mirror of https://gitee.com/openkylin/linux.git
2009 lines
46 KiB
C
2009 lines
46 KiB
C
/*
|
|
* Copyright (c) 2013 Johannes Berg <johannes@sipsolutions.net>
|
|
*
|
|
* This file is free software: you may copy, redistribute and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation, either version 2 of the License, or (at your
|
|
* option) any later version.
|
|
*
|
|
* This file is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* This file incorporates work covered by the following copyright and
|
|
* permission notice:
|
|
*
|
|
* Copyright (c) 2012 Qualcomm Atheros, Inc.
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/ip.h>
|
|
#include <linux/ipv6.h>
|
|
#include <linux/if_vlan.h>
|
|
#include <linux/mdio.h>
|
|
#include <linux/aer.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <net/ip6_checksum.h>
|
|
#include <linux/crc32.h>
|
|
#include "alx.h"
|
|
#include "hw.h"
|
|
#include "reg.h"
|
|
|
|
const char alx_drv_name[] = "alx";
|
|
|
|
static bool msix = false;
|
|
module_param(msix, bool, 0);
|
|
MODULE_PARM_DESC(msix, "Enable msi-x interrupt support");
|
|
|
|
static void alx_free_txbuf(struct alx_tx_queue *txq, int entry)
|
|
{
|
|
struct alx_buffer *txb = &txq->bufs[entry];
|
|
|
|
if (dma_unmap_len(txb, size)) {
|
|
dma_unmap_single(txq->dev,
|
|
dma_unmap_addr(txb, dma),
|
|
dma_unmap_len(txb, size),
|
|
DMA_TO_DEVICE);
|
|
dma_unmap_len_set(txb, size, 0);
|
|
}
|
|
|
|
if (txb->skb) {
|
|
dev_kfree_skb_any(txb->skb);
|
|
txb->skb = NULL;
|
|
}
|
|
}
|
|
|
|
static int alx_refill_rx_ring(struct alx_priv *alx, gfp_t gfp)
|
|
{
|
|
struct alx_rx_queue *rxq = alx->qnapi[0]->rxq;
|
|
struct sk_buff *skb;
|
|
struct alx_buffer *cur_buf;
|
|
dma_addr_t dma;
|
|
u16 cur, next, count = 0;
|
|
|
|
next = cur = rxq->write_idx;
|
|
if (++next == alx->rx_ringsz)
|
|
next = 0;
|
|
cur_buf = &rxq->bufs[cur];
|
|
|
|
while (!cur_buf->skb && next != rxq->read_idx) {
|
|
struct alx_rfd *rfd = &rxq->rfd[cur];
|
|
|
|
/*
|
|
* When DMA RX address is set to something like
|
|
* 0x....fc0, it will be very likely to cause DMA
|
|
* RFD overflow issue.
|
|
*
|
|
* To work around it, we apply rx skb with 64 bytes
|
|
* longer space, and offset the address whenever
|
|
* 0x....fc0 is detected.
|
|
*/
|
|
skb = __netdev_alloc_skb(alx->dev, alx->rxbuf_size + 64, gfp);
|
|
if (!skb)
|
|
break;
|
|
|
|
if (((unsigned long)skb->data & 0xfff) == 0xfc0)
|
|
skb_reserve(skb, 64);
|
|
|
|
dma = dma_map_single(&alx->hw.pdev->dev,
|
|
skb->data, alx->rxbuf_size,
|
|
DMA_FROM_DEVICE);
|
|
if (dma_mapping_error(&alx->hw.pdev->dev, dma)) {
|
|
dev_kfree_skb(skb);
|
|
break;
|
|
}
|
|
|
|
/* Unfortunately, RX descriptor buffers must be 4-byte
|
|
* aligned, so we can't use IP alignment.
|
|
*/
|
|
if (WARN_ON(dma & 3)) {
|
|
dev_kfree_skb(skb);
|
|
break;
|
|
}
|
|
|
|
cur_buf->skb = skb;
|
|
dma_unmap_len_set(cur_buf, size, alx->rxbuf_size);
|
|
dma_unmap_addr_set(cur_buf, dma, dma);
|
|
rfd->addr = cpu_to_le64(dma);
|
|
|
|
cur = next;
|
|
if (++next == alx->rx_ringsz)
|
|
next = 0;
|
|
cur_buf = &rxq->bufs[cur];
|
|
count++;
|
|
}
|
|
|
|
if (count) {
|
|
/* flush all updates before updating hardware */
|
|
wmb();
|
|
rxq->write_idx = cur;
|
|
alx_write_mem16(&alx->hw, ALX_RFD_PIDX, cur);
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
static inline int alx_tpd_avail(struct alx_tx_queue *txq)
|
|
{
|
|
if (txq->write_idx >= txq->read_idx)
|
|
return txq->count + txq->read_idx - txq->write_idx - 1;
|
|
return txq->read_idx - txq->write_idx - 1;
|
|
}
|
|
|
|
static bool alx_clean_tx_irq(struct alx_tx_queue *txq)
|
|
{
|
|
struct alx_priv *alx;
|
|
u16 hw_read_idx, sw_read_idx;
|
|
unsigned int total_bytes = 0, total_packets = 0;
|
|
int budget = ALX_DEFAULT_TX_WORK;
|
|
|
|
alx = netdev_priv(txq->netdev);
|
|
|
|
sw_read_idx = txq->read_idx;
|
|
hw_read_idx = alx_read_mem16(&alx->hw, ALX_TPD_PRI0_CIDX);
|
|
|
|
if (sw_read_idx != hw_read_idx) {
|
|
while (sw_read_idx != hw_read_idx && budget > 0) {
|
|
struct sk_buff *skb;
|
|
|
|
skb = txq->bufs[sw_read_idx].skb;
|
|
if (skb) {
|
|
total_bytes += skb->len;
|
|
total_packets++;
|
|
budget--;
|
|
}
|
|
|
|
alx_free_txbuf(txq, sw_read_idx);
|
|
|
|
if (++sw_read_idx == txq->count)
|
|
sw_read_idx = 0;
|
|
}
|
|
txq->read_idx = sw_read_idx;
|
|
|
|
netdev_completed_queue(txq->netdev, total_packets, total_bytes);
|
|
}
|
|
|
|
if (netif_queue_stopped(txq->netdev) && netif_carrier_ok(txq->netdev) &&
|
|
alx_tpd_avail(txq) > txq->count / 4)
|
|
netif_wake_queue(txq->netdev);
|
|
|
|
return sw_read_idx == hw_read_idx;
|
|
}
|
|
|
|
static void alx_schedule_link_check(struct alx_priv *alx)
|
|
{
|
|
schedule_work(&alx->link_check_wk);
|
|
}
|
|
|
|
static void alx_schedule_reset(struct alx_priv *alx)
|
|
{
|
|
schedule_work(&alx->reset_wk);
|
|
}
|
|
|
|
static int alx_clean_rx_irq(struct alx_rx_queue *rxq, int budget)
|
|
{
|
|
struct alx_priv *alx;
|
|
struct alx_rrd *rrd;
|
|
struct alx_buffer *rxb;
|
|
struct sk_buff *skb;
|
|
u16 length, rfd_cleaned = 0;
|
|
int work = 0;
|
|
|
|
alx = netdev_priv(rxq->netdev);
|
|
|
|
while (work < budget) {
|
|
rrd = &rxq->rrd[rxq->rrd_read_idx];
|
|
if (!(rrd->word3 & cpu_to_le32(1 << RRD_UPDATED_SHIFT)))
|
|
break;
|
|
rrd->word3 &= ~cpu_to_le32(1 << RRD_UPDATED_SHIFT);
|
|
|
|
if (ALX_GET_FIELD(le32_to_cpu(rrd->word0),
|
|
RRD_SI) != rxq->read_idx ||
|
|
ALX_GET_FIELD(le32_to_cpu(rrd->word0),
|
|
RRD_NOR) != 1) {
|
|
alx_schedule_reset(alx);
|
|
return work;
|
|
}
|
|
|
|
rxb = &rxq->bufs[rxq->read_idx];
|
|
dma_unmap_single(rxq->dev,
|
|
dma_unmap_addr(rxb, dma),
|
|
dma_unmap_len(rxb, size),
|
|
DMA_FROM_DEVICE);
|
|
dma_unmap_len_set(rxb, size, 0);
|
|
skb = rxb->skb;
|
|
rxb->skb = NULL;
|
|
|
|
if (rrd->word3 & cpu_to_le32(1 << RRD_ERR_RES_SHIFT) ||
|
|
rrd->word3 & cpu_to_le32(1 << RRD_ERR_LEN_SHIFT)) {
|
|
rrd->word3 = 0;
|
|
dev_kfree_skb_any(skb);
|
|
goto next_pkt;
|
|
}
|
|
|
|
length = ALX_GET_FIELD(le32_to_cpu(rrd->word3),
|
|
RRD_PKTLEN) - ETH_FCS_LEN;
|
|
skb_put(skb, length);
|
|
skb->protocol = eth_type_trans(skb, rxq->netdev);
|
|
|
|
skb_checksum_none_assert(skb);
|
|
if (alx->dev->features & NETIF_F_RXCSUM &&
|
|
!(rrd->word3 & (cpu_to_le32(1 << RRD_ERR_L4_SHIFT) |
|
|
cpu_to_le32(1 << RRD_ERR_IPV4_SHIFT)))) {
|
|
switch (ALX_GET_FIELD(le32_to_cpu(rrd->word2),
|
|
RRD_PID)) {
|
|
case RRD_PID_IPV6UDP:
|
|
case RRD_PID_IPV4UDP:
|
|
case RRD_PID_IPV4TCP:
|
|
case RRD_PID_IPV6TCP:
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
break;
|
|
}
|
|
}
|
|
|
|
napi_gro_receive(&rxq->np->napi, skb);
|
|
work++;
|
|
|
|
next_pkt:
|
|
if (++rxq->read_idx == rxq->count)
|
|
rxq->read_idx = 0;
|
|
if (++rxq->rrd_read_idx == rxq->count)
|
|
rxq->rrd_read_idx = 0;
|
|
|
|
if (++rfd_cleaned > ALX_RX_ALLOC_THRESH)
|
|
rfd_cleaned -= alx_refill_rx_ring(alx, GFP_ATOMIC);
|
|
}
|
|
|
|
if (rfd_cleaned)
|
|
alx_refill_rx_ring(alx, GFP_ATOMIC);
|
|
|
|
return work;
|
|
}
|
|
|
|
static int alx_poll(struct napi_struct *napi, int budget)
|
|
{
|
|
struct alx_napi *np = container_of(napi, struct alx_napi, napi);
|
|
struct alx_priv *alx = np->alx;
|
|
struct alx_hw *hw = &alx->hw;
|
|
unsigned long flags;
|
|
bool tx_complete = true;
|
|
int work = 0;
|
|
|
|
if (np->txq)
|
|
tx_complete = alx_clean_tx_irq(np->txq);
|
|
if (np->rxq)
|
|
work = alx_clean_rx_irq(np->rxq, budget);
|
|
|
|
if (!tx_complete || work == budget)
|
|
return budget;
|
|
|
|
napi_complete(&np->napi);
|
|
|
|
/* enable interrupt */
|
|
if (alx->flags & ALX_FLAG_USING_MSIX) {
|
|
alx_mask_msix(hw, np->vec_idx, false);
|
|
} else {
|
|
spin_lock_irqsave(&alx->irq_lock, flags);
|
|
alx->int_mask |= ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0;
|
|
alx_write_mem32(hw, ALX_IMR, alx->int_mask);
|
|
spin_unlock_irqrestore(&alx->irq_lock, flags);
|
|
}
|
|
|
|
alx_post_write(hw);
|
|
|
|
return work;
|
|
}
|
|
|
|
static bool alx_intr_handle_misc(struct alx_priv *alx, u32 intr)
|
|
{
|
|
struct alx_hw *hw = &alx->hw;
|
|
|
|
if (intr & ALX_ISR_FATAL) {
|
|
netif_warn(alx, hw, alx->dev,
|
|
"fatal interrupt 0x%x, resetting\n", intr);
|
|
alx_schedule_reset(alx);
|
|
return true;
|
|
}
|
|
|
|
if (intr & ALX_ISR_ALERT)
|
|
netdev_warn(alx->dev, "alert interrupt: 0x%x\n", intr);
|
|
|
|
if (intr & ALX_ISR_PHY) {
|
|
/* suppress PHY interrupt, because the source
|
|
* is from PHY internal. only the internal status
|
|
* is cleared, the interrupt status could be cleared.
|
|
*/
|
|
alx->int_mask &= ~ALX_ISR_PHY;
|
|
alx_write_mem32(hw, ALX_IMR, alx->int_mask);
|
|
alx_schedule_link_check(alx);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static irqreturn_t alx_intr_handle(struct alx_priv *alx, u32 intr)
|
|
{
|
|
struct alx_hw *hw = &alx->hw;
|
|
|
|
spin_lock(&alx->irq_lock);
|
|
|
|
/* ACK interrupt */
|
|
alx_write_mem32(hw, ALX_ISR, intr | ALX_ISR_DIS);
|
|
intr &= alx->int_mask;
|
|
|
|
if (alx_intr_handle_misc(alx, intr))
|
|
goto out;
|
|
|
|
if (intr & (ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0)) {
|
|
napi_schedule(&alx->qnapi[0]->napi);
|
|
/* mask rx/tx interrupt, enable them when napi complete */
|
|
alx->int_mask &= ~ALX_ISR_ALL_QUEUES;
|
|
alx_write_mem32(hw, ALX_IMR, alx->int_mask);
|
|
}
|
|
|
|
alx_write_mem32(hw, ALX_ISR, 0);
|
|
|
|
out:
|
|
spin_unlock(&alx->irq_lock);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t alx_intr_msix_ring(int irq, void *data)
|
|
{
|
|
struct alx_napi *np = data;
|
|
struct alx_hw *hw = &np->alx->hw;
|
|
|
|
/* mask interrupt to ACK chip */
|
|
alx_mask_msix(hw, np->vec_idx, true);
|
|
/* clear interrupt status */
|
|
alx_write_mem32(hw, ALX_ISR, np->vec_mask);
|
|
|
|
napi_schedule(&np->napi);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t alx_intr_msix_misc(int irq, void *data)
|
|
{
|
|
struct alx_priv *alx = data;
|
|
struct alx_hw *hw = &alx->hw;
|
|
u32 intr;
|
|
|
|
/* mask interrupt to ACK chip */
|
|
alx_mask_msix(hw, 0, true);
|
|
|
|
/* read interrupt status */
|
|
intr = alx_read_mem32(hw, ALX_ISR);
|
|
intr &= (alx->int_mask & ~ALX_ISR_ALL_QUEUES);
|
|
|
|
if (alx_intr_handle_misc(alx, intr))
|
|
return IRQ_HANDLED;
|
|
|
|
/* clear interrupt status */
|
|
alx_write_mem32(hw, ALX_ISR, intr);
|
|
|
|
/* enable interrupt again */
|
|
alx_mask_msix(hw, 0, false);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t alx_intr_msi(int irq, void *data)
|
|
{
|
|
struct alx_priv *alx = data;
|
|
|
|
return alx_intr_handle(alx, alx_read_mem32(&alx->hw, ALX_ISR));
|
|
}
|
|
|
|
static irqreturn_t alx_intr_legacy(int irq, void *data)
|
|
{
|
|
struct alx_priv *alx = data;
|
|
struct alx_hw *hw = &alx->hw;
|
|
u32 intr;
|
|
|
|
intr = alx_read_mem32(hw, ALX_ISR);
|
|
|
|
if (intr & ALX_ISR_DIS || !(intr & alx->int_mask))
|
|
return IRQ_NONE;
|
|
|
|
return alx_intr_handle(alx, intr);
|
|
}
|
|
|
|
static const u16 txring_header_reg[] = {ALX_TPD_PRI0_ADDR_LO,
|
|
ALX_TPD_PRI1_ADDR_LO,
|
|
ALX_TPD_PRI2_ADDR_LO,
|
|
ALX_TPD_PRI3_ADDR_LO};
|
|
|
|
static void alx_init_ring_ptrs(struct alx_priv *alx)
|
|
{
|
|
struct alx_hw *hw = &alx->hw;
|
|
u32 addr_hi = ((u64)alx->descmem.dma) >> 32;
|
|
struct alx_napi *np;
|
|
int i;
|
|
|
|
for (i = 0; i < alx->num_napi; i++) {
|
|
np = alx->qnapi[i];
|
|
if (np->txq) {
|
|
np->txq->read_idx = 0;
|
|
np->txq->write_idx = 0;
|
|
alx_write_mem32(hw,
|
|
txring_header_reg[np->txq->queue_idx],
|
|
np->txq->tpd_dma);
|
|
}
|
|
|
|
if (np->rxq) {
|
|
np->rxq->read_idx = 0;
|
|
np->rxq->write_idx = 0;
|
|
np->rxq->rrd_read_idx = 0;
|
|
alx_write_mem32(hw, ALX_RRD_ADDR_LO, np->rxq->rrd_dma);
|
|
alx_write_mem32(hw, ALX_RFD_ADDR_LO, np->rxq->rfd_dma);
|
|
}
|
|
}
|
|
|
|
alx_write_mem32(hw, ALX_TX_BASE_ADDR_HI, addr_hi);
|
|
alx_write_mem32(hw, ALX_TPD_RING_SZ, alx->tx_ringsz);
|
|
|
|
alx_write_mem32(hw, ALX_RX_BASE_ADDR_HI, addr_hi);
|
|
alx_write_mem32(hw, ALX_RRD_RING_SZ, alx->rx_ringsz);
|
|
alx_write_mem32(hw, ALX_RFD_RING_SZ, alx->rx_ringsz);
|
|
alx_write_mem32(hw, ALX_RFD_BUF_SZ, alx->rxbuf_size);
|
|
|
|
/* load these pointers into the chip */
|
|
alx_write_mem32(hw, ALX_SRAM9, ALX_SRAM_LOAD_PTR);
|
|
}
|
|
|
|
static void alx_free_txring_buf(struct alx_tx_queue *txq)
|
|
{
|
|
int i;
|
|
|
|
if (!txq->bufs)
|
|
return;
|
|
|
|
for (i = 0; i < txq->count; i++)
|
|
alx_free_txbuf(txq, i);
|
|
|
|
memset(txq->bufs, 0, txq->count * sizeof(struct alx_buffer));
|
|
memset(txq->tpd, 0, txq->count * sizeof(struct alx_txd));
|
|
txq->write_idx = 0;
|
|
txq->read_idx = 0;
|
|
|
|
netdev_reset_queue(txq->netdev);
|
|
}
|
|
|
|
static void alx_free_rxring_buf(struct alx_rx_queue *rxq)
|
|
{
|
|
struct alx_buffer *cur_buf;
|
|
u16 i;
|
|
|
|
if (!rxq->bufs)
|
|
return;
|
|
|
|
for (i = 0; i < rxq->count; i++) {
|
|
cur_buf = rxq->bufs + i;
|
|
if (cur_buf->skb) {
|
|
dma_unmap_single(rxq->dev,
|
|
dma_unmap_addr(cur_buf, dma),
|
|
dma_unmap_len(cur_buf, size),
|
|
DMA_FROM_DEVICE);
|
|
dev_kfree_skb(cur_buf->skb);
|
|
cur_buf->skb = NULL;
|
|
dma_unmap_len_set(cur_buf, size, 0);
|
|
dma_unmap_addr_set(cur_buf, dma, 0);
|
|
}
|
|
}
|
|
|
|
rxq->write_idx = 0;
|
|
rxq->read_idx = 0;
|
|
rxq->rrd_read_idx = 0;
|
|
}
|
|
|
|
static void alx_free_buffers(struct alx_priv *alx)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < alx->num_txq; i++)
|
|
if (alx->qnapi[i] && alx->qnapi[i]->txq)
|
|
alx_free_txring_buf(alx->qnapi[i]->txq);
|
|
|
|
if (alx->qnapi[0] && alx->qnapi[0]->rxq)
|
|
alx_free_rxring_buf(alx->qnapi[0]->rxq);
|
|
}
|
|
|
|
static int alx_reinit_rings(struct alx_priv *alx)
|
|
{
|
|
alx_free_buffers(alx);
|
|
|
|
alx_init_ring_ptrs(alx);
|
|
|
|
if (!alx_refill_rx_ring(alx, GFP_KERNEL))
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void alx_add_mc_addr(struct alx_hw *hw, const u8 *addr, u32 *mc_hash)
|
|
{
|
|
u32 crc32, bit, reg;
|
|
|
|
crc32 = ether_crc(ETH_ALEN, addr);
|
|
reg = (crc32 >> 31) & 0x1;
|
|
bit = (crc32 >> 26) & 0x1F;
|
|
|
|
mc_hash[reg] |= BIT(bit);
|
|
}
|
|
|
|
static void __alx_set_rx_mode(struct net_device *netdev)
|
|
{
|
|
struct alx_priv *alx = netdev_priv(netdev);
|
|
struct alx_hw *hw = &alx->hw;
|
|
struct netdev_hw_addr *ha;
|
|
u32 mc_hash[2] = {};
|
|
|
|
if (!(netdev->flags & IFF_ALLMULTI)) {
|
|
netdev_for_each_mc_addr(ha, netdev)
|
|
alx_add_mc_addr(hw, ha->addr, mc_hash);
|
|
|
|
alx_write_mem32(hw, ALX_HASH_TBL0, mc_hash[0]);
|
|
alx_write_mem32(hw, ALX_HASH_TBL1, mc_hash[1]);
|
|
}
|
|
|
|
hw->rx_ctrl &= ~(ALX_MAC_CTRL_MULTIALL_EN | ALX_MAC_CTRL_PROMISC_EN);
|
|
if (netdev->flags & IFF_PROMISC)
|
|
hw->rx_ctrl |= ALX_MAC_CTRL_PROMISC_EN;
|
|
if (netdev->flags & IFF_ALLMULTI)
|
|
hw->rx_ctrl |= ALX_MAC_CTRL_MULTIALL_EN;
|
|
|
|
alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl);
|
|
}
|
|
|
|
static void alx_set_rx_mode(struct net_device *netdev)
|
|
{
|
|
__alx_set_rx_mode(netdev);
|
|
}
|
|
|
|
static int alx_set_mac_address(struct net_device *netdev, void *data)
|
|
{
|
|
struct alx_priv *alx = netdev_priv(netdev);
|
|
struct alx_hw *hw = &alx->hw;
|
|
struct sockaddr *addr = data;
|
|
|
|
if (!is_valid_ether_addr(addr->sa_data))
|
|
return -EADDRNOTAVAIL;
|
|
|
|
if (netdev->addr_assign_type & NET_ADDR_RANDOM)
|
|
netdev->addr_assign_type ^= NET_ADDR_RANDOM;
|
|
|
|
memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
|
|
memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
|
|
alx_set_macaddr(hw, hw->mac_addr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int alx_alloc_tx_ring(struct alx_priv *alx, struct alx_tx_queue *txq,
|
|
int offset)
|
|
{
|
|
txq->bufs = kcalloc(txq->count, sizeof(struct alx_buffer), GFP_KERNEL);
|
|
if (!txq->bufs)
|
|
return -ENOMEM;
|
|
|
|
txq->tpd = alx->descmem.virt + offset;
|
|
txq->tpd_dma = alx->descmem.dma + offset;
|
|
offset += sizeof(struct alx_txd) * txq->count;
|
|
|
|
return offset;
|
|
}
|
|
|
|
static int alx_alloc_rx_ring(struct alx_priv *alx, struct alx_rx_queue *rxq,
|
|
int offset)
|
|
{
|
|
rxq->bufs = kcalloc(rxq->count, sizeof(struct alx_buffer), GFP_KERNEL);
|
|
if (!rxq->bufs)
|
|
return -ENOMEM;
|
|
|
|
rxq->rrd = alx->descmem.virt + offset;
|
|
rxq->rrd_dma = alx->descmem.dma + offset;
|
|
offset += sizeof(struct alx_rrd) * rxq->count;
|
|
|
|
rxq->rfd = alx->descmem.virt + offset;
|
|
rxq->rfd_dma = alx->descmem.dma + offset;
|
|
offset += sizeof(struct alx_rfd) * rxq->count;
|
|
|
|
return offset;
|
|
}
|
|
|
|
static int alx_alloc_rings(struct alx_priv *alx)
|
|
{
|
|
int i, offset = 0;
|
|
|
|
/* physical tx/rx ring descriptors
|
|
*
|
|
* Allocate them as a single chunk because they must not cross a
|
|
* 4G boundary (hardware has a single register for high 32 bits
|
|
* of addresses only)
|
|
*/
|
|
alx->descmem.size = sizeof(struct alx_txd) * alx->tx_ringsz *
|
|
alx->num_txq +
|
|
sizeof(struct alx_rrd) * alx->rx_ringsz +
|
|
sizeof(struct alx_rfd) * alx->rx_ringsz;
|
|
alx->descmem.virt = dma_zalloc_coherent(&alx->hw.pdev->dev,
|
|
alx->descmem.size,
|
|
&alx->descmem.dma,
|
|
GFP_KERNEL);
|
|
if (!alx->descmem.virt)
|
|
return -ENOMEM;
|
|
|
|
/* alignment requirements */
|
|
BUILD_BUG_ON(sizeof(struct alx_txd) % 8);
|
|
BUILD_BUG_ON(sizeof(struct alx_rrd) % 8);
|
|
|
|
for (i = 0; i < alx->num_txq; i++) {
|
|
offset = alx_alloc_tx_ring(alx, alx->qnapi[i]->txq, offset);
|
|
if (offset < 0) {
|
|
netdev_err(alx->dev, "Allocation of tx buffer failed!\n");
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
offset = alx_alloc_rx_ring(alx, alx->qnapi[0]->rxq, offset);
|
|
if (offset < 0) {
|
|
netdev_err(alx->dev, "Allocation of rx buffer failed!\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
alx_reinit_rings(alx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void alx_free_rings(struct alx_priv *alx)
|
|
{
|
|
int i;
|
|
|
|
alx_free_buffers(alx);
|
|
|
|
for (i = 0; i < alx->num_txq; i++)
|
|
if (alx->qnapi[i] && alx->qnapi[i]->txq)
|
|
kfree(alx->qnapi[i]->txq->bufs);
|
|
|
|
if (alx->qnapi[0] && alx->qnapi[0]->rxq)
|
|
kfree(alx->qnapi[0]->rxq->bufs);
|
|
|
|
if (!alx->descmem.virt)
|
|
dma_free_coherent(&alx->hw.pdev->dev,
|
|
alx->descmem.size,
|
|
alx->descmem.virt,
|
|
alx->descmem.dma);
|
|
}
|
|
|
|
static void alx_free_napis(struct alx_priv *alx)
|
|
{
|
|
struct alx_napi *np;
|
|
int i;
|
|
|
|
for (i = 0; i < alx->num_napi; i++) {
|
|
np = alx->qnapi[i];
|
|
if (!np)
|
|
continue;
|
|
|
|
netif_napi_del(&np->napi);
|
|
kfree(np->txq);
|
|
kfree(np->rxq);
|
|
kfree(np);
|
|
alx->qnapi[i] = NULL;
|
|
}
|
|
}
|
|
|
|
static const u32 tx_vect_mask[] = {ALX_ISR_TX_Q0, ALX_ISR_TX_Q1,
|
|
ALX_ISR_TX_Q2, ALX_ISR_TX_Q3};
|
|
static const u32 rx_vect_mask[] = {ALX_ISR_RX_Q0, ALX_ISR_RX_Q1,
|
|
ALX_ISR_RX_Q2, ALX_ISR_RX_Q3,
|
|
ALX_ISR_RX_Q4, ALX_ISR_RX_Q5,
|
|
ALX_ISR_RX_Q6, ALX_ISR_RX_Q7};
|
|
|
|
static int alx_alloc_napis(struct alx_priv *alx)
|
|
{
|
|
struct alx_napi *np;
|
|
struct alx_rx_queue *rxq;
|
|
struct alx_tx_queue *txq;
|
|
int i;
|
|
|
|
alx->int_mask &= ~ALX_ISR_ALL_QUEUES;
|
|
|
|
/* allocate alx_napi structures */
|
|
for (i = 0; i < alx->num_napi; i++) {
|
|
np = kzalloc(sizeof(struct alx_napi), GFP_KERNEL);
|
|
if (!np)
|
|
goto err_out;
|
|
|
|
np->alx = alx;
|
|
netif_napi_add(alx->dev, &np->napi, alx_poll, 64);
|
|
alx->qnapi[i] = np;
|
|
}
|
|
|
|
/* allocate tx queues */
|
|
for (i = 0; i < alx->num_txq; i++) {
|
|
np = alx->qnapi[i];
|
|
txq = kzalloc(sizeof(*txq), GFP_KERNEL);
|
|
if (!txq)
|
|
goto err_out;
|
|
|
|
np->txq = txq;
|
|
txq->queue_idx = i;
|
|
txq->count = alx->tx_ringsz;
|
|
txq->netdev = alx->dev;
|
|
txq->dev = &alx->hw.pdev->dev;
|
|
np->vec_mask |= tx_vect_mask[i];
|
|
alx->int_mask |= tx_vect_mask[i];
|
|
}
|
|
|
|
/* allocate rx queues */
|
|
np = alx->qnapi[0];
|
|
rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
|
|
if (!rxq)
|
|
goto err_out;
|
|
|
|
np->rxq = rxq;
|
|
rxq->np = alx->qnapi[0];
|
|
rxq->queue_idx = 0;
|
|
rxq->count = alx->rx_ringsz;
|
|
rxq->netdev = alx->dev;
|
|
rxq->dev = &alx->hw.pdev->dev;
|
|
np->vec_mask |= rx_vect_mask[0];
|
|
alx->int_mask |= rx_vect_mask[0];
|
|
|
|
return 0;
|
|
|
|
err_out:
|
|
netdev_err(alx->dev, "error allocating internal structures\n");
|
|
alx_free_napis(alx);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static const int txq_vec_mapping_shift[] = {
|
|
0, ALX_MSI_MAP_TBL1_TXQ0_SHIFT,
|
|
0, ALX_MSI_MAP_TBL1_TXQ1_SHIFT,
|
|
1, ALX_MSI_MAP_TBL2_TXQ2_SHIFT,
|
|
1, ALX_MSI_MAP_TBL2_TXQ3_SHIFT,
|
|
};
|
|
|
|
static void alx_config_vector_mapping(struct alx_priv *alx)
|
|
{
|
|
struct alx_hw *hw = &alx->hw;
|
|
u32 tbl[2] = {0, 0};
|
|
int i, vector, idx, shift;
|
|
|
|
if (alx->flags & ALX_FLAG_USING_MSIX) {
|
|
/* tx mappings */
|
|
for (i = 0, vector = 1; i < alx->num_txq; i++, vector++) {
|
|
idx = txq_vec_mapping_shift[i * 2];
|
|
shift = txq_vec_mapping_shift[i * 2 + 1];
|
|
tbl[idx] |= vector << shift;
|
|
}
|
|
|
|
/* rx mapping */
|
|
tbl[0] |= 1 << ALX_MSI_MAP_TBL1_RXQ0_SHIFT;
|
|
}
|
|
|
|
alx_write_mem32(hw, ALX_MSI_MAP_TBL1, tbl[0]);
|
|
alx_write_mem32(hw, ALX_MSI_MAP_TBL2, tbl[1]);
|
|
alx_write_mem32(hw, ALX_MSI_ID_MAP, 0);
|
|
}
|
|
|
|
static bool alx_enable_msix(struct alx_priv *alx)
|
|
{
|
|
int i, err, num_vec, num_txq, num_rxq;
|
|
|
|
num_txq = 1;
|
|
num_rxq = 1;
|
|
num_vec = max_t(int, num_txq, num_rxq) + 1;
|
|
|
|
alx->msix_entries = kcalloc(num_vec, sizeof(struct msix_entry),
|
|
GFP_KERNEL);
|
|
if (!alx->msix_entries) {
|
|
netdev_warn(alx->dev, "Allocation of msix entries failed!\n");
|
|
return false;
|
|
}
|
|
|
|
for (i = 0; i < num_vec; i++)
|
|
alx->msix_entries[i].entry = i;
|
|
|
|
err = pci_enable_msix(alx->hw.pdev, alx->msix_entries, num_vec);
|
|
if (err) {
|
|
kfree(alx->msix_entries);
|
|
netdev_warn(alx->dev, "Enabling MSI-X interrupts failed!\n");
|
|
return false;
|
|
}
|
|
|
|
alx->num_vec = num_vec;
|
|
alx->num_napi = num_vec - 1;
|
|
alx->num_txq = num_txq;
|
|
alx->num_rxq = num_rxq;
|
|
|
|
return true;
|
|
}
|
|
|
|
static int alx_request_msix(struct alx_priv *alx)
|
|
{
|
|
struct net_device *netdev = alx->dev;
|
|
int i, err, vector = 0, free_vector = 0;
|
|
|
|
err = request_irq(alx->msix_entries[0].vector, alx_intr_msix_misc,
|
|
0, netdev->name, alx);
|
|
if (err)
|
|
goto out_err;
|
|
|
|
for (i = 0; i < alx->num_napi; i++) {
|
|
struct alx_napi *np = alx->qnapi[i];
|
|
|
|
vector++;
|
|
|
|
if (np->txq && np->rxq)
|
|
sprintf(np->irq_lbl, "%s-TxRx-%u", netdev->name,
|
|
np->txq->queue_idx);
|
|
else if (np->txq)
|
|
sprintf(np->irq_lbl, "%s-tx-%u", netdev->name,
|
|
np->txq->queue_idx);
|
|
else if (np->rxq)
|
|
sprintf(np->irq_lbl, "%s-rx-%u", netdev->name,
|
|
np->rxq->queue_idx);
|
|
else
|
|
sprintf(np->irq_lbl, "%s-unused", netdev->name);
|
|
|
|
np->vec_idx = vector;
|
|
err = request_irq(alx->msix_entries[vector].vector,
|
|
alx_intr_msix_ring, 0, np->irq_lbl, np);
|
|
if (err)
|
|
goto out_free;
|
|
}
|
|
return 0;
|
|
|
|
out_free:
|
|
free_irq(alx->msix_entries[free_vector++].vector, alx);
|
|
|
|
vector--;
|
|
for (i = 0; i < vector; i++)
|
|
free_irq(alx->msix_entries[free_vector++].vector,
|
|
alx->qnapi[i]);
|
|
|
|
out_err:
|
|
return err;
|
|
}
|
|
|
|
static void alx_init_intr(struct alx_priv *alx, bool msix)
|
|
{
|
|
if (msix) {
|
|
if (alx_enable_msix(alx))
|
|
alx->flags |= ALX_FLAG_USING_MSIX;
|
|
}
|
|
|
|
if (!(alx->flags & ALX_FLAG_USING_MSIX)) {
|
|
alx->num_vec = 1;
|
|
alx->num_napi = 1;
|
|
alx->num_txq = 1;
|
|
alx->num_rxq = 1;
|
|
|
|
if (!pci_enable_msi(alx->hw.pdev))
|
|
alx->flags |= ALX_FLAG_USING_MSI;
|
|
}
|
|
}
|
|
|
|
static void alx_disable_advanced_intr(struct alx_priv *alx)
|
|
{
|
|
if (alx->flags & ALX_FLAG_USING_MSIX) {
|
|
kfree(alx->msix_entries);
|
|
pci_disable_msix(alx->hw.pdev);
|
|
alx->flags &= ~ALX_FLAG_USING_MSIX;
|
|
}
|
|
|
|
if (alx->flags & ALX_FLAG_USING_MSI) {
|
|
pci_disable_msi(alx->hw.pdev);
|
|
alx->flags &= ~ALX_FLAG_USING_MSI;
|
|
}
|
|
}
|
|
|
|
static void alx_irq_enable(struct alx_priv *alx)
|
|
{
|
|
struct alx_hw *hw = &alx->hw;
|
|
int i;
|
|
|
|
/* level-1 interrupt switch */
|
|
alx_write_mem32(hw, ALX_ISR, 0);
|
|
alx_write_mem32(hw, ALX_IMR, alx->int_mask);
|
|
alx_post_write(hw);
|
|
|
|
if (alx->flags & ALX_FLAG_USING_MSIX)
|
|
/* enable all msix irqs */
|
|
for (i = 0; i < alx->num_vec; i++)
|
|
alx_mask_msix(hw, i, false);
|
|
}
|
|
|
|
static void alx_irq_disable(struct alx_priv *alx)
|
|
{
|
|
struct alx_hw *hw = &alx->hw;
|
|
int i;
|
|
|
|
alx_write_mem32(hw, ALX_ISR, ALX_ISR_DIS);
|
|
alx_write_mem32(hw, ALX_IMR, 0);
|
|
alx_post_write(hw);
|
|
|
|
if (alx->flags & ALX_FLAG_USING_MSIX) {
|
|
for (i = 0; i < alx->num_vec; i++) {
|
|
alx_mask_msix(hw, i, true);
|
|
synchronize_irq(alx->msix_entries[i].vector);
|
|
}
|
|
} else {
|
|
synchronize_irq(alx->hw.pdev->irq);
|
|
}
|
|
}
|
|
|
|
static int alx_realloc_resources(struct alx_priv *alx)
|
|
{
|
|
int err;
|
|
|
|
alx_free_rings(alx);
|
|
alx_free_napis(alx);
|
|
alx_disable_advanced_intr(alx);
|
|
|
|
err = alx_alloc_napis(alx);
|
|
if (err)
|
|
return err;
|
|
|
|
err = alx_alloc_rings(alx);
|
|
if (err)
|
|
return err;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int alx_request_irq(struct alx_priv *alx)
|
|
{
|
|
struct pci_dev *pdev = alx->hw.pdev;
|
|
struct alx_hw *hw = &alx->hw;
|
|
int err;
|
|
u32 msi_ctrl;
|
|
|
|
msi_ctrl = (hw->imt >> 1) << ALX_MSI_RETRANS_TM_SHIFT;
|
|
|
|
if (alx->flags & ALX_FLAG_USING_MSIX) {
|
|
alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER, msi_ctrl);
|
|
err = alx_request_msix(alx);
|
|
if (!err)
|
|
goto out;
|
|
|
|
/* msix request failed, realloc resources */
|
|
err = alx_realloc_resources(alx);
|
|
if (err)
|
|
goto out;
|
|
}
|
|
|
|
if (alx->flags & ALX_FLAG_USING_MSI) {
|
|
alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER,
|
|
msi_ctrl | ALX_MSI_MASK_SEL_LINE);
|
|
err = request_irq(pdev->irq, alx_intr_msi, 0,
|
|
alx->dev->name, alx);
|
|
if (!err)
|
|
goto out;
|
|
/* fall back to legacy interrupt */
|
|
alx->flags &= ~ALX_FLAG_USING_MSI;
|
|
pci_disable_msi(alx->hw.pdev);
|
|
}
|
|
|
|
alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER, 0);
|
|
err = request_irq(pdev->irq, alx_intr_legacy, IRQF_SHARED,
|
|
alx->dev->name, alx);
|
|
out:
|
|
if (!err)
|
|
alx_config_vector_mapping(alx);
|
|
else
|
|
netdev_err(alx->dev, "IRQ registration failed!\n");
|
|
return err;
|
|
}
|
|
|
|
static void alx_free_irq(struct alx_priv *alx)
|
|
{
|
|
struct pci_dev *pdev = alx->hw.pdev;
|
|
int i, vector = 0;
|
|
|
|
if (alx->flags & ALX_FLAG_USING_MSIX) {
|
|
free_irq(alx->msix_entries[vector++].vector, alx);
|
|
for (i = 0; i < alx->num_napi; i++)
|
|
free_irq(alx->msix_entries[vector++].vector,
|
|
alx->qnapi[i]);
|
|
} else {
|
|
free_irq(pdev->irq, alx);
|
|
}
|
|
|
|
alx_disable_advanced_intr(alx);
|
|
}
|
|
|
|
static int alx_identify_hw(struct alx_priv *alx)
|
|
{
|
|
struct alx_hw *hw = &alx->hw;
|
|
int rev = alx_hw_revision(hw);
|
|
|
|
if (rev > ALX_REV_C0)
|
|
return -EINVAL;
|
|
|
|
hw->max_dma_chnl = rev >= ALX_REV_B0 ? 4 : 2;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int alx_init_sw(struct alx_priv *alx)
|
|
{
|
|
struct pci_dev *pdev = alx->hw.pdev;
|
|
struct alx_hw *hw = &alx->hw;
|
|
int err;
|
|
|
|
err = alx_identify_hw(alx);
|
|
if (err) {
|
|
dev_err(&pdev->dev, "unrecognized chip, aborting\n");
|
|
return err;
|
|
}
|
|
|
|
alx->hw.lnk_patch =
|
|
pdev->device == ALX_DEV_ID_AR8161 &&
|
|
pdev->subsystem_vendor == PCI_VENDOR_ID_ATTANSIC &&
|
|
pdev->subsystem_device == 0x0091 &&
|
|
pdev->revision == 0;
|
|
|
|
hw->smb_timer = 400;
|
|
hw->mtu = alx->dev->mtu;
|
|
alx->rxbuf_size = ALX_MAX_FRAME_LEN(hw->mtu);
|
|
/* MTU range: 34 - 9256 */
|
|
alx->dev->min_mtu = 34;
|
|
alx->dev->max_mtu = ALX_MAX_FRAME_LEN(ALX_MAX_FRAME_SIZE);
|
|
alx->tx_ringsz = 256;
|
|
alx->rx_ringsz = 512;
|
|
hw->imt = 200;
|
|
alx->int_mask = ALX_ISR_MISC;
|
|
hw->dma_chnl = hw->max_dma_chnl;
|
|
hw->ith_tpd = alx->tx_ringsz / 3;
|
|
hw->link_speed = SPEED_UNKNOWN;
|
|
hw->duplex = DUPLEX_UNKNOWN;
|
|
hw->adv_cfg = ADVERTISED_Autoneg |
|
|
ADVERTISED_10baseT_Half |
|
|
ADVERTISED_10baseT_Full |
|
|
ADVERTISED_100baseT_Full |
|
|
ADVERTISED_100baseT_Half |
|
|
ADVERTISED_1000baseT_Full;
|
|
hw->flowctrl = ALX_FC_ANEG | ALX_FC_RX | ALX_FC_TX;
|
|
|
|
hw->rx_ctrl = ALX_MAC_CTRL_WOLSPED_SWEN |
|
|
ALX_MAC_CTRL_MHASH_ALG_HI5B |
|
|
ALX_MAC_CTRL_BRD_EN |
|
|
ALX_MAC_CTRL_PCRCE |
|
|
ALX_MAC_CTRL_CRCE |
|
|
ALX_MAC_CTRL_RXFC_EN |
|
|
ALX_MAC_CTRL_TXFC_EN |
|
|
7 << ALX_MAC_CTRL_PRMBLEN_SHIFT;
|
|
|
|
return err;
|
|
}
|
|
|
|
|
|
static netdev_features_t alx_fix_features(struct net_device *netdev,
|
|
netdev_features_t features)
|
|
{
|
|
if (netdev->mtu > ALX_MAX_TSO_PKT_SIZE)
|
|
features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
|
|
|
|
return features;
|
|
}
|
|
|
|
static void alx_netif_stop(struct alx_priv *alx)
|
|
{
|
|
int i;
|
|
|
|
netif_trans_update(alx->dev);
|
|
if (netif_carrier_ok(alx->dev)) {
|
|
netif_carrier_off(alx->dev);
|
|
netif_tx_disable(alx->dev);
|
|
for (i = 0; i < alx->num_napi; i++)
|
|
napi_disable(&alx->qnapi[i]->napi);
|
|
}
|
|
}
|
|
|
|
static void alx_halt(struct alx_priv *alx)
|
|
{
|
|
struct alx_hw *hw = &alx->hw;
|
|
|
|
alx_netif_stop(alx);
|
|
hw->link_speed = SPEED_UNKNOWN;
|
|
hw->duplex = DUPLEX_UNKNOWN;
|
|
|
|
alx_reset_mac(hw);
|
|
|
|
/* disable l0s/l1 */
|
|
alx_enable_aspm(hw, false, false);
|
|
alx_irq_disable(alx);
|
|
alx_free_buffers(alx);
|
|
}
|
|
|
|
static void alx_configure(struct alx_priv *alx)
|
|
{
|
|
struct alx_hw *hw = &alx->hw;
|
|
|
|
alx_configure_basic(hw);
|
|
alx_disable_rss(hw);
|
|
__alx_set_rx_mode(alx->dev);
|
|
|
|
alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl);
|
|
}
|
|
|
|
static void alx_activate(struct alx_priv *alx)
|
|
{
|
|
/* hardware setting lost, restore it */
|
|
alx_reinit_rings(alx);
|
|
alx_configure(alx);
|
|
|
|
/* clear old interrupts */
|
|
alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS);
|
|
|
|
alx_irq_enable(alx);
|
|
|
|
alx_schedule_link_check(alx);
|
|
}
|
|
|
|
static void alx_reinit(struct alx_priv *alx)
|
|
{
|
|
ASSERT_RTNL();
|
|
|
|
alx_halt(alx);
|
|
alx_activate(alx);
|
|
}
|
|
|
|
static int alx_change_mtu(struct net_device *netdev, int mtu)
|
|
{
|
|
struct alx_priv *alx = netdev_priv(netdev);
|
|
int max_frame = ALX_MAX_FRAME_LEN(mtu);
|
|
|
|
netdev->mtu = mtu;
|
|
alx->hw.mtu = mtu;
|
|
alx->rxbuf_size = max(max_frame, ALX_DEF_RXBUF_SIZE);
|
|
netdev_update_features(netdev);
|
|
if (netif_running(netdev))
|
|
alx_reinit(alx);
|
|
return 0;
|
|
}
|
|
|
|
static void alx_netif_start(struct alx_priv *alx)
|
|
{
|
|
int i;
|
|
|
|
netif_tx_wake_all_queues(alx->dev);
|
|
for (i = 0; i < alx->num_napi; i++)
|
|
napi_enable(&alx->qnapi[i]->napi);
|
|
netif_carrier_on(alx->dev);
|
|
}
|
|
|
|
static int __alx_open(struct alx_priv *alx, bool resume)
|
|
{
|
|
int err;
|
|
|
|
alx_init_intr(alx, msix);
|
|
|
|
if (!resume)
|
|
netif_carrier_off(alx->dev);
|
|
|
|
err = alx_alloc_napis(alx);
|
|
if (err)
|
|
goto out_disable_adv_intr;
|
|
|
|
err = alx_alloc_rings(alx);
|
|
if (err)
|
|
goto out_free_rings;
|
|
|
|
alx_configure(alx);
|
|
|
|
err = alx_request_irq(alx);
|
|
if (err)
|
|
goto out_free_rings;
|
|
|
|
/* clear old interrupts */
|
|
alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS);
|
|
|
|
alx_irq_enable(alx);
|
|
|
|
if (!resume)
|
|
netif_tx_start_all_queues(alx->dev);
|
|
|
|
alx_schedule_link_check(alx);
|
|
return 0;
|
|
|
|
out_free_rings:
|
|
alx_free_rings(alx);
|
|
alx_free_napis(alx);
|
|
out_disable_adv_intr:
|
|
alx_disable_advanced_intr(alx);
|
|
return err;
|
|
}
|
|
|
|
static void __alx_stop(struct alx_priv *alx)
|
|
{
|
|
alx_halt(alx);
|
|
alx_free_irq(alx);
|
|
alx_free_rings(alx);
|
|
alx_free_napis(alx);
|
|
}
|
|
|
|
static const char *alx_speed_desc(struct alx_hw *hw)
|
|
{
|
|
switch (alx_speed_to_ethadv(hw->link_speed, hw->duplex)) {
|
|
case ADVERTISED_1000baseT_Full:
|
|
return "1 Gbps Full";
|
|
case ADVERTISED_100baseT_Full:
|
|
return "100 Mbps Full";
|
|
case ADVERTISED_100baseT_Half:
|
|
return "100 Mbps Half";
|
|
case ADVERTISED_10baseT_Full:
|
|
return "10 Mbps Full";
|
|
case ADVERTISED_10baseT_Half:
|
|
return "10 Mbps Half";
|
|
default:
|
|
return "Unknown speed";
|
|
}
|
|
}
|
|
|
|
static void alx_check_link(struct alx_priv *alx)
|
|
{
|
|
struct alx_hw *hw = &alx->hw;
|
|
unsigned long flags;
|
|
int old_speed;
|
|
u8 old_duplex;
|
|
int err;
|
|
|
|
/* clear PHY internal interrupt status, otherwise the main
|
|
* interrupt status will be asserted forever
|
|
*/
|
|
alx_clear_phy_intr(hw);
|
|
|
|
old_speed = hw->link_speed;
|
|
old_duplex = hw->duplex;
|
|
err = alx_read_phy_link(hw);
|
|
if (err < 0)
|
|
goto reset;
|
|
|
|
spin_lock_irqsave(&alx->irq_lock, flags);
|
|
alx->int_mask |= ALX_ISR_PHY;
|
|
alx_write_mem32(hw, ALX_IMR, alx->int_mask);
|
|
spin_unlock_irqrestore(&alx->irq_lock, flags);
|
|
|
|
if (old_speed == hw->link_speed)
|
|
return;
|
|
|
|
if (hw->link_speed != SPEED_UNKNOWN) {
|
|
netif_info(alx, link, alx->dev,
|
|
"NIC Up: %s\n", alx_speed_desc(hw));
|
|
alx_post_phy_link(hw);
|
|
alx_enable_aspm(hw, true, true);
|
|
alx_start_mac(hw);
|
|
|
|
if (old_speed == SPEED_UNKNOWN)
|
|
alx_netif_start(alx);
|
|
} else {
|
|
/* link is now down */
|
|
alx_netif_stop(alx);
|
|
netif_info(alx, link, alx->dev, "Link Down\n");
|
|
err = alx_reset_mac(hw);
|
|
if (err)
|
|
goto reset;
|
|
alx_irq_disable(alx);
|
|
|
|
/* MAC reset causes all HW settings to be lost, restore all */
|
|
err = alx_reinit_rings(alx);
|
|
if (err)
|
|
goto reset;
|
|
alx_configure(alx);
|
|
alx_enable_aspm(hw, false, true);
|
|
alx_post_phy_link(hw);
|
|
alx_irq_enable(alx);
|
|
}
|
|
|
|
return;
|
|
|
|
reset:
|
|
alx_schedule_reset(alx);
|
|
}
|
|
|
|
static int alx_open(struct net_device *netdev)
|
|
{
|
|
return __alx_open(netdev_priv(netdev), false);
|
|
}
|
|
|
|
static int alx_stop(struct net_device *netdev)
|
|
{
|
|
__alx_stop(netdev_priv(netdev));
|
|
return 0;
|
|
}
|
|
|
|
static void alx_link_check(struct work_struct *work)
|
|
{
|
|
struct alx_priv *alx;
|
|
|
|
alx = container_of(work, struct alx_priv, link_check_wk);
|
|
|
|
rtnl_lock();
|
|
alx_check_link(alx);
|
|
rtnl_unlock();
|
|
}
|
|
|
|
static void alx_reset(struct work_struct *work)
|
|
{
|
|
struct alx_priv *alx = container_of(work, struct alx_priv, reset_wk);
|
|
|
|
rtnl_lock();
|
|
alx_reinit(alx);
|
|
rtnl_unlock();
|
|
}
|
|
|
|
static int alx_tpd_req(struct sk_buff *skb)
|
|
{
|
|
int num;
|
|
|
|
num = skb_shinfo(skb)->nr_frags + 1;
|
|
/* we need one extra descriptor for LSOv2 */
|
|
if (skb_is_gso(skb) && skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6)
|
|
num++;
|
|
|
|
return num;
|
|
}
|
|
|
|
static int alx_tx_csum(struct sk_buff *skb, struct alx_txd *first)
|
|
{
|
|
u8 cso, css;
|
|
|
|
if (skb->ip_summed != CHECKSUM_PARTIAL)
|
|
return 0;
|
|
|
|
cso = skb_checksum_start_offset(skb);
|
|
if (cso & 1)
|
|
return -EINVAL;
|
|
|
|
css = cso + skb->csum_offset;
|
|
first->word1 |= cpu_to_le32((cso >> 1) << TPD_CXSUMSTART_SHIFT);
|
|
first->word1 |= cpu_to_le32((css >> 1) << TPD_CXSUMOFFSET_SHIFT);
|
|
first->word1 |= cpu_to_le32(1 << TPD_CXSUM_EN_SHIFT);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int alx_tso(struct sk_buff *skb, struct alx_txd *first)
|
|
{
|
|
int err;
|
|
|
|
if (skb->ip_summed != CHECKSUM_PARTIAL)
|
|
return 0;
|
|
|
|
if (!skb_is_gso(skb))
|
|
return 0;
|
|
|
|
err = skb_cow_head(skb, 0);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
if (skb->protocol == htons(ETH_P_IP)) {
|
|
struct iphdr *iph = ip_hdr(skb);
|
|
|
|
iph->check = 0;
|
|
tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
|
|
0, IPPROTO_TCP, 0);
|
|
first->word1 |= 1 << TPD_IPV4_SHIFT;
|
|
} else if (skb_is_gso_v6(skb)) {
|
|
ipv6_hdr(skb)->payload_len = 0;
|
|
tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
|
|
&ipv6_hdr(skb)->daddr,
|
|
0, IPPROTO_TCP, 0);
|
|
/* LSOv2: the first TPD only provides the packet length */
|
|
first->adrl.l.pkt_len = skb->len;
|
|
first->word1 |= 1 << TPD_LSO_V2_SHIFT;
|
|
}
|
|
|
|
first->word1 |= 1 << TPD_LSO_EN_SHIFT;
|
|
first->word1 |= (skb_transport_offset(skb) &
|
|
TPD_L4HDROFFSET_MASK) << TPD_L4HDROFFSET_SHIFT;
|
|
first->word1 |= (skb_shinfo(skb)->gso_size &
|
|
TPD_MSS_MASK) << TPD_MSS_SHIFT;
|
|
return 1;
|
|
}
|
|
|
|
static int alx_map_tx_skb(struct alx_tx_queue *txq, struct sk_buff *skb)
|
|
{
|
|
struct alx_txd *tpd, *first_tpd;
|
|
dma_addr_t dma;
|
|
int maplen, f, first_idx = txq->write_idx;
|
|
|
|
first_tpd = &txq->tpd[txq->write_idx];
|
|
tpd = first_tpd;
|
|
|
|
if (tpd->word1 & (1 << TPD_LSO_V2_SHIFT)) {
|
|
if (++txq->write_idx == txq->count)
|
|
txq->write_idx = 0;
|
|
|
|
tpd = &txq->tpd[txq->write_idx];
|
|
tpd->len = first_tpd->len;
|
|
tpd->vlan_tag = first_tpd->vlan_tag;
|
|
tpd->word1 = first_tpd->word1;
|
|
}
|
|
|
|
maplen = skb_headlen(skb);
|
|
dma = dma_map_single(txq->dev, skb->data, maplen,
|
|
DMA_TO_DEVICE);
|
|
if (dma_mapping_error(txq->dev, dma))
|
|
goto err_dma;
|
|
|
|
dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen);
|
|
dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma);
|
|
|
|
tpd->adrl.addr = cpu_to_le64(dma);
|
|
tpd->len = cpu_to_le16(maplen);
|
|
|
|
for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
|
|
struct skb_frag_struct *frag;
|
|
|
|
frag = &skb_shinfo(skb)->frags[f];
|
|
|
|
if (++txq->write_idx == txq->count)
|
|
txq->write_idx = 0;
|
|
tpd = &txq->tpd[txq->write_idx];
|
|
|
|
tpd->word1 = first_tpd->word1;
|
|
|
|
maplen = skb_frag_size(frag);
|
|
dma = skb_frag_dma_map(txq->dev, frag, 0,
|
|
maplen, DMA_TO_DEVICE);
|
|
if (dma_mapping_error(txq->dev, dma))
|
|
goto err_dma;
|
|
dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen);
|
|
dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma);
|
|
|
|
tpd->adrl.addr = cpu_to_le64(dma);
|
|
tpd->len = cpu_to_le16(maplen);
|
|
}
|
|
|
|
/* last TPD, set EOP flag and store skb */
|
|
tpd->word1 |= cpu_to_le32(1 << TPD_EOP_SHIFT);
|
|
txq->bufs[txq->write_idx].skb = skb;
|
|
|
|
if (++txq->write_idx == txq->count)
|
|
txq->write_idx = 0;
|
|
|
|
return 0;
|
|
|
|
err_dma:
|
|
f = first_idx;
|
|
while (f != txq->write_idx) {
|
|
alx_free_txbuf(txq, f);
|
|
if (++f == txq->count)
|
|
f = 0;
|
|
}
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static netdev_tx_t alx_start_xmit(struct sk_buff *skb,
|
|
struct net_device *netdev)
|
|
{
|
|
struct alx_priv *alx = netdev_priv(netdev);
|
|
struct alx_tx_queue *txq = alx->qnapi[0]->txq;
|
|
struct alx_txd *first;
|
|
int tso;
|
|
|
|
if (alx_tpd_avail(txq) < alx_tpd_req(skb)) {
|
|
netif_stop_queue(txq->netdev);
|
|
goto drop;
|
|
}
|
|
|
|
first = &txq->tpd[txq->write_idx];
|
|
memset(first, 0, sizeof(*first));
|
|
|
|
tso = alx_tso(skb, first);
|
|
if (tso < 0)
|
|
goto drop;
|
|
else if (!tso && alx_tx_csum(skb, first))
|
|
goto drop;
|
|
|
|
if (alx_map_tx_skb(txq, skb) < 0)
|
|
goto drop;
|
|
|
|
netdev_sent_queue(txq->netdev, skb->len);
|
|
|
|
/* flush updates before updating hardware */
|
|
wmb();
|
|
alx_write_mem16(&alx->hw, ALX_TPD_PRI0_PIDX, txq->write_idx);
|
|
|
|
if (alx_tpd_avail(txq) < txq->count / 8)
|
|
netif_stop_queue(txq->netdev);
|
|
|
|
return NETDEV_TX_OK;
|
|
|
|
drop:
|
|
dev_kfree_skb_any(skb);
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
static void alx_tx_timeout(struct net_device *dev)
|
|
{
|
|
struct alx_priv *alx = netdev_priv(dev);
|
|
|
|
alx_schedule_reset(alx);
|
|
}
|
|
|
|
static int alx_mdio_read(struct net_device *netdev,
|
|
int prtad, int devad, u16 addr)
|
|
{
|
|
struct alx_priv *alx = netdev_priv(netdev);
|
|
struct alx_hw *hw = &alx->hw;
|
|
u16 val;
|
|
int err;
|
|
|
|
if (prtad != hw->mdio.prtad)
|
|
return -EINVAL;
|
|
|
|
if (devad == MDIO_DEVAD_NONE)
|
|
err = alx_read_phy_reg(hw, addr, &val);
|
|
else
|
|
err = alx_read_phy_ext(hw, devad, addr, &val);
|
|
|
|
if (err)
|
|
return err;
|
|
return val;
|
|
}
|
|
|
|
static int alx_mdio_write(struct net_device *netdev,
|
|
int prtad, int devad, u16 addr, u16 val)
|
|
{
|
|
struct alx_priv *alx = netdev_priv(netdev);
|
|
struct alx_hw *hw = &alx->hw;
|
|
|
|
if (prtad != hw->mdio.prtad)
|
|
return -EINVAL;
|
|
|
|
if (devad == MDIO_DEVAD_NONE)
|
|
return alx_write_phy_reg(hw, addr, val);
|
|
|
|
return alx_write_phy_ext(hw, devad, addr, val);
|
|
}
|
|
|
|
static int alx_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
|
|
{
|
|
struct alx_priv *alx = netdev_priv(netdev);
|
|
|
|
if (!netif_running(netdev))
|
|
return -EAGAIN;
|
|
|
|
return mdio_mii_ioctl(&alx->hw.mdio, if_mii(ifr), cmd);
|
|
}
|
|
|
|
#ifdef CONFIG_NET_POLL_CONTROLLER
|
|
static void alx_poll_controller(struct net_device *netdev)
|
|
{
|
|
struct alx_priv *alx = netdev_priv(netdev);
|
|
int i;
|
|
|
|
if (alx->flags & ALX_FLAG_USING_MSIX) {
|
|
alx_intr_msix_misc(0, alx);
|
|
for (i = 0; i < alx->num_txq; i++)
|
|
alx_intr_msix_ring(0, alx->qnapi[i]);
|
|
} else if (alx->flags & ALX_FLAG_USING_MSI)
|
|
alx_intr_msi(0, alx);
|
|
else
|
|
alx_intr_legacy(0, alx);
|
|
}
|
|
#endif
|
|
|
|
static struct rtnl_link_stats64 *alx_get_stats64(struct net_device *dev,
|
|
struct rtnl_link_stats64 *net_stats)
|
|
{
|
|
struct alx_priv *alx = netdev_priv(dev);
|
|
struct alx_hw_stats *hw_stats = &alx->hw.stats;
|
|
|
|
spin_lock(&alx->stats_lock);
|
|
|
|
alx_update_hw_stats(&alx->hw);
|
|
|
|
net_stats->tx_bytes = hw_stats->tx_byte_cnt;
|
|
net_stats->rx_bytes = hw_stats->rx_byte_cnt;
|
|
net_stats->multicast = hw_stats->rx_mcast;
|
|
net_stats->collisions = hw_stats->tx_single_col +
|
|
hw_stats->tx_multi_col +
|
|
hw_stats->tx_late_col +
|
|
hw_stats->tx_abort_col;
|
|
|
|
net_stats->rx_errors = hw_stats->rx_frag +
|
|
hw_stats->rx_fcs_err +
|
|
hw_stats->rx_len_err +
|
|
hw_stats->rx_ov_sz +
|
|
hw_stats->rx_ov_rrd +
|
|
hw_stats->rx_align_err +
|
|
hw_stats->rx_ov_rxf;
|
|
|
|
net_stats->rx_fifo_errors = hw_stats->rx_ov_rxf;
|
|
net_stats->rx_length_errors = hw_stats->rx_len_err;
|
|
net_stats->rx_crc_errors = hw_stats->rx_fcs_err;
|
|
net_stats->rx_frame_errors = hw_stats->rx_align_err;
|
|
net_stats->rx_dropped = hw_stats->rx_ov_rrd;
|
|
|
|
net_stats->tx_errors = hw_stats->tx_late_col +
|
|
hw_stats->tx_abort_col +
|
|
hw_stats->tx_underrun +
|
|
hw_stats->tx_trunc;
|
|
|
|
net_stats->tx_aborted_errors = hw_stats->tx_abort_col;
|
|
net_stats->tx_fifo_errors = hw_stats->tx_underrun;
|
|
net_stats->tx_window_errors = hw_stats->tx_late_col;
|
|
|
|
net_stats->tx_packets = hw_stats->tx_ok + net_stats->tx_errors;
|
|
net_stats->rx_packets = hw_stats->rx_ok + net_stats->rx_errors;
|
|
|
|
spin_unlock(&alx->stats_lock);
|
|
|
|
return net_stats;
|
|
}
|
|
|
|
static const struct net_device_ops alx_netdev_ops = {
|
|
.ndo_open = alx_open,
|
|
.ndo_stop = alx_stop,
|
|
.ndo_start_xmit = alx_start_xmit,
|
|
.ndo_get_stats64 = alx_get_stats64,
|
|
.ndo_set_rx_mode = alx_set_rx_mode,
|
|
.ndo_validate_addr = eth_validate_addr,
|
|
.ndo_set_mac_address = alx_set_mac_address,
|
|
.ndo_change_mtu = alx_change_mtu,
|
|
.ndo_do_ioctl = alx_ioctl,
|
|
.ndo_tx_timeout = alx_tx_timeout,
|
|
.ndo_fix_features = alx_fix_features,
|
|
#ifdef CONFIG_NET_POLL_CONTROLLER
|
|
.ndo_poll_controller = alx_poll_controller,
|
|
#endif
|
|
};
|
|
|
|
static int alx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
|
|
{
|
|
struct net_device *netdev;
|
|
struct alx_priv *alx;
|
|
struct alx_hw *hw;
|
|
bool phy_configured;
|
|
int err;
|
|
|
|
err = pci_enable_device_mem(pdev);
|
|
if (err)
|
|
return err;
|
|
|
|
/* The alx chip can DMA to 64-bit addresses, but it uses a single
|
|
* shared register for the high 32 bits, so only a single, aligned,
|
|
* 4 GB physical address range can be used for descriptors.
|
|
*/
|
|
if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
|
|
dev_dbg(&pdev->dev, "DMA to 64-BIT addresses\n");
|
|
} else {
|
|
err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
|
|
if (err) {
|
|
dev_err(&pdev->dev, "No usable DMA config, aborting\n");
|
|
goto out_pci_disable;
|
|
}
|
|
}
|
|
|
|
err = pci_request_mem_regions(pdev, alx_drv_name);
|
|
if (err) {
|
|
dev_err(&pdev->dev,
|
|
"pci_request_mem_regions failed\n");
|
|
goto out_pci_disable;
|
|
}
|
|
|
|
pci_enable_pcie_error_reporting(pdev);
|
|
pci_set_master(pdev);
|
|
|
|
if (!pdev->pm_cap) {
|
|
dev_err(&pdev->dev,
|
|
"Can't find power management capability, aborting\n");
|
|
err = -EIO;
|
|
goto out_pci_release;
|
|
}
|
|
|
|
netdev = alloc_etherdev(sizeof(*alx));
|
|
if (!netdev) {
|
|
err = -ENOMEM;
|
|
goto out_pci_release;
|
|
}
|
|
|
|
SET_NETDEV_DEV(netdev, &pdev->dev);
|
|
alx = netdev_priv(netdev);
|
|
spin_lock_init(&alx->hw.mdio_lock);
|
|
spin_lock_init(&alx->irq_lock);
|
|
spin_lock_init(&alx->stats_lock);
|
|
alx->dev = netdev;
|
|
alx->hw.pdev = pdev;
|
|
alx->msg_enable = NETIF_MSG_LINK | NETIF_MSG_HW | NETIF_MSG_IFUP |
|
|
NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR | NETIF_MSG_WOL;
|
|
hw = &alx->hw;
|
|
pci_set_drvdata(pdev, alx);
|
|
|
|
hw->hw_addr = pci_ioremap_bar(pdev, 0);
|
|
if (!hw->hw_addr) {
|
|
dev_err(&pdev->dev, "cannot map device registers\n");
|
|
err = -EIO;
|
|
goto out_free_netdev;
|
|
}
|
|
|
|
netdev->netdev_ops = &alx_netdev_ops;
|
|
netdev->ethtool_ops = &alx_ethtool_ops;
|
|
netdev->irq = pdev->irq;
|
|
netdev->watchdog_timeo = ALX_WATCHDOG_TIME;
|
|
|
|
if (ent->driver_data & ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG)
|
|
pdev->dev_flags |= PCI_DEV_FLAGS_MSI_INTX_DISABLE_BUG;
|
|
|
|
err = alx_init_sw(alx);
|
|
if (err) {
|
|
dev_err(&pdev->dev, "net device private data init failed\n");
|
|
goto out_unmap;
|
|
}
|
|
|
|
alx_reset_pcie(hw);
|
|
|
|
phy_configured = alx_phy_configured(hw);
|
|
|
|
if (!phy_configured)
|
|
alx_reset_phy(hw);
|
|
|
|
err = alx_reset_mac(hw);
|
|
if (err) {
|
|
dev_err(&pdev->dev, "MAC Reset failed, error = %d\n", err);
|
|
goto out_unmap;
|
|
}
|
|
|
|
/* setup link to put it in a known good starting state */
|
|
if (!phy_configured) {
|
|
err = alx_setup_speed_duplex(hw, hw->adv_cfg, hw->flowctrl);
|
|
if (err) {
|
|
dev_err(&pdev->dev,
|
|
"failed to configure PHY speed/duplex (err=%d)\n",
|
|
err);
|
|
goto out_unmap;
|
|
}
|
|
}
|
|
|
|
netdev->hw_features = NETIF_F_SG |
|
|
NETIF_F_HW_CSUM |
|
|
NETIF_F_TSO |
|
|
NETIF_F_TSO6;
|
|
|
|
if (alx_get_perm_macaddr(hw, hw->perm_addr)) {
|
|
dev_warn(&pdev->dev,
|
|
"Invalid permanent address programmed, using random one\n");
|
|
eth_hw_addr_random(netdev);
|
|
memcpy(hw->perm_addr, netdev->dev_addr, netdev->addr_len);
|
|
}
|
|
|
|
memcpy(hw->mac_addr, hw->perm_addr, ETH_ALEN);
|
|
memcpy(netdev->dev_addr, hw->mac_addr, ETH_ALEN);
|
|
memcpy(netdev->perm_addr, hw->perm_addr, ETH_ALEN);
|
|
|
|
hw->mdio.prtad = 0;
|
|
hw->mdio.mmds = 0;
|
|
hw->mdio.dev = netdev;
|
|
hw->mdio.mode_support = MDIO_SUPPORTS_C45 |
|
|
MDIO_SUPPORTS_C22 |
|
|
MDIO_EMULATE_C22;
|
|
hw->mdio.mdio_read = alx_mdio_read;
|
|
hw->mdio.mdio_write = alx_mdio_write;
|
|
|
|
if (!alx_get_phy_info(hw)) {
|
|
dev_err(&pdev->dev, "failed to identify PHY\n");
|
|
err = -EIO;
|
|
goto out_unmap;
|
|
}
|
|
|
|
INIT_WORK(&alx->link_check_wk, alx_link_check);
|
|
INIT_WORK(&alx->reset_wk, alx_reset);
|
|
netif_carrier_off(netdev);
|
|
|
|
err = register_netdev(netdev);
|
|
if (err) {
|
|
dev_err(&pdev->dev, "register netdevice failed\n");
|
|
goto out_unmap;
|
|
}
|
|
|
|
netdev_info(netdev,
|
|
"Qualcomm Atheros AR816x/AR817x Ethernet [%pM]\n",
|
|
netdev->dev_addr);
|
|
|
|
return 0;
|
|
|
|
out_unmap:
|
|
iounmap(hw->hw_addr);
|
|
out_free_netdev:
|
|
free_netdev(netdev);
|
|
out_pci_release:
|
|
pci_release_mem_regions(pdev);
|
|
out_pci_disable:
|
|
pci_disable_device(pdev);
|
|
return err;
|
|
}
|
|
|
|
static void alx_remove(struct pci_dev *pdev)
|
|
{
|
|
struct alx_priv *alx = pci_get_drvdata(pdev);
|
|
struct alx_hw *hw = &alx->hw;
|
|
|
|
cancel_work_sync(&alx->link_check_wk);
|
|
cancel_work_sync(&alx->reset_wk);
|
|
|
|
/* restore permanent mac address */
|
|
alx_set_macaddr(hw, hw->perm_addr);
|
|
|
|
unregister_netdev(alx->dev);
|
|
iounmap(hw->hw_addr);
|
|
pci_release_mem_regions(pdev);
|
|
|
|
pci_disable_pcie_error_reporting(pdev);
|
|
pci_disable_device(pdev);
|
|
|
|
free_netdev(alx->dev);
|
|
}
|
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
static int alx_suspend(struct device *dev)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
struct alx_priv *alx = pci_get_drvdata(pdev);
|
|
|
|
if (!netif_running(alx->dev))
|
|
return 0;
|
|
netif_device_detach(alx->dev);
|
|
__alx_stop(alx);
|
|
return 0;
|
|
}
|
|
|
|
static int alx_resume(struct device *dev)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
struct alx_priv *alx = pci_get_drvdata(pdev);
|
|
struct alx_hw *hw = &alx->hw;
|
|
|
|
alx_reset_phy(hw);
|
|
|
|
if (!netif_running(alx->dev))
|
|
return 0;
|
|
netif_device_attach(alx->dev);
|
|
return __alx_open(alx, true);
|
|
}
|
|
|
|
static SIMPLE_DEV_PM_OPS(alx_pm_ops, alx_suspend, alx_resume);
|
|
#define ALX_PM_OPS (&alx_pm_ops)
|
|
#else
|
|
#define ALX_PM_OPS NULL
|
|
#endif
|
|
|
|
|
|
static pci_ers_result_t alx_pci_error_detected(struct pci_dev *pdev,
|
|
pci_channel_state_t state)
|
|
{
|
|
struct alx_priv *alx = pci_get_drvdata(pdev);
|
|
struct net_device *netdev = alx->dev;
|
|
pci_ers_result_t rc = PCI_ERS_RESULT_NEED_RESET;
|
|
|
|
dev_info(&pdev->dev, "pci error detected\n");
|
|
|
|
rtnl_lock();
|
|
|
|
if (netif_running(netdev)) {
|
|
netif_device_detach(netdev);
|
|
alx_halt(alx);
|
|
}
|
|
|
|
if (state == pci_channel_io_perm_failure)
|
|
rc = PCI_ERS_RESULT_DISCONNECT;
|
|
else
|
|
pci_disable_device(pdev);
|
|
|
|
rtnl_unlock();
|
|
|
|
return rc;
|
|
}
|
|
|
|
static pci_ers_result_t alx_pci_error_slot_reset(struct pci_dev *pdev)
|
|
{
|
|
struct alx_priv *alx = pci_get_drvdata(pdev);
|
|
struct alx_hw *hw = &alx->hw;
|
|
pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
|
|
|
|
dev_info(&pdev->dev, "pci error slot reset\n");
|
|
|
|
rtnl_lock();
|
|
|
|
if (pci_enable_device(pdev)) {
|
|
dev_err(&pdev->dev, "Failed to re-enable PCI device after reset\n");
|
|
goto out;
|
|
}
|
|
|
|
pci_set_master(pdev);
|
|
|
|
alx_reset_pcie(hw);
|
|
if (!alx_reset_mac(hw))
|
|
rc = PCI_ERS_RESULT_RECOVERED;
|
|
out:
|
|
pci_cleanup_aer_uncorrect_error_status(pdev);
|
|
|
|
rtnl_unlock();
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void alx_pci_error_resume(struct pci_dev *pdev)
|
|
{
|
|
struct alx_priv *alx = pci_get_drvdata(pdev);
|
|
struct net_device *netdev = alx->dev;
|
|
|
|
dev_info(&pdev->dev, "pci error resume\n");
|
|
|
|
rtnl_lock();
|
|
|
|
if (netif_running(netdev)) {
|
|
alx_activate(alx);
|
|
netif_device_attach(netdev);
|
|
}
|
|
|
|
rtnl_unlock();
|
|
}
|
|
|
|
static const struct pci_error_handlers alx_err_handlers = {
|
|
.error_detected = alx_pci_error_detected,
|
|
.slot_reset = alx_pci_error_slot_reset,
|
|
.resume = alx_pci_error_resume,
|
|
};
|
|
|
|
static const struct pci_device_id alx_pci_tbl[] = {
|
|
{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8161),
|
|
.driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
|
|
{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2200),
|
|
.driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
|
|
{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2400),
|
|
.driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
|
|
{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2500),
|
|
.driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
|
|
{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8162),
|
|
.driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
|
|
{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8171) },
|
|
{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8172) },
|
|
{}
|
|
};
|
|
|
|
static struct pci_driver alx_driver = {
|
|
.name = alx_drv_name,
|
|
.id_table = alx_pci_tbl,
|
|
.probe = alx_probe,
|
|
.remove = alx_remove,
|
|
.err_handler = &alx_err_handlers,
|
|
.driver.pm = ALX_PM_OPS,
|
|
};
|
|
|
|
module_pci_driver(alx_driver);
|
|
MODULE_DEVICE_TABLE(pci, alx_pci_tbl);
|
|
MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
|
|
MODULE_AUTHOR("Qualcomm Corporation, <nic-devel@qualcomm.com>");
|
|
MODULE_DESCRIPTION(
|
|
"Qualcomm Atheros(R) AR816x/AR817x PCI-E Ethernet Network Driver");
|
|
MODULE_LICENSE("GPL");
|