linux/drivers/gpu/drm/i915/i915_guc_submission.c

1327 lines
38 KiB
C

/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#include <linux/circ_buf.h>
#include "i915_drv.h"
#include "intel_uc.h"
#include <trace/events/dma_fence.h>
/**
* DOC: GuC-based command submission
*
* GuC client:
* A i915_guc_client refers to a submission path through GuC. Currently, there
* is only one of these (the execbuf_client) and this one is charged with all
* submissions to the GuC. This struct is the owner of a doorbell, a process
* descriptor and a workqueue (all of them inside a single gem object that
* contains all required pages for these elements).
*
* GuC stage descriptor:
* During initialization, the driver allocates a static pool of 1024 such
* descriptors, and shares them with the GuC.
* Currently, there exists a 1:1 mapping between a i915_guc_client and a
* guc_stage_desc (via the client's stage_id), so effectively only one
* gets used. This stage descriptor lets the GuC know about the doorbell,
* workqueue and process descriptor. Theoretically, it also lets the GuC
* know about our HW contexts (context ID, etc...), but we actually
* employ a kind of submission where the GuC uses the LRCA sent via the work
* item instead (the single guc_stage_desc associated to execbuf client
* contains information about the default kernel context only, but this is
* essentially unused). This is called a "proxy" submission.
*
* The Scratch registers:
* There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
* a value to the action register (SOFT_SCRATCH_0) along with any data. It then
* triggers an interrupt on the GuC via another register write (0xC4C8).
* Firmware writes a success/fail code back to the action register after
* processes the request. The kernel driver polls waiting for this update and
* then proceeds.
* See intel_guc_send()
*
* Doorbells:
* Doorbells are interrupts to uKernel. A doorbell is a single cache line (QW)
* mapped into process space.
*
* Work Items:
* There are several types of work items that the host may place into a
* workqueue, each with its own requirements and limitations. Currently only
* WQ_TYPE_INORDER is needed to support legacy submission via GuC, which
* represents in-order queue. The kernel driver packs ring tail pointer and an
* ELSP context descriptor dword into Work Item.
* See guc_wq_item_append()
*
* ADS:
* The Additional Data Struct (ADS) has pointers for different buffers used by
* the GuC. One single gem object contains the ADS struct itself (guc_ads), the
* scheduling policies (guc_policies), a structure describing a collection of
* register sets (guc_mmio_reg_state) and some extra pages for the GuC to save
* its internal state for sleep.
*
*/
static inline bool is_high_priority(struct i915_guc_client* client)
{
return client->priority <= GUC_CLIENT_PRIORITY_HIGH;
}
static int __reserve_doorbell(struct i915_guc_client *client)
{
unsigned long offset;
unsigned long end;
u16 id;
GEM_BUG_ON(client->doorbell_id != GUC_DOORBELL_INVALID);
/*
* The bitmap tracks which doorbell registers are currently in use.
* It is split into two halves; the first half is used for normal
* priority contexts, the second half for high-priority ones.
*/
offset = 0;
end = GUC_NUM_DOORBELLS/2;
if (is_high_priority(client)) {
offset = end;
end += offset;
}
id = find_next_zero_bit(client->guc->doorbell_bitmap, offset, end);
if (id == end)
return -ENOSPC;
__set_bit(id, client->guc->doorbell_bitmap);
client->doorbell_id = id;
DRM_DEBUG_DRIVER("client %u (high prio=%s) reserved doorbell: %d\n",
client->stage_id, yesno(is_high_priority(client)),
id);
return 0;
}
static void __unreserve_doorbell(struct i915_guc_client *client)
{
GEM_BUG_ON(client->doorbell_id == GUC_DOORBELL_INVALID);
__clear_bit(client->doorbell_id, client->guc->doorbell_bitmap);
client->doorbell_id = GUC_DOORBELL_INVALID;
}
/*
* Tell the GuC to allocate or deallocate a specific doorbell
*/
static int __guc_allocate_doorbell(struct intel_guc *guc, u32 stage_id)
{
u32 action[] = {
INTEL_GUC_ACTION_ALLOCATE_DOORBELL,
stage_id
};
return intel_guc_send(guc, action, ARRAY_SIZE(action));
}
static int __guc_deallocate_doorbell(struct intel_guc *guc, u32 stage_id)
{
u32 action[] = {
INTEL_GUC_ACTION_DEALLOCATE_DOORBELL,
stage_id
};
return intel_guc_send(guc, action, ARRAY_SIZE(action));
}
static struct guc_stage_desc *__get_stage_desc(struct i915_guc_client *client)
{
struct guc_stage_desc *base = client->guc->stage_desc_pool_vaddr;
return &base[client->stage_id];
}
/*
* Initialise, update, or clear doorbell data shared with the GuC
*
* These functions modify shared data and so need access to the mapped
* client object which contains the page being used for the doorbell
*/
static void __update_doorbell_desc(struct i915_guc_client *client, u16 new_id)
{
struct guc_stage_desc *desc;
/* Update the GuC's idea of the doorbell ID */
desc = __get_stage_desc(client);
desc->db_id = new_id;
}
static struct guc_doorbell_info *__get_doorbell(struct i915_guc_client *client)
{
return client->vaddr + client->doorbell_offset;
}
static bool has_doorbell(struct i915_guc_client *client)
{
if (client->doorbell_id == GUC_DOORBELL_INVALID)
return false;
return test_bit(client->doorbell_id, client->guc->doorbell_bitmap);
}
static int __create_doorbell(struct i915_guc_client *client)
{
struct guc_doorbell_info *doorbell;
int err;
doorbell = __get_doorbell(client);
doorbell->db_status = GUC_DOORBELL_ENABLED;
doorbell->cookie = client->doorbell_cookie;
err = __guc_allocate_doorbell(client->guc, client->stage_id);
if (err) {
doorbell->db_status = GUC_DOORBELL_DISABLED;
doorbell->cookie = 0;
}
return err;
}
static int __destroy_doorbell(struct i915_guc_client *client)
{
struct drm_i915_private *dev_priv = guc_to_i915(client->guc);
struct guc_doorbell_info *doorbell;
u16 db_id = client->doorbell_id;
GEM_BUG_ON(db_id >= GUC_DOORBELL_INVALID);
doorbell = __get_doorbell(client);
doorbell->db_status = GUC_DOORBELL_DISABLED;
doorbell->cookie = 0;
/* Doorbell release flow requires that we wait for GEN8_DRB_VALID bit
* to go to zero after updating db_status before we call the GuC to
* release the doorbell */
if (wait_for_us(!(I915_READ(GEN8_DRBREGL(db_id)) & GEN8_DRB_VALID), 10))
WARN_ONCE(true, "Doorbell never became invalid after disable\n");
return __guc_deallocate_doorbell(client->guc, client->stage_id);
}
static int create_doorbell(struct i915_guc_client *client)
{
int ret;
ret = __reserve_doorbell(client);
if (ret)
return ret;
__update_doorbell_desc(client, client->doorbell_id);
ret = __create_doorbell(client);
if (ret)
goto err;
return 0;
err:
__update_doorbell_desc(client, GUC_DOORBELL_INVALID);
__unreserve_doorbell(client);
return ret;
}
static int destroy_doorbell(struct i915_guc_client *client)
{
int err;
GEM_BUG_ON(!has_doorbell(client));
/* XXX: wait for any interrupts */
/* XXX: wait for workqueue to drain */
err = __destroy_doorbell(client);
if (err)
return err;
__update_doorbell_desc(client, GUC_DOORBELL_INVALID);
__unreserve_doorbell(client);
return 0;
}
static unsigned long __select_cacheline(struct intel_guc* guc)
{
unsigned long offset;
/* Doorbell uses a single cache line within a page */
offset = offset_in_page(guc->db_cacheline);
/* Moving to next cache line to reduce contention */
guc->db_cacheline += cache_line_size();
DRM_DEBUG_DRIVER("reserved cacheline 0x%lx, next 0x%x, linesize %u\n",
offset, guc->db_cacheline, cache_line_size());
return offset;
}
static inline struct guc_process_desc *
__get_process_desc(struct i915_guc_client *client)
{
return client->vaddr + client->proc_desc_offset;
}
/*
* Initialise the process descriptor shared with the GuC firmware.
*/
static void guc_proc_desc_init(struct intel_guc *guc,
struct i915_guc_client *client)
{
struct guc_process_desc *desc;
desc = memset(__get_process_desc(client), 0, sizeof(*desc));
/*
* XXX: pDoorbell and WQVBaseAddress are pointers in process address
* space for ring3 clients (set them as in mmap_ioctl) or kernel
* space for kernel clients (map on demand instead? May make debug
* easier to have it mapped).
*/
desc->wq_base_addr = 0;
desc->db_base_addr = 0;
desc->stage_id = client->stage_id;
desc->wq_size_bytes = client->wq_size;
desc->wq_status = WQ_STATUS_ACTIVE;
desc->priority = client->priority;
}
/*
* Initialise/clear the stage descriptor shared with the GuC firmware.
*
* This descriptor tells the GuC where (in GGTT space) to find the important
* data structures relating to this client (doorbell, process descriptor,
* write queue, etc).
*/
static void guc_stage_desc_init(struct intel_guc *guc,
struct i915_guc_client *client)
{
struct drm_i915_private *dev_priv = guc_to_i915(guc);
struct intel_engine_cs *engine;
struct i915_gem_context *ctx = client->owner;
struct guc_stage_desc *desc;
unsigned int tmp;
u32 gfx_addr;
desc = __get_stage_desc(client);
memset(desc, 0, sizeof(*desc));
desc->attribute = GUC_STAGE_DESC_ATTR_ACTIVE | GUC_STAGE_DESC_ATTR_KERNEL;
desc->stage_id = client->stage_id;
desc->priority = client->priority;
desc->db_id = client->doorbell_id;
for_each_engine_masked(engine, dev_priv, client->engines, tmp) {
struct intel_context *ce = &ctx->engine[engine->id];
uint32_t guc_engine_id = engine->guc_id;
struct guc_execlist_context *lrc = &desc->lrc[guc_engine_id];
/* TODO: We have a design issue to be solved here. Only when we
* receive the first batch, we know which engine is used by the
* user. But here GuC expects the lrc and ring to be pinned. It
* is not an issue for default context, which is the only one
* for now who owns a GuC client. But for future owner of GuC
* client, need to make sure lrc is pinned prior to enter here.
*/
if (!ce->state)
break; /* XXX: continue? */
/*
* XXX: When this is a GUC_STAGE_DESC_ATTR_KERNEL client (proxy
* submission or, in other words, not using a direct submission
* model) the KMD's LRCA is not used for any work submission.
* Instead, the GuC uses the LRCA of the user mode context (see
* guc_wq_item_append below).
*/
lrc->context_desc = lower_32_bits(ce->lrc_desc);
/* The state page is after PPHWSP */
lrc->ring_lrca =
guc_ggtt_offset(ce->state) + LRC_STATE_PN * PAGE_SIZE;
/* XXX: In direct submission, the GuC wants the HW context id
* here. In proxy submission, it wants the stage id */
lrc->context_id = (client->stage_id << GUC_ELC_CTXID_OFFSET) |
(guc_engine_id << GUC_ELC_ENGINE_OFFSET);
lrc->ring_begin = guc_ggtt_offset(ce->ring->vma);
lrc->ring_end = lrc->ring_begin + ce->ring->size - 1;
lrc->ring_next_free_location = lrc->ring_begin;
lrc->ring_current_tail_pointer_value = 0;
desc->engines_used |= (1 << guc_engine_id);
}
DRM_DEBUG_DRIVER("Host engines 0x%x => GuC engines used 0x%x\n",
client->engines, desc->engines_used);
WARN_ON(desc->engines_used == 0);
/*
* The doorbell, process descriptor, and workqueue are all parts
* of the client object, which the GuC will reference via the GGTT
*/
gfx_addr = guc_ggtt_offset(client->vma);
desc->db_trigger_phy = sg_dma_address(client->vma->pages->sgl) +
client->doorbell_offset;
desc->db_trigger_cpu = (uintptr_t)__get_doorbell(client);
desc->db_trigger_uk = gfx_addr + client->doorbell_offset;
desc->process_desc = gfx_addr + client->proc_desc_offset;
desc->wq_addr = gfx_addr + client->wq_offset;
desc->wq_size = client->wq_size;
desc->desc_private = (uintptr_t)client;
}
static void guc_stage_desc_fini(struct intel_guc *guc,
struct i915_guc_client *client)
{
struct guc_stage_desc *desc;
desc = __get_stage_desc(client);
memset(desc, 0, sizeof(*desc));
}
/**
* i915_guc_wq_reserve() - reserve space in the GuC's workqueue
* @request: request associated with the commands
*
* Return: 0 if space is available
* -EAGAIN if space is not currently available
*
* This function must be called (and must return 0) before a request
* is submitted to the GuC via i915_guc_submit() below. Once a result
* of 0 has been returned, it must be balanced by a corresponding
* call to submit().
*
* Reservation allows the caller to determine in advance that space
* will be available for the next submission before committing resources
* to it, and helps avoid late failures with complicated recovery paths.
*/
int i915_guc_wq_reserve(struct drm_i915_gem_request *request)
{
const size_t wqi_size = sizeof(struct guc_wq_item);
struct i915_guc_client *client = request->i915->guc.execbuf_client;
struct guc_process_desc *desc = __get_process_desc(client);
u32 freespace;
int ret;
spin_lock_irq(&client->wq_lock);
freespace = CIRC_SPACE(client->wq_tail, desc->head, client->wq_size);
freespace -= client->wq_rsvd;
if (likely(freespace >= wqi_size)) {
client->wq_rsvd += wqi_size;
ret = 0;
} else {
client->no_wq_space++;
ret = -EAGAIN;
}
spin_unlock_irq(&client->wq_lock);
return ret;
}
static void guc_client_update_wq_rsvd(struct i915_guc_client *client, int size)
{
unsigned long flags;
spin_lock_irqsave(&client->wq_lock, flags);
client->wq_rsvd += size;
spin_unlock_irqrestore(&client->wq_lock, flags);
}
void i915_guc_wq_unreserve(struct drm_i915_gem_request *request)
{
const int wqi_size = sizeof(struct guc_wq_item);
struct i915_guc_client *client = request->i915->guc.execbuf_client;
GEM_BUG_ON(READ_ONCE(client->wq_rsvd) < wqi_size);
guc_client_update_wq_rsvd(client, -wqi_size);
}
/* Construct a Work Item and append it to the GuC's Work Queue */
static void guc_wq_item_append(struct i915_guc_client *client,
struct drm_i915_gem_request *rq)
{
/* wqi_len is in DWords, and does not include the one-word header */
const size_t wqi_size = sizeof(struct guc_wq_item);
const u32 wqi_len = wqi_size/sizeof(u32) - 1;
struct intel_engine_cs *engine = rq->engine;
struct guc_process_desc *desc = __get_process_desc(client);
struct guc_wq_item *wqi;
u32 freespace, tail, wq_off;
/* Free space is guaranteed, see i915_guc_wq_reserve() above */
freespace = CIRC_SPACE(client->wq_tail, desc->head, client->wq_size);
GEM_BUG_ON(freespace < wqi_size);
/* The GuC firmware wants the tail index in QWords, not bytes */
tail = intel_ring_set_tail(rq->ring, rq->tail) >> 3;
GEM_BUG_ON(tail > WQ_RING_TAIL_MAX);
/* For now workqueue item is 4 DWs; workqueue buffer is 2 pages. So we
* should not have the case where structure wqi is across page, neither
* wrapped to the beginning. This simplifies the implementation below.
*
* XXX: if not the case, we need save data to a temp wqi and copy it to
* workqueue buffer dw by dw.
*/
BUILD_BUG_ON(wqi_size != 16);
GEM_BUG_ON(client->wq_rsvd < wqi_size);
/* postincrement WQ tail for next time */
wq_off = client->wq_tail;
GEM_BUG_ON(wq_off & (wqi_size - 1));
client->wq_tail += wqi_size;
client->wq_tail &= client->wq_size - 1;
client->wq_rsvd -= wqi_size;
/* WQ starts from the page after doorbell / process_desc */
wqi = client->vaddr + wq_off + GUC_DB_SIZE;
/* Now fill in the 4-word work queue item */
wqi->header = WQ_TYPE_INORDER |
(wqi_len << WQ_LEN_SHIFT) |
(engine->guc_id << WQ_TARGET_SHIFT) |
WQ_NO_WCFLUSH_WAIT;
/* The GuC wants only the low-order word of the context descriptor */
wqi->context_desc = (u32)intel_lr_context_descriptor(rq->ctx, engine);
wqi->submit_element_info = tail << WQ_RING_TAIL_SHIFT;
wqi->fence_id = rq->global_seqno;
}
static void guc_reset_wq(struct i915_guc_client *client)
{
struct guc_process_desc *desc = __get_process_desc(client);
desc->head = 0;
desc->tail = 0;
client->wq_tail = 0;
}
static int guc_ring_doorbell(struct i915_guc_client *client)
{
struct guc_process_desc *desc = __get_process_desc(client);
union guc_doorbell_qw db_cmp, db_exc, db_ret;
union guc_doorbell_qw *db;
int attempt = 2, ret = -EAGAIN;
/* Update the tail so it is visible to GuC */
desc->tail = client->wq_tail;
/* current cookie */
db_cmp.db_status = GUC_DOORBELL_ENABLED;
db_cmp.cookie = client->doorbell_cookie;
/* cookie to be updated */
db_exc.db_status = GUC_DOORBELL_ENABLED;
db_exc.cookie = client->doorbell_cookie + 1;
if (db_exc.cookie == 0)
db_exc.cookie = 1;
/* pointer of current doorbell cacheline */
db = (union guc_doorbell_qw *)__get_doorbell(client);
while (attempt--) {
/* lets ring the doorbell */
db_ret.value_qw = atomic64_cmpxchg((atomic64_t *)db,
db_cmp.value_qw, db_exc.value_qw);
/* if the exchange was successfully executed */
if (db_ret.value_qw == db_cmp.value_qw) {
/* db was successfully rung */
client->doorbell_cookie = db_exc.cookie;
ret = 0;
break;
}
/* XXX: doorbell was lost and need to acquire it again */
if (db_ret.db_status == GUC_DOORBELL_DISABLED)
break;
DRM_WARN("Cookie mismatch. Expected %d, found %d\n",
db_cmp.cookie, db_ret.cookie);
/* update the cookie to newly read cookie from GuC */
db_cmp.cookie = db_ret.cookie;
db_exc.cookie = db_ret.cookie + 1;
if (db_exc.cookie == 0)
db_exc.cookie = 1;
}
return ret;
}
/**
* __i915_guc_submit() - Submit commands through GuC
* @rq: request associated with the commands
*
* The caller must have already called i915_guc_wq_reserve() above with
* a result of 0 (success), guaranteeing that there is space in the work
* queue for the new request, so enqueuing the item cannot fail.
*
* Bad Things Will Happen if the caller violates this protocol e.g. calls
* submit() when _reserve() says there's no space, or calls _submit()
* a different number of times from (successful) calls to _reserve().
*
* The only error here arises if the doorbell hardware isn't functioning
* as expected, which really shouln't happen.
*/
static void __i915_guc_submit(struct drm_i915_gem_request *rq)
{
struct drm_i915_private *dev_priv = rq->i915;
struct intel_engine_cs *engine = rq->engine;
unsigned int engine_id = engine->id;
struct intel_guc *guc = &rq->i915->guc;
struct i915_guc_client *client = guc->execbuf_client;
unsigned long flags;
int b_ret;
/* WA to flush out the pending GMADR writes to ring buffer. */
if (i915_vma_is_map_and_fenceable(rq->ring->vma))
POSTING_READ_FW(GUC_STATUS);
spin_lock_irqsave(&client->wq_lock, flags);
guc_wq_item_append(client, rq);
b_ret = guc_ring_doorbell(client);
client->submissions[engine_id] += 1;
client->retcode = b_ret;
if (b_ret)
client->b_fail += 1;
guc->submissions[engine_id] += 1;
guc->last_seqno[engine_id] = rq->global_seqno;
spin_unlock_irqrestore(&client->wq_lock, flags);
}
static void i915_guc_submit(struct drm_i915_gem_request *rq)
{
__i915_gem_request_submit(rq);
__i915_guc_submit(rq);
}
static void nested_enable_signaling(struct drm_i915_gem_request *rq)
{
/* If we use dma_fence_enable_sw_signaling() directly, lockdep
* detects an ordering issue between the fence lockclass and the
* global_timeline. This circular dependency can only occur via 2
* different fences (but same fence lockclass), so we use the nesting
* annotation here to prevent the warn, equivalent to the nesting
* inside i915_gem_request_submit() for when we also enable the
* signaler.
*/
if (test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
&rq->fence.flags))
return;
GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags));
trace_dma_fence_enable_signal(&rq->fence);
spin_lock_nested(&rq->lock, SINGLE_DEPTH_NESTING);
intel_engine_enable_signaling(rq, true);
spin_unlock(&rq->lock);
}
static bool i915_guc_dequeue(struct intel_engine_cs *engine)
{
struct execlist_port *port = engine->execlist_port;
struct drm_i915_gem_request *last = port[0].request;
struct rb_node *rb;
bool submit = false;
spin_lock_irq(&engine->timeline->lock);
rb = engine->execlist_first;
while (rb) {
struct drm_i915_gem_request *rq =
rb_entry(rb, typeof(*rq), priotree.node);
if (last && rq->ctx != last->ctx) {
if (port != engine->execlist_port)
break;
i915_gem_request_assign(&port->request, last);
nested_enable_signaling(last);
port++;
}
rb = rb_next(rb);
rb_erase(&rq->priotree.node, &engine->execlist_queue);
RB_CLEAR_NODE(&rq->priotree.node);
rq->priotree.priority = INT_MAX;
i915_guc_submit(rq);
trace_i915_gem_request_in(rq, port - engine->execlist_port);
last = rq;
submit = true;
}
if (submit) {
i915_gem_request_assign(&port->request, last);
nested_enable_signaling(last);
engine->execlist_first = rb;
}
spin_unlock_irq(&engine->timeline->lock);
return submit;
}
static void i915_guc_irq_handler(unsigned long data)
{
struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
struct execlist_port *port = engine->execlist_port;
struct drm_i915_gem_request *rq;
bool submit;
do {
rq = port[0].request;
while (rq && i915_gem_request_completed(rq)) {
trace_i915_gem_request_out(rq);
i915_gem_request_put(rq);
port[0].request = port[1].request;
port[1].request = NULL;
rq = port[0].request;
}
submit = false;
if (!port[1].request)
submit = i915_guc_dequeue(engine);
} while (submit);
}
/*
* Everything below here is concerned with setup & teardown, and is
* therefore not part of the somewhat time-critical batch-submission
* path of i915_guc_submit() above.
*/
/**
* intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage
* @guc: the guc
* @size: size of area to allocate (both virtual space and memory)
*
* This is a wrapper to create an object for use with the GuC. In order to
* use it inside the GuC, an object needs to be pinned lifetime, so we allocate
* both some backing storage and a range inside the Global GTT. We must pin
* it in the GGTT somewhere other than than [0, GUC_WOPCM_TOP) because that
* range is reserved inside GuC.
*
* Return: A i915_vma if successful, otherwise an ERR_PTR.
*/
struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size)
{
struct drm_i915_private *dev_priv = guc_to_i915(guc);
struct drm_i915_gem_object *obj;
struct i915_vma *vma;
int ret;
obj = i915_gem_object_create(dev_priv, size);
if (IS_ERR(obj))
return ERR_CAST(obj);
vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL);
if (IS_ERR(vma))
goto err;
ret = i915_vma_pin(vma, 0, PAGE_SIZE,
PIN_GLOBAL | PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
if (ret) {
vma = ERR_PTR(ret);
goto err;
}
return vma;
err:
i915_gem_object_put(obj);
return vma;
}
/* Check that a doorbell register is in the expected state */
static bool doorbell_ok(struct intel_guc *guc, u16 db_id)
{
struct drm_i915_private *dev_priv = guc_to_i915(guc);
u32 drbregl;
bool valid;
GEM_BUG_ON(db_id >= GUC_DOORBELL_INVALID);
drbregl = I915_READ(GEN8_DRBREGL(db_id));
valid = drbregl & GEN8_DRB_VALID;
if (test_bit(db_id, guc->doorbell_bitmap) == valid)
return true;
DRM_DEBUG_DRIVER("Doorbell %d has unexpected state (0x%x): valid=%s\n",
db_id, drbregl, yesno(valid));
return false;
}
/*
* If the GuC thinks that the doorbell is unassigned (e.g. because we reset and
* reloaded the GuC FW) we can use this function to tell the GuC to reassign the
* doorbell to the rightful owner.
*/
static int __reset_doorbell(struct i915_guc_client* client, u16 db_id)
{
int err;
__update_doorbell_desc(client, db_id);
err = __create_doorbell(client);
if (!err)
err = __destroy_doorbell(client);
return err;
}
/*
* Set up & tear down each unused doorbell in turn, to ensure that all doorbell
* HW is (re)initialised. For that end, we might have to borrow the first
* client. Also, tell GuC about all the doorbells in use by all clients.
* We do this because the KMD, the GuC and the doorbell HW can easily go out of
* sync (e.g. we can reset the GuC, but not the doorbel HW).
*/
static int guc_init_doorbell_hw(struct intel_guc *guc)
{
struct i915_guc_client *client = guc->execbuf_client;
bool recreate_first_client = false;
u16 db_id;
int ret;
/* For unused doorbells, make sure they are disabled */
for_each_clear_bit(db_id, guc->doorbell_bitmap, GUC_NUM_DOORBELLS) {
if (doorbell_ok(guc, db_id))
continue;
if (has_doorbell(client)) {
/* Borrow execbuf_client (we will recreate it later) */
destroy_doorbell(client);
recreate_first_client = true;
}
ret = __reset_doorbell(client, db_id);
WARN(ret, "Doorbell %u reset failed, err %d\n", db_id, ret);
}
if (recreate_first_client) {
ret = __reserve_doorbell(client);
if (unlikely(ret)) {
DRM_ERROR("Couldn't re-reserve first client db: %d\n", ret);
return ret;
}
__update_doorbell_desc(client, client->doorbell_id);
}
/* Now for every client (and not only execbuf_client) make sure their
* doorbells are known by the GuC */
//for (client = client_list; client != NULL; client = client->next)
{
ret = __create_doorbell(client);
if (ret) {
DRM_ERROR("Couldn't recreate client %u doorbell: %d\n",
client->stage_id, ret);
return ret;
}
}
/* Read back & verify all (used & unused) doorbell registers */
for (db_id = 0; db_id < GUC_NUM_DOORBELLS; ++db_id)
WARN_ON(!doorbell_ok(guc, db_id));
return 0;
}
/**
* guc_client_alloc() - Allocate an i915_guc_client
* @dev_priv: driver private data structure
* @engines: The set of engines to enable for this client
* @priority: four levels priority _CRITICAL, _HIGH, _NORMAL and _LOW
* The kernel client to replace ExecList submission is created with
* NORMAL priority. Priority of a client for scheduler can be HIGH,
* while a preemption context can use CRITICAL.
* @ctx: the context that owns the client (we use the default render
* context)
*
* Return: An i915_guc_client object if success, else NULL.
*/
static struct i915_guc_client *
guc_client_alloc(struct drm_i915_private *dev_priv,
uint32_t engines,
uint32_t priority,
struct i915_gem_context *ctx)
{
struct i915_guc_client *client;
struct intel_guc *guc = &dev_priv->guc;
struct i915_vma *vma;
void *vaddr;
int ret;
client = kzalloc(sizeof(*client), GFP_KERNEL);
if (!client)
return ERR_PTR(-ENOMEM);
client->guc = guc;
client->owner = ctx;
client->engines = engines;
client->priority = priority;
client->doorbell_id = GUC_DOORBELL_INVALID;
client->wq_offset = GUC_DB_SIZE;
client->wq_size = GUC_WQ_SIZE;
spin_lock_init(&client->wq_lock);
ret = ida_simple_get(&guc->stage_ids, 0, GUC_MAX_STAGE_DESCRIPTORS,
GFP_KERNEL);
if (ret < 0)
goto err_client;
client->stage_id = ret;
/* The first page is doorbell/proc_desc. Two followed pages are wq. */
vma = intel_guc_allocate_vma(guc, GUC_DB_SIZE + GUC_WQ_SIZE);
if (IS_ERR(vma)) {
ret = PTR_ERR(vma);
goto err_id;
}
/* We'll keep just the first (doorbell/proc) page permanently kmap'd. */
client->vma = vma;
vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
if (IS_ERR(vaddr)) {
ret = PTR_ERR(vaddr);
goto err_vma;
}
client->vaddr = vaddr;
client->doorbell_offset = __select_cacheline(guc);
/*
* Since the doorbell only requires a single cacheline, we can save
* space by putting the application process descriptor in the same
* page. Use the half of the page that doesn't include the doorbell.
*/
if (client->doorbell_offset >= (GUC_DB_SIZE / 2))
client->proc_desc_offset = 0;
else
client->proc_desc_offset = (GUC_DB_SIZE / 2);
guc_proc_desc_init(guc, client);
guc_stage_desc_init(guc, client);
ret = create_doorbell(client);
if (ret)
goto err_vaddr;
DRM_DEBUG_DRIVER("new priority %u client %p for engine(s) 0x%x: stage_id %u\n",
priority, client, client->engines, client->stage_id);
DRM_DEBUG_DRIVER("doorbell id %u, cacheline offset 0x%lx\n",
client->doorbell_id, client->doorbell_offset);
return client;
err_vaddr:
i915_gem_object_unpin_map(client->vma->obj);
err_vma:
i915_vma_unpin_and_release(&client->vma);
err_id:
ida_simple_remove(&guc->stage_ids, client->stage_id);
err_client:
kfree(client);
return ERR_PTR(ret);
}
static void guc_client_free(struct i915_guc_client *client)
{
/*
* XXX: wait for any outstanding submissions before freeing memory.
* Be sure to drop any locks
*/
/* FIXME: in many cases, by the time we get here the GuC has been
* reset, so we cannot destroy the doorbell properly. Ignore the
* error message for now */
destroy_doorbell(client);
guc_stage_desc_fini(client->guc, client);
i915_gem_object_unpin_map(client->vma->obj);
i915_vma_unpin_and_release(&client->vma);
ida_simple_remove(&client->guc->stage_ids, client->stage_id);
kfree(client);
}
static void guc_policies_init(struct guc_policies *policies)
{
struct guc_policy *policy;
u32 p, i;
policies->dpc_promote_time = 500000;
policies->max_num_work_items = POLICY_MAX_NUM_WI;
for (p = 0; p < GUC_CLIENT_PRIORITY_NUM; p++) {
for (i = GUC_RENDER_ENGINE; i < GUC_MAX_ENGINES_NUM; i++) {
policy = &policies->policy[p][i];
policy->execution_quantum = 1000000;
policy->preemption_time = 500000;
policy->fault_time = 250000;
policy->policy_flags = 0;
}
}
policies->is_valid = 1;
}
static int guc_ads_create(struct intel_guc *guc)
{
struct drm_i915_private *dev_priv = guc_to_i915(guc);
struct i915_vma *vma;
struct page *page;
/* The ads obj includes the struct itself and buffers passed to GuC */
struct {
struct guc_ads ads;
struct guc_policies policies;
struct guc_mmio_reg_state reg_state;
u8 reg_state_buffer[GUC_S3_SAVE_SPACE_PAGES * PAGE_SIZE];
} __packed *blob;
struct intel_engine_cs *engine;
enum intel_engine_id id;
u32 base;
GEM_BUG_ON(guc->ads_vma);
vma = intel_guc_allocate_vma(guc, PAGE_ALIGN(sizeof(*blob)));
if (IS_ERR(vma))
return PTR_ERR(vma);
guc->ads_vma = vma;
page = i915_vma_first_page(vma);
blob = kmap(page);
/* GuC scheduling policies */
guc_policies_init(&blob->policies);
/* MMIO reg state */
for_each_engine(engine, dev_priv, id) {
blob->reg_state.white_list[engine->guc_id].mmio_start =
engine->mmio_base + GUC_MMIO_WHITE_LIST_START;
/* Nothing to be saved or restored for now. */
blob->reg_state.white_list[engine->guc_id].count = 0;
}
/*
* The GuC requires a "Golden Context" when it reinitialises
* engines after a reset. Here we use the Render ring default
* context, which must already exist and be pinned in the GGTT,
* so its address won't change after we've told the GuC where
* to find it.
*/
blob->ads.golden_context_lrca =
dev_priv->engine[RCS]->status_page.ggtt_offset;
for_each_engine(engine, dev_priv, id)
blob->ads.eng_state_size[engine->guc_id] =
intel_lr_context_size(engine);
base = guc_ggtt_offset(vma);
blob->ads.scheduler_policies = base + ptr_offset(blob, policies);
blob->ads.reg_state_buffer = base + ptr_offset(blob, reg_state_buffer);
blob->ads.reg_state_addr = base + ptr_offset(blob, reg_state);
kunmap(page);
return 0;
}
static void guc_ads_destroy(struct intel_guc *guc)
{
i915_vma_unpin_and_release(&guc->ads_vma);
}
/*
* Set up the memory resources to be shared with the GuC (via the GGTT)
* at firmware loading time.
*/
int i915_guc_submission_init(struct drm_i915_private *dev_priv)
{
struct intel_guc *guc = &dev_priv->guc;
struct i915_vma *vma;
void *vaddr;
int ret;
if (guc->stage_desc_pool)
return 0;
vma = intel_guc_allocate_vma(guc,
PAGE_ALIGN(sizeof(struct guc_stage_desc) *
GUC_MAX_STAGE_DESCRIPTORS));
if (IS_ERR(vma))
return PTR_ERR(vma);
guc->stage_desc_pool = vma;
vaddr = i915_gem_object_pin_map(guc->stage_desc_pool->obj, I915_MAP_WB);
if (IS_ERR(vaddr)) {
ret = PTR_ERR(vaddr);
goto err_vma;
}
guc->stage_desc_pool_vaddr = vaddr;
ret = intel_guc_log_create(guc);
if (ret < 0)
goto err_vaddr;
ret = guc_ads_create(guc);
if (ret < 0)
goto err_log;
ida_init(&guc->stage_ids);
return 0;
err_log:
intel_guc_log_destroy(guc);
err_vaddr:
i915_gem_object_unpin_map(guc->stage_desc_pool->obj);
err_vma:
i915_vma_unpin_and_release(&guc->stage_desc_pool);
return ret;
}
void i915_guc_submission_fini(struct drm_i915_private *dev_priv)
{
struct intel_guc *guc = &dev_priv->guc;
ida_destroy(&guc->stage_ids);
guc_ads_destroy(guc);
intel_guc_log_destroy(guc);
i915_gem_object_unpin_map(guc->stage_desc_pool->obj);
i915_vma_unpin_and_release(&guc->stage_desc_pool);
}
static void guc_interrupts_capture(struct drm_i915_private *dev_priv)
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
int irqs;
/* tell all command streamers to forward interrupts (but not vblank) to GuC */
irqs = _MASKED_BIT_ENABLE(GFX_INTERRUPT_STEERING);
for_each_engine(engine, dev_priv, id)
I915_WRITE(RING_MODE_GEN7(engine), irqs);
/* route USER_INTERRUPT to Host, all others are sent to GuC. */
irqs = GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
/* These three registers have the same bit definitions */
I915_WRITE(GUC_BCS_RCS_IER, ~irqs);
I915_WRITE(GUC_VCS2_VCS1_IER, ~irqs);
I915_WRITE(GUC_WD_VECS_IER, ~irqs);
/*
* The REDIRECT_TO_GUC bit of the PMINTRMSK register directs all
* (unmasked) PM interrupts to the GuC. All other bits of this
* register *disable* generation of a specific interrupt.
*
* 'pm_intrmsk_mbz' indicates bits that are NOT to be set when
* writing to the PM interrupt mask register, i.e. interrupts
* that must not be disabled.
*
* If the GuC is handling these interrupts, then we must not let
* the PM code disable ANY interrupt that the GuC is expecting.
* So for each ENABLED (0) bit in this register, we must SET the
* bit in pm_intrmsk_mbz so that it's left enabled for the GuC.
* GuC needs ARAT expired interrupt unmasked hence it is set in
* pm_intrmsk_mbz.
*
* Here we CLEAR REDIRECT_TO_GUC bit in pm_intrmsk_mbz, which will
* result in the register bit being left SET!
*/
dev_priv->rps.pm_intrmsk_mbz |= ARAT_EXPIRED_INTRMSK;
dev_priv->rps.pm_intrmsk_mbz &= ~GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
}
static void guc_interrupts_release(struct drm_i915_private *dev_priv)
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
int irqs;
/*
* tell all command streamers NOT to forward interrupts or vblank
* to GuC.
*/
irqs = _MASKED_FIELD(GFX_FORWARD_VBLANK_MASK, GFX_FORWARD_VBLANK_NEVER);
irqs |= _MASKED_BIT_DISABLE(GFX_INTERRUPT_STEERING);
for_each_engine(engine, dev_priv, id)
I915_WRITE(RING_MODE_GEN7(engine), irqs);
/* route all GT interrupts to the host */
I915_WRITE(GUC_BCS_RCS_IER, 0);
I915_WRITE(GUC_VCS2_VCS1_IER, 0);
I915_WRITE(GUC_WD_VECS_IER, 0);
dev_priv->rps.pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
dev_priv->rps.pm_intrmsk_mbz &= ~ARAT_EXPIRED_INTRMSK;
}
int i915_guc_submission_enable(struct drm_i915_private *dev_priv)
{
struct intel_guc *guc = &dev_priv->guc;
struct i915_guc_client *client = guc->execbuf_client;
struct intel_engine_cs *engine;
enum intel_engine_id id;
int err;
if (!client) {
client = guc_client_alloc(dev_priv,
INTEL_INFO(dev_priv)->ring_mask,
GUC_CLIENT_PRIORITY_KMD_NORMAL,
dev_priv->kernel_context);
if (IS_ERR(client)) {
DRM_ERROR("Failed to create GuC client for execbuf!\n");
return PTR_ERR(client);
}
guc->execbuf_client = client;
}
err = intel_guc_sample_forcewake(guc);
if (err)
goto err_execbuf_client;
guc_reset_wq(client);
err = guc_init_doorbell_hw(guc);
if (err)
goto err_execbuf_client;
/* Take over from manual control of ELSP (execlists) */
guc_interrupts_capture(dev_priv);
for_each_engine(engine, dev_priv, id) {
const int wqi_size = sizeof(struct guc_wq_item);
struct drm_i915_gem_request *rq;
/* The tasklet was initialised by execlists, and may be in
* a state of flux (across a reset) and so we just want to
* take over the callback without changing any other state
* in the tasklet.
*/
engine->irq_tasklet.func = i915_guc_irq_handler;
clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
/* Replay the current set of previously submitted requests */
spin_lock_irq(&engine->timeline->lock);
list_for_each_entry(rq, &engine->timeline->requests, link) {
guc_client_update_wq_rsvd(client, wqi_size);
__i915_guc_submit(rq);
}
spin_unlock_irq(&engine->timeline->lock);
}
return 0;
err_execbuf_client:
guc_client_free(guc->execbuf_client);
guc->execbuf_client = NULL;
return err;
}
void i915_guc_submission_disable(struct drm_i915_private *dev_priv)
{
struct intel_guc *guc = &dev_priv->guc;
guc_interrupts_release(dev_priv);
/* Revert back to manual ELSP submission */
intel_engines_reset_default_submission(dev_priv);
guc_client_free(guc->execbuf_client);
guc->execbuf_client = NULL;
}
/**
* intel_guc_suspend() - notify GuC entering suspend state
* @dev_priv: i915 device private
*/
int intel_guc_suspend(struct drm_i915_private *dev_priv)
{
struct intel_guc *guc = &dev_priv->guc;
struct i915_gem_context *ctx;
u32 data[3];
if (guc->fw.load_status != INTEL_UC_FIRMWARE_SUCCESS)
return 0;
gen9_disable_guc_interrupts(dev_priv);
ctx = dev_priv->kernel_context;
data[0] = INTEL_GUC_ACTION_ENTER_S_STATE;
/* any value greater than GUC_POWER_D0 */
data[1] = GUC_POWER_D1;
/* first page is shared data with GuC */
data[2] = guc_ggtt_offset(ctx->engine[RCS].state);
return intel_guc_send(guc, data, ARRAY_SIZE(data));
}
/**
* intel_guc_resume() - notify GuC resuming from suspend state
* @dev_priv: i915 device private
*/
int intel_guc_resume(struct drm_i915_private *dev_priv)
{
struct intel_guc *guc = &dev_priv->guc;
struct i915_gem_context *ctx;
u32 data[3];
if (guc->fw.load_status != INTEL_UC_FIRMWARE_SUCCESS)
return 0;
if (i915.guc_log_level >= 0)
gen9_enable_guc_interrupts(dev_priv);
ctx = dev_priv->kernel_context;
data[0] = INTEL_GUC_ACTION_EXIT_S_STATE;
data[1] = GUC_POWER_D0;
/* first page is shared data with GuC */
data[2] = guc_ggtt_offset(ctx->engine[RCS].state);
return intel_guc_send(guc, data, ARRAY_SIZE(data));
}