM_MEM_CLK, 1);
DEFINE_CLK_SMD_RPM(msm8974, ocmemgx_clk, ocmemgx_a_clk, QCOM_SMD_RPM_MEM_CLK, 2);
DEFINE_CLK_SMD_RPM_QDSS(msm8974, qdss_clk, qdss_a_clk, QCOM_SMD_RPM_MISC_CLK, 1);
DEFINE_CLK_SMD_RPM_XO_BUFFER(msm8974, cxo_d0, cxo_d0_a, 1);
DEFINE_CLK_SMD_RPM_XO_BUFFER(msm8974, cxo_d1, cxo_d1_a, 2);
DEFINE_CLK_SMD_RPM_XO_BUFFER(msm8974, cxo_a0, cxo_a0_a, 4);
DEFINE_CLK_SMD_RPM_XO_BUFFER(msm8974, cxo_a1, cxo_a1_a, 5);
DEFINE_CLK_SMD_RPM_XO_BUFFER(msm8974, cxo_a2, cxo_a2_a, 6);
DEFINE_CLK_SMD_RPM_XO_BUFFER(msm8974, diff_clk, diff_a_clk, 7);
DEFINE_CLK_SMD_RPM_XO_BUFFER(msm8974, div_clk1, div_a_clk1, 11);
DEFINE_CLK_SMD_RPM_XO_BUFFER(msm8974, div_clk2, div_a_clk2, 12);
DEFINE_CLK_SMD_RPM_XO_BUFFER_PINCTRL(msm8974, cxo_d0_pin, cxo_d0_a_pin, 1);
DEFINE_CLK_SMD_RPM_XO_BUFFER_PINCTRL(msm8974, cxo_d1_pin, cxo_d1_a_pin, 2);
DEFINE_CLK_SMD_RPM_XO_BUFFER_PINCTRL(msm8974, cxo_a0_pin, cxo_a0_a_pin, 4);
DEFINE_CLK_SMD_RPM_XO_BUFFER_PINCTRL(msm8974, cxo_a1_pin, cxo_a1_a_pin, 5);
DEFINE_CLK_SMD_RPM_XO_BUFFER_PINCTRL(msm8974, cxo_a2_pin, cxo_a2_a_pin, 6);
static struct clk_smd_rpm *msm8974_clks[] = {
[RPM_SMD_PNOC_CLK] = &msm8974_pnoc_clk,
[RPM_SMD_PNOC_A_CLK] = &msm8974_pnoc_a_clk,
[RPM_SMD_SNOC_CLK] = &msm8974_snoc_clk,
[RPM_SMD_SNOC_A_CLK] = &msm8974_snoc_a_clk,
[RPM_SMD_CNOC_CLK] = &msm8974_cnoc_clk,
[RPM_SMD_CNOC_A_CLK] = &msm8974_cnoc_a_clk,
[RPM_SMD_MMSSNOC_AHB_CLK] = &msm8974_mmssnoc_ahb_clk,
[RPM_SMD_MMSSNOC_AHB_A_CLK] = &msm8974_mmssnoc_ahb_a_clk,
[RPM_SMD_BIMC_CLK] = &msm8974_bimc_clk,
[RPM_SMD_BIMC_A_CLK] = &msm8974_bimc_a_clk,
[RPM_SMD_OCMEMGX_CLK] = &msm8974_ocmemgx_clk,
[RPM_SMD_OCMEMGX_A_CLK] = &msm8974_ocmemgx_a_clk,
[RPM_SMD_QDSS_CLK] = &msm8974_qdss_clk,
[RPM_SMD_QDSS_A_CLK] = &msm8974_qdss_a_clk,
[RPM_SMD_CXO_D0] = &msm8974_cxo_d0,
[RPM_SMD_CXO_D0_A] = &msm8974_cxo_d0_a,
[RPM_SMD_CXO_D1] = &msm8974_cxo_d1,
[RPM_SMD_CXO_D1_A] = &msm8974_cxo_d1_a,
[RPM_SMD_CXO_A0] = &msm8974_cxo_a0,
[RPM_SMD_CXO_A0_A] = &msm8974_cxo_a0_a,
[RPM_SMD_CXO_A1] = &msm8974_cxo_a1,
[RPM_SMD_CXO_A1_A] = &msm8974_cxo_a1_a,
[RPM_SMD_CXO_A2] = &msm8974_cxo_a2,
[RPM_SMD_CXO_A2_A] = &msm8974_cxo_a2_a,
[RPM_SMD_DIFF_CLK] = &msm8974_diff_clk,
[RPM_SMD_DIFF_A_CLK] = &msm8974_diff_a_clk,
[RPM_SMD_DIV_CLK1] = &msm8974_div_clk1,
[RPM_SMD_DIV_A_CLK1] = &msm8974_div_a_clk1,
[RPM_SMD_DIV_CLK2] = &msm8974_div_clk2,
[RPM_SMD_DIV_A_CLK2] = &msm8974_div_a_clk2,
[RPM_SMD_CXO_D0_PIN] = &msm8974_cxo_d0_pin,
[RPM_SMD_CXO_D0_A_PIN] = &msm8974_cxo_d0_a_pin,
[RPM_SMD_CXO_D1_PIN] = &msm8974_cxo_d1_pin,
[RPM_SMD_CXO_D1_A_PIN] = &msm8974_cxo_d1_a_pin,
[RPM_SMD_CXO_A0_PIN] = &msm8974_cxo_a0_pin,
[RPM_SMD_CXO_A0_A_PIN] = &msm8974_cxo_a0_a_pin,
[RPM_SMD_CXO_A1_PIN] = &msm8974_cxo_a1_pin,
[RPM_SMD_CXO_A1_A_PIN] = &msm8974_cxo_a1_a_pin,
[RPM_SMD_CXO_A2_PIN] = &msm8974_cxo_a2_pin,
[RPM_SMD_CXO_A2_A_PIN] = &msm8974_cxo_a2_a_pin,
};
static const struct rpm_smd_clk_desc rpm_clk_msm8974 = {
.clks = msm8974_clks,
.num_clks = ARRAY_SIZE(msm8974_clks),
};
static const struct of_device_id rpm_smd_clk_match_table[] = {
{ .compatible = "qcom,rpmcc-msm8916", .data = &rpm_clk_msm8916 },
{ .compatible = "qcom,rpmcc-msm8974", .data = &rpm_clk_msm8974 },
{ }
};
MODULE_DEVICE_TABLE(of, rpm_smd_clk_match_table);
static struct clk_hw *qcom_smdrpm_clk_hw_get(struct of_phandle_args *clkspec,
void *data)
{
struct rpm_cc *rcc = data;
unsigned int idx = clkspec->args[0];
if (idx >= rcc->num_clks) {
pr_err("%s: invalid index %u\n", __func__, idx);
return ERR_PTR(-EINVAL);
}
return rcc->clks[idx] ? &rcc->clks[idx]->hw : ERR_PTR(-ENOENT);
}
static int rpm_smd_clk_probe(struct platform_device *pdev)
{
struct rpm_cc *rcc;
int ret;
size_t num_clks, i;
struct qcom_smd_rpm *rpm;
struct clk_smd_rpm **rpm_smd_clks;
const struct rpm_smd_clk_desc *desc;
rpm = dev_get_drvdata(pdev->dev.parent);
if (!rpm) {
dev_err(&pdev->dev, "Unable to retrieve handle to RPM\n");
return -ENODEV;
}
desc = of_device_get_match_data(&pdev->dev);
if (!desc)
return -EINVAL;
rpm_smd_clks = desc->clks;
num_clks = desc->num_clks;
rcc = devm_kzalloc(&pdev->dev, sizeof(*rcc), GFP_KERNEL);
if (!rcc)
return -ENOMEM;
rcc->clks = rpm_smd_clks;
rcc->num_clks = num_clks;
for (i = 0; i < num_clks; i++) {
if (!rpm_smd_clks[i])
continue;
rpm_smd_clks[i]->rpm = rpm;
ret = clk_smd_rpm_handoff(rpm_smd_clks[i]);
if (ret)
goto err;
}
ret = clk_smd_rpm_enable_scaling(rpm);
if (ret)
goto err;
for (i = 0; i < num_clks; i++) {
if (!rpm_smd_clks[i])
continue;
ret = devm_clk_hw_register(&pdev->dev, &rpm_smd_clks[i]->hw);
if (ret)
goto err;
}
ret = of_clk_add_hw_provider(pdev->dev.of_node, qcom_smdrpm_clk_hw_get,
rcc);
if (ret)
goto err;
return 0;
err:
dev_err(&pdev->dev, "Error registering SMD clock driver (%d)\n", ret);
return ret;
}
static int rpm_smd_clk_remove(struct platform_device *pdev)
{
of_clk_del_provider(pdev->dev.of_node);
return 0;
}
static struct platform_driver rpm_smd_clk_driver = {
.driver = {
.name = "qcom-clk-smd-rpm",
.of_match_table = rpm_smd_clk_match_table,
},
.probe = rpm_smd_clk_probe,
.remove = rpm_smd_clk_remove,
};
static int __init rpm_smd_clk_init(void)
{
return platform_driver_register(&rpm_smd_clk_driver);
}
core_initcall(rpm_smd_clk_init);
static void __exit rpm_smd_clk_exit(void)
{
platform_driver_unregister(&rpm_smd_clk_driver);
}
module_exit(rpm_smd_clk_exit);
MODULE_DESCRIPTION("Qualcomm RPM over SMD Clock Controller Driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:qcom-clk-smd-rpm");