linux/drivers/mmc/host/meson-gx-mmc.c

854 lines
22 KiB
C

/*
* Amlogic SD/eMMC driver for the GX/S905 family SoCs
*
* Copyright (c) 2016 BayLibre, SAS.
* Author: Kevin Hilman <khilman@baylibre.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
* The full GNU General Public License is included in this distribution
* in the file called COPYING.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/ioport.h>
#include <linux/spinlock.h>
#include <linux/dma-mapping.h>
#include <linux/mmc/host.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/sdio.h>
#include <linux/mmc/slot-gpio.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/regulator/consumer.h>
#define DRIVER_NAME "meson-gx-mmc"
#define SD_EMMC_CLOCK 0x0
#define CLK_DIV_SHIFT 0
#define CLK_DIV_WIDTH 6
#define CLK_DIV_MASK 0x3f
#define CLK_DIV_MAX 63
#define CLK_SRC_SHIFT 6
#define CLK_SRC_WIDTH 2
#define CLK_SRC_MASK 0x3
#define CLK_SRC_XTAL 0 /* external crystal */
#define CLK_SRC_XTAL_RATE 24000000
#define CLK_SRC_PLL 1 /* FCLK_DIV2 */
#define CLK_SRC_PLL_RATE 1000000000
#define CLK_PHASE_SHIFT 8
#define CLK_PHASE_MASK 0x3
#define CLK_PHASE_0 0
#define CLK_PHASE_90 1
#define CLK_PHASE_180 2
#define CLK_PHASE_270 3
#define CLK_ALWAYS_ON BIT(24)
#define SD_EMMC_DElAY 0x4
#define SD_EMMC_ADJUST 0x8
#define SD_EMMC_CALOUT 0x10
#define SD_EMMC_START 0x40
#define START_DESC_INIT BIT(0)
#define START_DESC_BUSY BIT(1)
#define START_DESC_ADDR_SHIFT 2
#define START_DESC_ADDR_MASK (~0x3)
#define SD_EMMC_CFG 0x44
#define CFG_BUS_WIDTH_SHIFT 0
#define CFG_BUS_WIDTH_MASK 0x3
#define CFG_BUS_WIDTH_1 0x0
#define CFG_BUS_WIDTH_4 0x1
#define CFG_BUS_WIDTH_8 0x2
#define CFG_DDR BIT(2)
#define CFG_BLK_LEN_SHIFT 4
#define CFG_BLK_LEN_MASK 0xf
#define CFG_RESP_TIMEOUT_SHIFT 8
#define CFG_RESP_TIMEOUT_MASK 0xf
#define CFG_RC_CC_SHIFT 12
#define CFG_RC_CC_MASK 0xf
#define CFG_STOP_CLOCK BIT(22)
#define CFG_CLK_ALWAYS_ON BIT(18)
#define CFG_AUTO_CLK BIT(23)
#define SD_EMMC_STATUS 0x48
#define STATUS_BUSY BIT(31)
#define SD_EMMC_IRQ_EN 0x4c
#define IRQ_EN_MASK 0x3fff
#define IRQ_RXD_ERR_SHIFT 0
#define IRQ_RXD_ERR_MASK 0xff
#define IRQ_TXD_ERR BIT(8)
#define IRQ_DESC_ERR BIT(9)
#define IRQ_RESP_ERR BIT(10)
#define IRQ_RESP_TIMEOUT BIT(11)
#define IRQ_DESC_TIMEOUT BIT(12)
#define IRQ_END_OF_CHAIN BIT(13)
#define IRQ_RESP_STATUS BIT(14)
#define IRQ_SDIO BIT(15)
#define SD_EMMC_CMD_CFG 0x50
#define SD_EMMC_CMD_ARG 0x54
#define SD_EMMC_CMD_DAT 0x58
#define SD_EMMC_CMD_RSP 0x5c
#define SD_EMMC_CMD_RSP1 0x60
#define SD_EMMC_CMD_RSP2 0x64
#define SD_EMMC_CMD_RSP3 0x68
#define SD_EMMC_RXD 0x94
#define SD_EMMC_TXD 0x94
#define SD_EMMC_LAST_REG SD_EMMC_TXD
#define SD_EMMC_CFG_BLK_SIZE 512 /* internal buffer max: 512 bytes */
#define SD_EMMC_CFG_RESP_TIMEOUT 256 /* in clock cycles */
#define SD_EMMC_CFG_CMD_GAP 16 /* in clock cycles */
#define MUX_CLK_NUM_PARENTS 2
struct meson_host {
struct device *dev;
struct mmc_host *mmc;
struct mmc_request *mrq;
struct mmc_command *cmd;
spinlock_t lock;
void __iomem *regs;
int irq;
u32 ocr_mask;
struct clk *core_clk;
struct clk_mux mux;
struct clk *mux_clk;
struct clk *mux_parent[MUX_CLK_NUM_PARENTS];
unsigned long mux_parent_rate[MUX_CLK_NUM_PARENTS];
struct clk_divider cfg_div;
struct clk *cfg_div_clk;
unsigned int bounce_buf_size;
void *bounce_buf;
dma_addr_t bounce_dma_addr;
bool vqmmc_enabled;
};
struct sd_emmc_desc {
u32 cmd_cfg;
u32 cmd_arg;
u32 cmd_data;
u32 cmd_resp;
};
#define CMD_CFG_LENGTH_SHIFT 0
#define CMD_CFG_LENGTH_MASK 0x1ff
#define CMD_CFG_BLOCK_MODE BIT(9)
#define CMD_CFG_R1B BIT(10)
#define CMD_CFG_END_OF_CHAIN BIT(11)
#define CMD_CFG_TIMEOUT_SHIFT 12
#define CMD_CFG_TIMEOUT_MASK 0xf
#define CMD_CFG_NO_RESP BIT(16)
#define CMD_CFG_NO_CMD BIT(17)
#define CMD_CFG_DATA_IO BIT(18)
#define CMD_CFG_DATA_WR BIT(19)
#define CMD_CFG_RESP_NOCRC BIT(20)
#define CMD_CFG_RESP_128 BIT(21)
#define CMD_CFG_RESP_NUM BIT(22)
#define CMD_CFG_DATA_NUM BIT(23)
#define CMD_CFG_CMD_INDEX_SHIFT 24
#define CMD_CFG_CMD_INDEX_MASK 0x3f
#define CMD_CFG_ERROR BIT(30)
#define CMD_CFG_OWNER BIT(31)
#define CMD_DATA_MASK (~0x3)
#define CMD_DATA_BIG_ENDIAN BIT(1)
#define CMD_DATA_SRAM BIT(0)
#define CMD_RESP_MASK (~0x1)
#define CMD_RESP_SRAM BIT(0)
static int meson_mmc_clk_set(struct meson_host *host, unsigned long clk_rate)
{
struct mmc_host *mmc = host->mmc;
int ret = 0;
u32 cfg;
if (clk_rate) {
if (WARN_ON(clk_rate > mmc->f_max))
clk_rate = mmc->f_max;
else if (WARN_ON(clk_rate < mmc->f_min))
clk_rate = mmc->f_min;
}
if (clk_rate == mmc->actual_clock)
return 0;
/* stop clock */
cfg = readl(host->regs + SD_EMMC_CFG);
if (!(cfg & CFG_STOP_CLOCK)) {
cfg |= CFG_STOP_CLOCK;
writel(cfg, host->regs + SD_EMMC_CFG);
}
dev_dbg(host->dev, "change clock rate %u -> %lu\n",
mmc->actual_clock, clk_rate);
if (clk_rate == 0) {
mmc->actual_clock = 0;
return 0;
}
ret = clk_set_rate(host->cfg_div_clk, clk_rate);
if (ret)
dev_warn(host->dev, "Unable to set cfg_div_clk to %lu. ret=%d\n",
clk_rate, ret);
else if (clk_rate && clk_rate != clk_get_rate(host->cfg_div_clk))
dev_warn(host->dev, "divider requested rate %lu != actual rate %lu: ret=%d\n",
clk_rate, clk_get_rate(host->cfg_div_clk), ret);
else
mmc->actual_clock = clk_rate;
/* (re)start clock, if non-zero */
if (!ret && clk_rate) {
cfg = readl(host->regs + SD_EMMC_CFG);
cfg &= ~CFG_STOP_CLOCK;
writel(cfg, host->regs + SD_EMMC_CFG);
}
return ret;
}
/*
* The SD/eMMC IP block has an internal mux and divider used for
* generating the MMC clock. Use the clock framework to create and
* manage these clocks.
*/
static int meson_mmc_clk_init(struct meson_host *host)
{
struct clk_init_data init;
char clk_name[32];
int i, ret = 0;
const char *mux_parent_names[MUX_CLK_NUM_PARENTS];
unsigned int mux_parent_count = 0;
const char *clk_div_parents[1];
unsigned int f_min = UINT_MAX;
u32 clk_reg, cfg;
/* get the mux parents */
for (i = 0; i < MUX_CLK_NUM_PARENTS; i++) {
char name[16];
snprintf(name, sizeof(name), "clkin%d", i);
host->mux_parent[i] = devm_clk_get(host->dev, name);
if (IS_ERR(host->mux_parent[i])) {
ret = PTR_ERR(host->mux_parent[i]);
if (PTR_ERR(host->mux_parent[i]) != -EPROBE_DEFER)
dev_err(host->dev, "Missing clock %s\n", name);
host->mux_parent[i] = NULL;
return ret;
}
host->mux_parent_rate[i] = clk_get_rate(host->mux_parent[i]);
mux_parent_names[i] = __clk_get_name(host->mux_parent[i]);
mux_parent_count++;
if (host->mux_parent_rate[i] < f_min)
f_min = host->mux_parent_rate[i];
}
/* cacluate f_min based on input clocks, and max divider value */
if (f_min != UINT_MAX)
f_min = DIV_ROUND_UP(CLK_SRC_XTAL_RATE, CLK_DIV_MAX);
else
f_min = 4000000; /* default min: 400 MHz */
host->mmc->f_min = f_min;
/* create the mux */
snprintf(clk_name, sizeof(clk_name), "%s#mux", dev_name(host->dev));
init.name = clk_name;
init.ops = &clk_mux_ops;
init.flags = 0;
init.parent_names = mux_parent_names;
init.num_parents = mux_parent_count;
host->mux.reg = host->regs + SD_EMMC_CLOCK;
host->mux.shift = CLK_SRC_SHIFT;
host->mux.mask = CLK_SRC_MASK;
host->mux.flags = 0;
host->mux.table = NULL;
host->mux.hw.init = &init;
host->mux_clk = devm_clk_register(host->dev, &host->mux.hw);
if (WARN_ON(IS_ERR(host->mux_clk)))
return PTR_ERR(host->mux_clk);
/* create the divider */
snprintf(clk_name, sizeof(clk_name), "%s#div", dev_name(host->dev));
init.name = devm_kstrdup(host->dev, clk_name, GFP_KERNEL);
init.ops = &clk_divider_ops;
init.flags = CLK_SET_RATE_PARENT;
clk_div_parents[0] = __clk_get_name(host->mux_clk);
init.parent_names = clk_div_parents;
init.num_parents = ARRAY_SIZE(clk_div_parents);
host->cfg_div.reg = host->regs + SD_EMMC_CLOCK;
host->cfg_div.shift = CLK_DIV_SHIFT;
host->cfg_div.width = CLK_DIV_WIDTH;
host->cfg_div.hw.init = &init;
host->cfg_div.flags = CLK_DIVIDER_ONE_BASED |
CLK_DIVIDER_ROUND_CLOSEST | CLK_DIVIDER_ALLOW_ZERO;
host->cfg_div_clk = devm_clk_register(host->dev, &host->cfg_div.hw);
if (WARN_ON(PTR_ERR_OR_ZERO(host->cfg_div_clk)))
return PTR_ERR(host->cfg_div_clk);
/* init SD_EMMC_CLOCK to sane defaults w/min clock rate */
clk_reg = 0;
clk_reg |= CLK_PHASE_180 << CLK_PHASE_SHIFT;
clk_reg |= CLK_SRC_XTAL << CLK_SRC_SHIFT;
clk_reg |= CLK_DIV_MAX << CLK_DIV_SHIFT;
clk_reg &= ~CLK_ALWAYS_ON;
writel(clk_reg, host->regs + SD_EMMC_CLOCK);
/* Ensure clock starts in "auto" mode, not "always on" */
cfg = readl(host->regs + SD_EMMC_CFG);
cfg &= ~CFG_CLK_ALWAYS_ON;
cfg |= CFG_AUTO_CLK;
writel(cfg, host->regs + SD_EMMC_CFG);
ret = clk_prepare_enable(host->cfg_div_clk);
if (!ret)
ret = meson_mmc_clk_set(host, f_min);
if (!ret)
clk_disable_unprepare(host->cfg_div_clk);
return ret;
}
static void meson_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct meson_host *host = mmc_priv(mmc);
u32 bus_width;
u32 val, orig;
/*
* GPIO regulator, only controls switching between 1v8 and
* 3v3, doesn't support MMC_POWER_OFF, MMC_POWER_ON.
*/
switch (ios->power_mode) {
case MMC_POWER_OFF:
if (!IS_ERR(mmc->supply.vmmc))
mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
regulator_disable(mmc->supply.vqmmc);
host->vqmmc_enabled = false;
}
break;
case MMC_POWER_UP:
if (!IS_ERR(mmc->supply.vmmc))
mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
break;
case MMC_POWER_ON:
if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
int ret = regulator_enable(mmc->supply.vqmmc);
if (ret < 0)
dev_err(mmc_dev(mmc),
"failed to enable vqmmc regulator\n");
else
host->vqmmc_enabled = true;
}
break;
}
meson_mmc_clk_set(host, ios->clock);
/* Bus width */
val = readl(host->regs + SD_EMMC_CFG);
switch (ios->bus_width) {
case MMC_BUS_WIDTH_1:
bus_width = CFG_BUS_WIDTH_1;
break;
case MMC_BUS_WIDTH_4:
bus_width = CFG_BUS_WIDTH_4;
break;
case MMC_BUS_WIDTH_8:
bus_width = CFG_BUS_WIDTH_8;
break;
default:
dev_err(host->dev, "Invalid ios->bus_width: %u. Setting to 4.\n",
ios->bus_width);
bus_width = CFG_BUS_WIDTH_4;
return;
}
val = readl(host->regs + SD_EMMC_CFG);
orig = val;
val &= ~(CFG_BUS_WIDTH_MASK << CFG_BUS_WIDTH_SHIFT);
val |= bus_width << CFG_BUS_WIDTH_SHIFT;
val &= ~(CFG_BLK_LEN_MASK << CFG_BLK_LEN_SHIFT);
val |= ilog2(SD_EMMC_CFG_BLK_SIZE) << CFG_BLK_LEN_SHIFT;
val &= ~(CFG_RESP_TIMEOUT_MASK << CFG_RESP_TIMEOUT_SHIFT);
val |= ilog2(SD_EMMC_CFG_RESP_TIMEOUT) << CFG_RESP_TIMEOUT_SHIFT;
val &= ~(CFG_RC_CC_MASK << CFG_RC_CC_SHIFT);
val |= ilog2(SD_EMMC_CFG_CMD_GAP) << CFG_RC_CC_SHIFT;
writel(val, host->regs + SD_EMMC_CFG);
if (val != orig)
dev_dbg(host->dev, "%s: SD_EMMC_CFG: 0x%08x -> 0x%08x\n",
__func__, orig, val);
}
static int meson_mmc_request_done(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct meson_host *host = mmc_priv(mmc);
WARN_ON(host->mrq != mrq);
host->mrq = NULL;
host->cmd = NULL;
mmc_request_done(host->mmc, mrq);
return 0;
}
static void meson_mmc_start_cmd(struct mmc_host *mmc, struct mmc_command *cmd)
{
struct meson_host *host = mmc_priv(mmc);
struct sd_emmc_desc *desc, desc_tmp;
u32 cfg;
u8 blk_len, cmd_cfg_timeout;
unsigned int xfer_bytes = 0;
/* Setup descriptors */
dma_rmb();
desc = &desc_tmp;
memset(desc, 0, sizeof(struct sd_emmc_desc));
desc->cmd_cfg |= (cmd->opcode & CMD_CFG_CMD_INDEX_MASK) <<
CMD_CFG_CMD_INDEX_SHIFT;
desc->cmd_cfg |= CMD_CFG_OWNER; /* owned by CPU */
desc->cmd_arg = cmd->arg;
/* Response */
if (cmd->flags & MMC_RSP_PRESENT) {
desc->cmd_cfg &= ~CMD_CFG_NO_RESP;
if (cmd->flags & MMC_RSP_136)
desc->cmd_cfg |= CMD_CFG_RESP_128;
desc->cmd_cfg |= CMD_CFG_RESP_NUM;
desc->cmd_resp = 0;
if (!(cmd->flags & MMC_RSP_CRC))
desc->cmd_cfg |= CMD_CFG_RESP_NOCRC;
if (cmd->flags & MMC_RSP_BUSY)
desc->cmd_cfg |= CMD_CFG_R1B;
} else {
desc->cmd_cfg |= CMD_CFG_NO_RESP;
}
/* data? */
if (cmd->data) {
desc->cmd_cfg |= CMD_CFG_DATA_IO;
if (cmd->data->blocks > 1) {
desc->cmd_cfg |= CMD_CFG_BLOCK_MODE;
desc->cmd_cfg |=
(cmd->data->blocks & CMD_CFG_LENGTH_MASK) <<
CMD_CFG_LENGTH_SHIFT;
/* check if block-size matches, if not update */
cfg = readl(host->regs + SD_EMMC_CFG);
blk_len = cfg & (CFG_BLK_LEN_MASK << CFG_BLK_LEN_SHIFT);
blk_len >>= CFG_BLK_LEN_SHIFT;
if (blk_len != ilog2(cmd->data->blksz)) {
dev_warn(host->dev, "%s: update blk_len %d -> %d\n",
__func__, blk_len,
ilog2(cmd->data->blksz));
blk_len = ilog2(cmd->data->blksz);
cfg &= ~(CFG_BLK_LEN_MASK << CFG_BLK_LEN_SHIFT);
cfg |= blk_len << CFG_BLK_LEN_SHIFT;
writel(cfg, host->regs + SD_EMMC_CFG);
}
} else {
desc->cmd_cfg &= ~CMD_CFG_BLOCK_MODE;
desc->cmd_cfg |=
(cmd->data->blksz & CMD_CFG_LENGTH_MASK) <<
CMD_CFG_LENGTH_SHIFT;
}
cmd->data->bytes_xfered = 0;
xfer_bytes = cmd->data->blksz * cmd->data->blocks;
if (cmd->data->flags & MMC_DATA_WRITE) {
desc->cmd_cfg |= CMD_CFG_DATA_WR;
WARN_ON(xfer_bytes > host->bounce_buf_size);
sg_copy_to_buffer(cmd->data->sg, cmd->data->sg_len,
host->bounce_buf, xfer_bytes);
cmd->data->bytes_xfered = xfer_bytes;
dma_wmb();
} else {
desc->cmd_cfg &= ~CMD_CFG_DATA_WR;
}
if (xfer_bytes > 0) {
desc->cmd_cfg &= ~CMD_CFG_DATA_NUM;
desc->cmd_data = host->bounce_dma_addr & CMD_DATA_MASK;
} else {
/* write data to data_addr */
desc->cmd_cfg |= CMD_CFG_DATA_NUM;
desc->cmd_data = 0;
}
cmd_cfg_timeout = 12;
} else {
desc->cmd_cfg &= ~CMD_CFG_DATA_IO;
cmd_cfg_timeout = 10;
}
desc->cmd_cfg |= (cmd_cfg_timeout & CMD_CFG_TIMEOUT_MASK) <<
CMD_CFG_TIMEOUT_SHIFT;
host->cmd = cmd;
/* Last descriptor */
desc->cmd_cfg |= CMD_CFG_END_OF_CHAIN;
writel(desc->cmd_cfg, host->regs + SD_EMMC_CMD_CFG);
writel(desc->cmd_data, host->regs + SD_EMMC_CMD_DAT);
writel(desc->cmd_resp, host->regs + SD_EMMC_CMD_RSP);
wmb(); /* ensure descriptor is written before kicked */
writel(desc->cmd_arg, host->regs + SD_EMMC_CMD_ARG);
}
static void meson_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct meson_host *host = mmc_priv(mmc);
WARN_ON(host->mrq != NULL);
/* Stop execution */
writel(0, host->regs + SD_EMMC_START);
/* clear, ack, enable all interrupts */
writel(0, host->regs + SD_EMMC_IRQ_EN);
writel(IRQ_EN_MASK, host->regs + SD_EMMC_STATUS);
writel(IRQ_EN_MASK, host->regs + SD_EMMC_IRQ_EN);
host->mrq = mrq;
if (mrq->sbc)
meson_mmc_start_cmd(mmc, mrq->sbc);
else
meson_mmc_start_cmd(mmc, mrq->cmd);
}
static int meson_mmc_read_resp(struct mmc_host *mmc, struct mmc_command *cmd)
{
struct meson_host *host = mmc_priv(mmc);
if (cmd->flags & MMC_RSP_136) {
cmd->resp[0] = readl(host->regs + SD_EMMC_CMD_RSP3);
cmd->resp[1] = readl(host->regs + SD_EMMC_CMD_RSP2);
cmd->resp[2] = readl(host->regs + SD_EMMC_CMD_RSP1);
cmd->resp[3] = readl(host->regs + SD_EMMC_CMD_RSP);
} else if (cmd->flags & MMC_RSP_PRESENT) {
cmd->resp[0] = readl(host->regs + SD_EMMC_CMD_RSP);
}
return 0;
}
static irqreturn_t meson_mmc_irq(int irq, void *dev_id)
{
struct meson_host *host = dev_id;
struct mmc_request *mrq;
struct mmc_command *cmd;
u32 irq_en, status, raw_status;
irqreturn_t ret = IRQ_HANDLED;
if (WARN_ON(!host))
return IRQ_NONE;
cmd = host->cmd;
mrq = host->mrq;
if (WARN_ON(!mrq))
return IRQ_NONE;
if (WARN_ON(!cmd))
return IRQ_NONE;
spin_lock(&host->lock);
irq_en = readl(host->regs + SD_EMMC_IRQ_EN);
raw_status = readl(host->regs + SD_EMMC_STATUS);
status = raw_status & irq_en;
if (!status) {
dev_warn(host->dev, "Spurious IRQ! status=0x%08x, irq_en=0x%08x\n",
raw_status, irq_en);
ret = IRQ_NONE;
goto out;
}
cmd->error = 0;
if (status & IRQ_RXD_ERR_MASK) {
dev_dbg(host->dev, "Unhandled IRQ: RXD error\n");
cmd->error = -EILSEQ;
}
if (status & IRQ_TXD_ERR) {
dev_dbg(host->dev, "Unhandled IRQ: TXD error\n");
cmd->error = -EILSEQ;
}
if (status & IRQ_DESC_ERR)
dev_dbg(host->dev, "Unhandled IRQ: Descriptor error\n");
if (status & IRQ_RESP_ERR) {
dev_dbg(host->dev, "Unhandled IRQ: Response error\n");
cmd->error = -EILSEQ;
}
if (status & IRQ_RESP_TIMEOUT) {
dev_dbg(host->dev, "Unhandled IRQ: Response timeout\n");
cmd->error = -ETIMEDOUT;
}
if (status & IRQ_DESC_TIMEOUT) {
dev_dbg(host->dev, "Unhandled IRQ: Descriptor timeout\n");
cmd->error = -ETIMEDOUT;
}
if (status & IRQ_SDIO)
dev_dbg(host->dev, "Unhandled IRQ: SDIO.\n");
if (status & (IRQ_END_OF_CHAIN | IRQ_RESP_STATUS))
ret = IRQ_WAKE_THREAD;
else {
dev_warn(host->dev, "Unknown IRQ! status=0x%04x: MMC CMD%u arg=0x%08x flags=0x%08x stop=%d\n",
status, cmd->opcode, cmd->arg,
cmd->flags, mrq->stop ? 1 : 0);
if (cmd->data) {
struct mmc_data *data = cmd->data;
dev_warn(host->dev, "\tblksz %u blocks %u flags 0x%08x (%s%s)",
data->blksz, data->blocks, data->flags,
data->flags & MMC_DATA_WRITE ? "write" : "",
data->flags & MMC_DATA_READ ? "read" : "");
}
}
out:
/* ack all (enabled) interrupts */
writel(status, host->regs + SD_EMMC_STATUS);
if (ret == IRQ_HANDLED) {
meson_mmc_read_resp(host->mmc, cmd);
meson_mmc_request_done(host->mmc, cmd->mrq);
}
spin_unlock(&host->lock);
return ret;
}
static irqreturn_t meson_mmc_irq_thread(int irq, void *dev_id)
{
struct meson_host *host = dev_id;
struct mmc_request *mrq = host->mrq;
struct mmc_command *cmd = host->cmd;
struct mmc_data *data;
unsigned int xfer_bytes;
int ret = IRQ_HANDLED;
if (WARN_ON(!mrq))
return IRQ_NONE;
if (WARN_ON(!cmd))
return IRQ_NONE;
data = cmd->data;
if (data) {
xfer_bytes = data->blksz * data->blocks;
if (data->flags & MMC_DATA_READ) {
WARN_ON(xfer_bytes > host->bounce_buf_size);
sg_copy_from_buffer(data->sg, data->sg_len,
host->bounce_buf, xfer_bytes);
data->bytes_xfered = xfer_bytes;
}
}
meson_mmc_read_resp(host->mmc, cmd);
if (!data || !data->stop || mrq->sbc)
meson_mmc_request_done(host->mmc, mrq);
else
meson_mmc_start_cmd(host->mmc, data->stop);
return ret;
}
/*
* NOTE: we only need this until the GPIO/pinctrl driver can handle
* interrupts. For now, the MMC core will use this for polling.
*/
static int meson_mmc_get_cd(struct mmc_host *mmc)
{
int status = mmc_gpio_get_cd(mmc);
if (status == -ENOSYS)
return 1; /* assume present */
return status;
}
static const struct mmc_host_ops meson_mmc_ops = {
.request = meson_mmc_request,
.set_ios = meson_mmc_set_ios,
.get_cd = meson_mmc_get_cd,
};
static int meson_mmc_probe(struct platform_device *pdev)
{
struct resource *res;
struct meson_host *host;
struct mmc_host *mmc;
int ret;
mmc = mmc_alloc_host(sizeof(struct meson_host), &pdev->dev);
if (!mmc)
return -ENOMEM;
host = mmc_priv(mmc);
host->mmc = mmc;
host->dev = &pdev->dev;
dev_set_drvdata(&pdev->dev, host);
spin_lock_init(&host->lock);
/* Get regulators and the supported OCR mask */
host->vqmmc_enabled = false;
ret = mmc_regulator_get_supply(mmc);
if (ret == -EPROBE_DEFER)
goto free_host;
ret = mmc_of_parse(mmc);
if (ret) {
dev_warn(&pdev->dev, "error parsing DT: %d\n", ret);
goto free_host;
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
host->regs = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(host->regs)) {
ret = PTR_ERR(host->regs);
goto free_host;
}
host->irq = platform_get_irq(pdev, 0);
if (host->irq == 0) {
dev_err(&pdev->dev, "failed to get interrupt resource.\n");
ret = -EINVAL;
goto free_host;
}
host->core_clk = devm_clk_get(&pdev->dev, "core");
if (IS_ERR(host->core_clk)) {
ret = PTR_ERR(host->core_clk);
goto free_host;
}
ret = clk_prepare_enable(host->core_clk);
if (ret)
goto free_host;
ret = meson_mmc_clk_init(host);
if (ret)
goto free_host;
/* Stop execution */
writel(0, host->regs + SD_EMMC_START);
/* clear, ack, enable all interrupts */
writel(0, host->regs + SD_EMMC_IRQ_EN);
writel(IRQ_EN_MASK, host->regs + SD_EMMC_STATUS);
ret = devm_request_threaded_irq(&pdev->dev, host->irq,
meson_mmc_irq, meson_mmc_irq_thread,
IRQF_SHARED, DRIVER_NAME, host);
if (ret)
goto free_host;
/* data bounce buffer */
host->bounce_buf_size = SZ_512K;
host->bounce_buf =
dma_alloc_coherent(host->dev, host->bounce_buf_size,
&host->bounce_dma_addr, GFP_KERNEL);
if (host->bounce_buf == NULL) {
dev_err(host->dev, "Unable to map allocate DMA bounce buffer.\n");
ret = -ENOMEM;
goto free_host;
}
mmc->ops = &meson_mmc_ops;
mmc_add_host(mmc);
return 0;
free_host:
clk_disable_unprepare(host->cfg_div_clk);
clk_disable_unprepare(host->core_clk);
mmc_free_host(mmc);
return ret;
}
static int meson_mmc_remove(struct platform_device *pdev)
{
struct meson_host *host = dev_get_drvdata(&pdev->dev);
if (WARN_ON(!host))
return 0;
if (host->bounce_buf)
dma_free_coherent(host->dev, host->bounce_buf_size,
host->bounce_buf, host->bounce_dma_addr);
clk_disable_unprepare(host->cfg_div_clk);
clk_disable_unprepare(host->core_clk);
mmc_free_host(host->mmc);
return 0;
}
static const struct of_device_id meson_mmc_of_match[] = {
{ .compatible = "amlogic,meson-gx-mmc", },
{ .compatible = "amlogic,meson-gxbb-mmc", },
{ .compatible = "amlogic,meson-gxl-mmc", },
{ .compatible = "amlogic,meson-gxm-mmc", },
{}
};
MODULE_DEVICE_TABLE(of, meson_mmc_of_match);
static struct platform_driver meson_mmc_driver = {
.probe = meson_mmc_probe,
.remove = meson_mmc_remove,
.driver = {
.name = DRIVER_NAME,
.of_match_table = of_match_ptr(meson_mmc_of_match),
},
};
module_platform_driver(meson_mmc_driver);
MODULE_DESCRIPTION("Amlogic S905*/GX* SD/eMMC driver");
MODULE_AUTHOR("Kevin Hilman <khilman@baylibre.com>");
MODULE_LICENSE("GPL v2");