linux/drivers/ide/ide-probe.c

1637 lines
38 KiB
C

/*
* Copyright (C) 1994-1998 Linus Torvalds & authors (see below)
* Copyright (C) 2005, 2007 Bartlomiej Zolnierkiewicz
*/
/*
* Mostly written by Mark Lord <mlord@pobox.com>
* and Gadi Oxman <gadio@netvision.net.il>
* and Andre Hedrick <andre@linux-ide.org>
*
* See linux/MAINTAINERS for address of current maintainer.
*
* This is the IDE probe module, as evolved from hd.c and ide.c.
*
* -- increase WAIT_PIDENTIFY to avoid CD-ROM locking at boot
* by Andrea Arcangeli
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/string.h>
#include <linux/kernel.h>
#include <linux/timer.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/major.h>
#include <linux/errno.h>
#include <linux/genhd.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/ide.h>
#include <linux/spinlock.h>
#include <linux/kmod.h>
#include <linux/pci.h>
#include <linux/scatterlist.h>
#include <asm/byteorder.h>
#include <asm/irq.h>
#include <linux/uaccess.h>
#include <asm/io.h>
/**
* generic_id - add a generic drive id
* @drive: drive to make an ID block for
*
* Add a fake id field to the drive we are passed. This allows
* use to skip a ton of NULL checks (which people always miss)
* and make drive properties unconditional outside of this file
*/
static void generic_id(ide_drive_t *drive)
{
u16 *id = drive->id;
id[ATA_ID_CUR_CYLS] = id[ATA_ID_CYLS] = drive->cyl;
id[ATA_ID_CUR_HEADS] = id[ATA_ID_HEADS] = drive->head;
id[ATA_ID_CUR_SECTORS] = id[ATA_ID_SECTORS] = drive->sect;
}
static void ide_disk_init_chs(ide_drive_t *drive)
{
u16 *id = drive->id;
/* Extract geometry if we did not already have one for the drive */
if (!drive->cyl || !drive->head || !drive->sect) {
drive->cyl = drive->bios_cyl = id[ATA_ID_CYLS];
drive->head = drive->bios_head = id[ATA_ID_HEADS];
drive->sect = drive->bios_sect = id[ATA_ID_SECTORS];
}
/* Handle logical geometry translation by the drive */
if (ata_id_current_chs_valid(id)) {
drive->cyl = id[ATA_ID_CUR_CYLS];
drive->head = id[ATA_ID_CUR_HEADS];
drive->sect = id[ATA_ID_CUR_SECTORS];
}
/* Use physical geometry if what we have still makes no sense */
if (drive->head > 16 && id[ATA_ID_HEADS] && id[ATA_ID_HEADS] <= 16) {
drive->cyl = id[ATA_ID_CYLS];
drive->head = id[ATA_ID_HEADS];
drive->sect = id[ATA_ID_SECTORS];
}
}
static void ide_disk_init_mult_count(ide_drive_t *drive)
{
u16 *id = drive->id;
u8 max_multsect = id[ATA_ID_MAX_MULTSECT] & 0xff;
if (max_multsect) {
if ((max_multsect / 2) > 1)
id[ATA_ID_MULTSECT] = max_multsect | 0x100;
else
id[ATA_ID_MULTSECT] &= ~0x1ff;
drive->mult_req = id[ATA_ID_MULTSECT] & 0xff;
if (drive->mult_req)
drive->special_flags |= IDE_SFLAG_SET_MULTMODE;
}
}
static void ide_classify_ata_dev(ide_drive_t *drive)
{
u16 *id = drive->id;
char *m = (char *)&id[ATA_ID_PROD];
int is_cfa = ata_id_is_cfa(id);
/* CF devices are *not* removable in Linux definition of the term */
if (is_cfa == 0 && (id[ATA_ID_CONFIG] & (1 << 7)))
drive->dev_flags |= IDE_DFLAG_REMOVABLE;
drive->media = ide_disk;
if (!ata_id_has_unload(drive->id))
drive->dev_flags |= IDE_DFLAG_NO_UNLOAD;
printk(KERN_INFO "%s: %s, %s DISK drive\n", drive->name, m,
is_cfa ? "CFA" : "ATA");
}
static void ide_classify_atapi_dev(ide_drive_t *drive)
{
u16 *id = drive->id;
char *m = (char *)&id[ATA_ID_PROD];
u8 type = (id[ATA_ID_CONFIG] >> 8) & 0x1f;
printk(KERN_INFO "%s: %s, ATAPI ", drive->name, m);
switch (type) {
case ide_floppy:
if (!strstr(m, "CD-ROM")) {
if (!strstr(m, "oppy") &&
!strstr(m, "poyp") &&
!strstr(m, "ZIP"))
printk(KERN_CONT "cdrom or floppy?, assuming ");
if (drive->media != ide_cdrom) {
printk(KERN_CONT "FLOPPY");
drive->dev_flags |= IDE_DFLAG_REMOVABLE;
break;
}
}
/* Early cdrom models used zero */
type = ide_cdrom;
case ide_cdrom:
drive->dev_flags |= IDE_DFLAG_REMOVABLE;
#ifdef CONFIG_PPC
/* kludge for Apple PowerBook internal zip */
if (!strstr(m, "CD-ROM") && strstr(m, "ZIP")) {
printk(KERN_CONT "FLOPPY");
type = ide_floppy;
break;
}
#endif
printk(KERN_CONT "CD/DVD-ROM");
break;
case ide_tape:
printk(KERN_CONT "TAPE");
break;
case ide_optical:
printk(KERN_CONT "OPTICAL");
drive->dev_flags |= IDE_DFLAG_REMOVABLE;
break;
default:
printk(KERN_CONT "UNKNOWN (type %d)", type);
break;
}
printk(KERN_CONT " drive\n");
drive->media = type;
/* an ATAPI device ignores DRDY */
drive->ready_stat = 0;
if (ata_id_cdb_intr(id))
drive->atapi_flags |= IDE_AFLAG_DRQ_INTERRUPT;
drive->dev_flags |= IDE_DFLAG_DOORLOCKING;
/* we don't do head unloading on ATAPI devices */
drive->dev_flags |= IDE_DFLAG_NO_UNLOAD;
}
/**
* do_identify - identify a drive
* @drive: drive to identify
* @cmd: command used
* @id: buffer for IDENTIFY data
*
* Called when we have issued a drive identify command to
* read and parse the results. This function is run with
* interrupts disabled.
*/
static void do_identify(ide_drive_t *drive, u8 cmd, u16 *id)
{
ide_hwif_t *hwif = drive->hwif;
char *m = (char *)&id[ATA_ID_PROD];
unsigned long flags;
int bswap = 1;
/* local CPU only; some systems need this */
local_irq_save(flags);
/* read 512 bytes of id info */
hwif->tp_ops->input_data(drive, NULL, id, SECTOR_SIZE);
local_irq_restore(flags);
drive->dev_flags |= IDE_DFLAG_ID_READ;
#ifdef DEBUG
printk(KERN_INFO "%s: dumping identify data\n", drive->name);
ide_dump_identify((u8 *)id);
#endif
ide_fix_driveid(id);
/*
* ATA_CMD_ID_ATA returns little-endian info,
* ATA_CMD_ID_ATAPI *usually* returns little-endian info.
*/
if (cmd == ATA_CMD_ID_ATAPI) {
if ((m[0] == 'N' && m[1] == 'E') || /* NEC */
(m[0] == 'F' && m[1] == 'X') || /* Mitsumi */
(m[0] == 'P' && m[1] == 'i')) /* Pioneer */
/* Vertos drives may still be weird */
bswap ^= 1;
}
ide_fixstring(m, ATA_ID_PROD_LEN, bswap);
ide_fixstring((char *)&id[ATA_ID_FW_REV], ATA_ID_FW_REV_LEN, bswap);
ide_fixstring((char *)&id[ATA_ID_SERNO], ATA_ID_SERNO_LEN, bswap);
/* we depend on this a lot! */
m[ATA_ID_PROD_LEN - 1] = '\0';
if (strstr(m, "E X A B Y T E N E S T"))
drive->dev_flags &= ~IDE_DFLAG_PRESENT;
else
drive->dev_flags |= IDE_DFLAG_PRESENT;
}
/**
* ide_dev_read_id - send ATA/ATAPI IDENTIFY command
* @drive: drive to identify
* @cmd: command to use
* @id: buffer for IDENTIFY data
* @irq_ctx: flag set when called from the IRQ context
*
* Sends an ATA(PI) IDENTIFY request to a drive and waits for a response.
*
* Returns: 0 device was identified
* 1 device timed-out (no response to identify request)
* 2 device aborted the command (refused to identify itself)
*/
int ide_dev_read_id(ide_drive_t *drive, u8 cmd, u16 *id, int irq_ctx)
{
ide_hwif_t *hwif = drive->hwif;
struct ide_io_ports *io_ports = &hwif->io_ports;
const struct ide_tp_ops *tp_ops = hwif->tp_ops;
int use_altstatus = 0, rc;
unsigned long timeout;
u8 s = 0, a = 0;
/*
* Disable device IRQ. Otherwise we'll get spurious interrupts
* during the identify phase that the IRQ handler isn't expecting.
*/
if (io_ports->ctl_addr)
tp_ops->write_devctl(hwif, ATA_NIEN | ATA_DEVCTL_OBS);
/* take a deep breath */
if (irq_ctx)
mdelay(50);
else
msleep(50);
if (io_ports->ctl_addr &&
(hwif->host_flags & IDE_HFLAG_BROKEN_ALTSTATUS) == 0) {
a = tp_ops->read_altstatus(hwif);
s = tp_ops->read_status(hwif);
if ((a ^ s) & ~ATA_SENSE)
/* ancient Seagate drives, broken interfaces */
printk(KERN_INFO "%s: probing with STATUS(0x%02x) "
"instead of ALTSTATUS(0x%02x)\n",
drive->name, s, a);
else
/* use non-intrusive polling */
use_altstatus = 1;
}
/* set features register for atapi
* identify command to be sure of reply
*/
if (cmd == ATA_CMD_ID_ATAPI) {
struct ide_taskfile tf;
memset(&tf, 0, sizeof(tf));
/* disable DMA & overlap */
tp_ops->tf_load(drive, &tf, IDE_VALID_FEATURE);
}
/* ask drive for ID */
tp_ops->exec_command(hwif, cmd);
timeout = ((cmd == ATA_CMD_ID_ATA) ? WAIT_WORSTCASE : WAIT_PIDENTIFY) / 2;
/* wait for IRQ and ATA_DRQ */
if (irq_ctx) {
rc = __ide_wait_stat(drive, ATA_DRQ, BAD_R_STAT, timeout, &s);
if (rc)
return 1;
} else {
rc = ide_busy_sleep(drive, timeout, use_altstatus);
if (rc)
return 1;
msleep(50);
s = tp_ops->read_status(hwif);
}
if (OK_STAT(s, ATA_DRQ, BAD_R_STAT)) {
/* drive returned ID */
do_identify(drive, cmd, id);
/* drive responded with ID */
rc = 0;
/* clear drive IRQ */
(void)tp_ops->read_status(hwif);
} else {
/* drive refused ID */
rc = 2;
}
return rc;
}
int ide_busy_sleep(ide_drive_t *drive, unsigned long timeout, int altstatus)
{
ide_hwif_t *hwif = drive->hwif;
u8 stat;
timeout += jiffies;
do {
msleep(50); /* give drive a breather */
stat = altstatus ? hwif->tp_ops->read_altstatus(hwif)
: hwif->tp_ops->read_status(hwif);
if ((stat & ATA_BUSY) == 0)
return 0;
} while (time_before(jiffies, timeout));
printk(KERN_ERR "%s: timeout in %s\n", drive->name, __func__);
return 1; /* drive timed-out */
}
static u8 ide_read_device(ide_drive_t *drive)
{
struct ide_taskfile tf;
drive->hwif->tp_ops->tf_read(drive, &tf, IDE_VALID_DEVICE);
return tf.device;
}
/**
* do_probe - probe an IDE device
* @drive: drive to probe
* @cmd: command to use
*
* do_probe() has the difficult job of finding a drive if it exists,
* without getting hung up if it doesn't exist, without trampling on
* ethernet cards, and without leaving any IRQs dangling to haunt us later.
*
* If a drive is "known" to exist (from CMOS or kernel parameters),
* but does not respond right away, the probe will "hang in there"
* for the maximum wait time (about 30 seconds), otherwise it will
* exit much more quickly.
*
* Returns: 0 device was identified
* 1 device timed-out (no response to identify request)
* 2 device aborted the command (refused to identify itself)
* 3 bad status from device (possible for ATAPI drives)
* 4 probe was not attempted because failure was obvious
*/
static int do_probe (ide_drive_t *drive, u8 cmd)
{
ide_hwif_t *hwif = drive->hwif;
const struct ide_tp_ops *tp_ops = hwif->tp_ops;
u16 *id = drive->id;
int rc;
u8 present = !!(drive->dev_flags & IDE_DFLAG_PRESENT), stat;
/* avoid waiting for inappropriate probes */
if (present && drive->media != ide_disk && cmd == ATA_CMD_ID_ATA)
return 4;
#ifdef DEBUG
printk(KERN_INFO "probing for %s: present=%d, media=%d, probetype=%s\n",
drive->name, present, drive->media,
(cmd == ATA_CMD_ID_ATA) ? "ATA" : "ATAPI");
#endif
/* needed for some systems
* (e.g. crw9624 as drive0 with disk as slave)
*/
msleep(50);
tp_ops->dev_select(drive);
msleep(50);
if (ide_read_device(drive) != drive->select && present == 0) {
if (drive->dn & 1) {
/* exit with drive0 selected */
tp_ops->dev_select(hwif->devices[0]);
/* allow ATA_BUSY to assert & clear */
msleep(50);
}
/* no i/f present: mmm.. this should be a 4 -ml */
return 3;
}
stat = tp_ops->read_status(hwif);
if (OK_STAT(stat, ATA_DRDY, ATA_BUSY) ||
present || cmd == ATA_CMD_ID_ATAPI) {
rc = ide_dev_read_id(drive, cmd, id, 0);
if (rc)
/* failed: try again */
rc = ide_dev_read_id(drive, cmd, id, 0);
stat = tp_ops->read_status(hwif);
if (stat == (ATA_BUSY | ATA_DRDY))
return 4;
if (rc == 1 && cmd == ATA_CMD_ID_ATAPI) {
printk(KERN_ERR "%s: no response (status = 0x%02x), "
"resetting drive\n", drive->name, stat);
msleep(50);
tp_ops->dev_select(drive);
msleep(50);
tp_ops->exec_command(hwif, ATA_CMD_DEV_RESET);
(void)ide_busy_sleep(drive, WAIT_WORSTCASE, 0);
rc = ide_dev_read_id(drive, cmd, id, 0);
}
/* ensure drive IRQ is clear */
stat = tp_ops->read_status(hwif);
if (rc == 1)
printk(KERN_ERR "%s: no response (status = 0x%02x)\n",
drive->name, stat);
} else {
/* not present or maybe ATAPI */
rc = 3;
}
if (drive->dn & 1) {
/* exit with drive0 selected */
tp_ops->dev_select(hwif->devices[0]);
msleep(50);
/* ensure drive irq is clear */
(void)tp_ops->read_status(hwif);
}
return rc;
}
/**
* probe_for_drives - upper level drive probe
* @drive: drive to probe for
*
* probe_for_drive() tests for existence of a given drive using do_probe()
* and presents things to the user as needed.
*
* Returns: 0 no device was found
* 1 device was found
* (note: IDE_DFLAG_PRESENT might still be not set)
*/
static u8 probe_for_drive(ide_drive_t *drive)
{
char *m;
int rc;
u8 cmd;
drive->dev_flags &= ~IDE_DFLAG_ID_READ;
m = (char *)&drive->id[ATA_ID_PROD];
strcpy(m, "UNKNOWN");
/* skip probing? */
if ((drive->dev_flags & IDE_DFLAG_NOPROBE) == 0) {
/* if !(success||timed-out) */
cmd = ATA_CMD_ID_ATA;
rc = do_probe(drive, cmd);
if (rc >= 2) {
/* look for ATAPI device */
cmd = ATA_CMD_ID_ATAPI;
rc = do_probe(drive, cmd);
}
if ((drive->dev_flags & IDE_DFLAG_PRESENT) == 0)
return 0;
/* identification failed? */
if ((drive->dev_flags & IDE_DFLAG_ID_READ) == 0) {
if (drive->media == ide_disk) {
printk(KERN_INFO "%s: non-IDE drive, CHS=%d/%d/%d\n",
drive->name, drive->cyl,
drive->head, drive->sect);
} else if (drive->media == ide_cdrom) {
printk(KERN_INFO "%s: ATAPI cdrom (?)\n", drive->name);
} else {
/* nuke it */
printk(KERN_WARNING "%s: Unknown device on bus refused identification. Ignoring.\n", drive->name);
drive->dev_flags &= ~IDE_DFLAG_PRESENT;
}
} else {
if (cmd == ATA_CMD_ID_ATAPI)
ide_classify_atapi_dev(drive);
else
ide_classify_ata_dev(drive);
}
}
if ((drive->dev_flags & IDE_DFLAG_PRESENT) == 0)
return 0;
/* The drive wasn't being helpful. Add generic info only */
if ((drive->dev_flags & IDE_DFLAG_ID_READ) == 0) {
generic_id(drive);
return 1;
}
if (drive->media == ide_disk) {
ide_disk_init_chs(drive);
ide_disk_init_mult_count(drive);
}
return 1;
}
static void hwif_release_dev(struct device *dev)
{
ide_hwif_t *hwif = container_of(dev, ide_hwif_t, gendev);
complete(&hwif->gendev_rel_comp);
}
static int ide_register_port(ide_hwif_t *hwif)
{
int ret;
/* register with global device tree */
dev_set_name(&hwif->gendev, "%s", hwif->name);
dev_set_drvdata(&hwif->gendev, hwif);
if (hwif->gendev.parent == NULL)
hwif->gendev.parent = hwif->dev;
hwif->gendev.release = hwif_release_dev;
ret = device_register(&hwif->gendev);
if (ret < 0) {
printk(KERN_WARNING "IDE: %s: device_register error: %d\n",
__func__, ret);
goto out;
}
hwif->portdev = device_create(ide_port_class, &hwif->gendev,
MKDEV(0, 0), hwif, "%s", hwif->name);
if (IS_ERR(hwif->portdev)) {
ret = PTR_ERR(hwif->portdev);
device_unregister(&hwif->gendev);
}
out:
return ret;
}
/**
* ide_port_wait_ready - wait for port to become ready
* @hwif: IDE port
*
* This is needed on some PPCs and a bunch of BIOS-less embedded
* platforms. Typical cases are:
*
* - The firmware hard reset the disk before booting the kernel,
* the drive is still doing it's poweron-reset sequence, that
* can take up to 30 seconds.
*
* - The firmware does nothing (or no firmware), the device is
* still in POST state (same as above actually).
*
* - Some CD/DVD/Writer combo drives tend to drive the bus during
* their reset sequence even when they are non-selected slave
* devices, thus preventing discovery of the main HD.
*
* Doing this wait-for-non-busy should not harm any existing
* configuration and fix some issues like the above.
*
* BenH.
*
* Returns 0 on success, error code (< 0) otherwise.
*/
static int ide_port_wait_ready(ide_hwif_t *hwif)
{
const struct ide_tp_ops *tp_ops = hwif->tp_ops;
ide_drive_t *drive;
int i, rc;
printk(KERN_DEBUG "Probing IDE interface %s...\n", hwif->name);
/* Let HW settle down a bit from whatever init state we
* come from */
mdelay(2);
/* Wait for BSY bit to go away, spec timeout is 30 seconds,
* I know of at least one disk who takes 31 seconds, I use 35
* here to be safe
*/
rc = ide_wait_not_busy(hwif, 35000);
if (rc)
return rc;
/* Now make sure both master & slave are ready */
ide_port_for_each_dev(i, drive, hwif) {
/* Ignore disks that we will not probe for later. */
if ((drive->dev_flags & IDE_DFLAG_NOPROBE) == 0 ||
(drive->dev_flags & IDE_DFLAG_PRESENT)) {
tp_ops->dev_select(drive);
tp_ops->write_devctl(hwif, ATA_DEVCTL_OBS);
mdelay(2);
rc = ide_wait_not_busy(hwif, 35000);
if (rc)
goto out;
} else
printk(KERN_DEBUG "%s: ide_wait_not_busy() skipped\n",
drive->name);
}
out:
/* Exit function with master reselected (let's be sane) */
if (i)
tp_ops->dev_select(hwif->devices[0]);
return rc;
}
/**
* ide_undecoded_slave - look for bad CF adapters
* @dev1: slave device
*
* Analyse the drives on the interface and attempt to decide if we
* have the same drive viewed twice. This occurs with crap CF adapters
* and PCMCIA sometimes.
*/
void ide_undecoded_slave(ide_drive_t *dev1)
{
ide_drive_t *dev0 = dev1->hwif->devices[0];
if ((dev1->dn & 1) == 0 || (dev0->dev_flags & IDE_DFLAG_PRESENT) == 0)
return;
/* If the models don't match they are not the same product */
if (strcmp((char *)&dev0->id[ATA_ID_PROD],
(char *)&dev1->id[ATA_ID_PROD]))
return;
/* Serial numbers do not match */
if (strncmp((char *)&dev0->id[ATA_ID_SERNO],
(char *)&dev1->id[ATA_ID_SERNO], ATA_ID_SERNO_LEN))
return;
/* No serial number, thankfully very rare for CF */
if (*(char *)&dev0->id[ATA_ID_SERNO] == 0)
return;
/* Appears to be an IDE flash adapter with decode bugs */
printk(KERN_WARNING "ide-probe: ignoring undecoded slave\n");
dev1->dev_flags &= ~IDE_DFLAG_PRESENT;
}
EXPORT_SYMBOL_GPL(ide_undecoded_slave);
static int ide_probe_port(ide_hwif_t *hwif)
{
ide_drive_t *drive;
unsigned int irqd;
int i, rc = -ENODEV;
BUG_ON(hwif->present);
if ((hwif->devices[0]->dev_flags & IDE_DFLAG_NOPROBE) &&
(hwif->devices[1]->dev_flags & IDE_DFLAG_NOPROBE))
return -EACCES;
/*
* We must always disable IRQ, as probe_for_drive will assert IRQ, but
* we'll install our IRQ driver much later...
*/
irqd = hwif->irq;
if (irqd)
disable_irq(hwif->irq);
if (ide_port_wait_ready(hwif) == -EBUSY)
printk(KERN_DEBUG "%s: Wait for ready failed before probe !\n", hwif->name);
/*
* Second drive should only exist if first drive was found,
* but a lot of cdrom drives are configured as single slaves.
*/
ide_port_for_each_dev(i, drive, hwif) {
(void) probe_for_drive(drive);
if (drive->dev_flags & IDE_DFLAG_PRESENT)
rc = 0;
}
/*
* Use cached IRQ number. It might be (and is...) changed by probe
* code above
*/
if (irqd)
enable_irq(irqd);
return rc;
}
static void ide_port_tune_devices(ide_hwif_t *hwif)
{
const struct ide_port_ops *port_ops = hwif->port_ops;
ide_drive_t *drive;
int i;
ide_port_for_each_present_dev(i, drive, hwif) {
ide_check_nien_quirk_list(drive);
if (port_ops && port_ops->quirkproc)
port_ops->quirkproc(drive);
}
ide_port_for_each_present_dev(i, drive, hwif) {
ide_set_max_pio(drive);
drive->dev_flags |= IDE_DFLAG_NICE1;
if (hwif->dma_ops)
ide_set_dma(drive);
}
}
static int ide_init_rq(struct request_queue *q, struct request *rq, gfp_t gfp)
{
struct ide_request *req = blk_mq_rq_to_pdu(rq);
req->sreq.sense = req->sense;
return 0;
}
/*
* init request queue
*/
static int ide_init_queue(ide_drive_t *drive)
{
struct request_queue *q;
ide_hwif_t *hwif = drive->hwif;
int max_sectors = 256;
int max_sg_entries = PRD_ENTRIES;
/*
* Our default set up assumes the normal IDE case,
* that is 64K segmenting, standard PRD setup
* and LBA28. Some drivers then impose their own
* limits and LBA48 we could raise it but as yet
* do not.
*/
q = blk_alloc_queue_node(GFP_KERNEL, hwif_to_node(hwif));
if (!q)
return 1;
q->request_fn = do_ide_request;
q->init_rq_fn = ide_init_rq;
q->cmd_size = sizeof(struct ide_request);
if (blk_init_allocated_queue(q) < 0) {
blk_cleanup_queue(q);
return 1;
}
q->queuedata = drive;
blk_queue_segment_boundary(q, 0xffff);
if (hwif->rqsize < max_sectors)
max_sectors = hwif->rqsize;
blk_queue_max_hw_sectors(q, max_sectors);
#ifdef CONFIG_PCI
/* When we have an IOMMU, we may have a problem where pci_map_sg()
* creates segments that don't completely match our boundary
* requirements and thus need to be broken up again. Because it
* doesn't align properly either, we may actually have to break up
* to more segments than what was we got in the first place, a max
* worst case is twice as many.
* This will be fixed once we teach pci_map_sg() about our boundary
* requirements, hopefully soon. *FIXME*
*/
if (!PCI_DMA_BUS_IS_PHYS)
max_sg_entries >>= 1;
#endif /* CONFIG_PCI */
blk_queue_max_segments(q, max_sg_entries);
/* assign drive queue */
drive->queue = q;
/* needs drive->queue to be set */
ide_toggle_bounce(drive, 1);
return 0;
}
static DEFINE_MUTEX(ide_cfg_mtx);
/*
* For any present drive:
* - allocate the block device queue
*/
static int ide_port_setup_devices(ide_hwif_t *hwif)
{
ide_drive_t *drive;
int i, j = 0;
mutex_lock(&ide_cfg_mtx);
ide_port_for_each_present_dev(i, drive, hwif) {
if (ide_init_queue(drive)) {
printk(KERN_ERR "ide: failed to init %s\n",
drive->name);
drive->dev_flags &= ~IDE_DFLAG_PRESENT;
continue;
}
j++;
}
mutex_unlock(&ide_cfg_mtx);
return j;
}
static void ide_host_enable_irqs(struct ide_host *host)
{
ide_hwif_t *hwif;
int i;
ide_host_for_each_port(i, hwif, host) {
if (hwif == NULL)
continue;
/* clear any pending IRQs */
hwif->tp_ops->read_status(hwif);
/* unmask IRQs */
if (hwif->io_ports.ctl_addr)
hwif->tp_ops->write_devctl(hwif, ATA_DEVCTL_OBS);
}
}
/*
* This routine sets up the IRQ for an IDE interface.
*/
static int init_irq (ide_hwif_t *hwif)
{
struct ide_io_ports *io_ports = &hwif->io_ports;
struct ide_host *host = hwif->host;
irq_handler_t irq_handler = host->irq_handler;
int sa = host->irq_flags;
if (irq_handler == NULL)
irq_handler = ide_intr;
if (!host->get_lock)
if (request_irq(hwif->irq, irq_handler, sa, hwif->name, hwif))
goto out_up;
#if !defined(__mc68000__)
printk(KERN_INFO "%s at 0x%03lx-0x%03lx,0x%03lx on irq %d", hwif->name,
io_ports->data_addr, io_ports->status_addr,
io_ports->ctl_addr, hwif->irq);
#else
printk(KERN_INFO "%s at 0x%08lx on irq %d", hwif->name,
io_ports->data_addr, hwif->irq);
#endif /* __mc68000__ */
if (hwif->host->host_flags & IDE_HFLAG_SERIALIZE)
printk(KERN_CONT " (serialized)");
printk(KERN_CONT "\n");
return 0;
out_up:
return 1;
}
static int ata_lock(dev_t dev, void *data)
{
/* FIXME: we want to pin hwif down */
return 0;
}
static struct kobject *ata_probe(dev_t dev, int *part, void *data)
{
ide_hwif_t *hwif = data;
int unit = *part >> PARTN_BITS;
ide_drive_t *drive = hwif->devices[unit];
if ((drive->dev_flags & IDE_DFLAG_PRESENT) == 0)
return NULL;
if (drive->media == ide_disk)
request_module("ide-disk");
if (drive->media == ide_cdrom || drive->media == ide_optical)
request_module("ide-cd");
if (drive->media == ide_tape)
request_module("ide-tape");
if (drive->media == ide_floppy)
request_module("ide-floppy");
return NULL;
}
static struct kobject *exact_match(dev_t dev, int *part, void *data)
{
struct gendisk *p = data;
*part &= (1 << PARTN_BITS) - 1;
return &disk_to_dev(p)->kobj;
}
static int exact_lock(dev_t dev, void *data)
{
struct gendisk *p = data;
if (!get_disk(p))
return -1;
return 0;
}
void ide_register_region(struct gendisk *disk)
{
blk_register_region(MKDEV(disk->major, disk->first_minor),
disk->minors, NULL, exact_match, exact_lock, disk);
}
EXPORT_SYMBOL_GPL(ide_register_region);
void ide_unregister_region(struct gendisk *disk)
{
blk_unregister_region(MKDEV(disk->major, disk->first_minor),
disk->minors);
}
EXPORT_SYMBOL_GPL(ide_unregister_region);
void ide_init_disk(struct gendisk *disk, ide_drive_t *drive)
{
ide_hwif_t *hwif = drive->hwif;
unsigned int unit = drive->dn & 1;
disk->major = hwif->major;
disk->first_minor = unit << PARTN_BITS;
sprintf(disk->disk_name, "hd%c", 'a' + hwif->index * MAX_DRIVES + unit);
disk->queue = drive->queue;
}
EXPORT_SYMBOL_GPL(ide_init_disk);
static void drive_release_dev (struct device *dev)
{
ide_drive_t *drive = container_of(dev, ide_drive_t, gendev);
ide_proc_unregister_device(drive);
blk_cleanup_queue(drive->queue);
drive->queue = NULL;
drive->dev_flags &= ~IDE_DFLAG_PRESENT;
complete(&drive->gendev_rel_comp);
}
static int hwif_init(ide_hwif_t *hwif)
{
if (!hwif->irq) {
printk(KERN_ERR "%s: disabled, no IRQ\n", hwif->name);
return 0;
}
if (register_blkdev(hwif->major, hwif->name))
return 0;
if (!hwif->sg_max_nents)
hwif->sg_max_nents = PRD_ENTRIES;
hwif->sg_table = kmalloc(sizeof(struct scatterlist)*hwif->sg_max_nents,
GFP_KERNEL);
if (!hwif->sg_table) {
printk(KERN_ERR "%s: unable to allocate SG table.\n", hwif->name);
goto out;
}
sg_init_table(hwif->sg_table, hwif->sg_max_nents);
if (init_irq(hwif)) {
printk(KERN_ERR "%s: disabled, unable to get IRQ %d\n",
hwif->name, hwif->irq);
goto out;
}
blk_register_region(MKDEV(hwif->major, 0), MAX_DRIVES << PARTN_BITS,
THIS_MODULE, ata_probe, ata_lock, hwif);
return 1;
out:
unregister_blkdev(hwif->major, hwif->name);
return 0;
}
static void hwif_register_devices(ide_hwif_t *hwif)
{
ide_drive_t *drive;
unsigned int i;
ide_port_for_each_present_dev(i, drive, hwif) {
struct device *dev = &drive->gendev;
int ret;
dev_set_name(dev, "%u.%u", hwif->index, i);
dev_set_drvdata(dev, drive);
dev->parent = &hwif->gendev;
dev->bus = &ide_bus_type;
dev->release = drive_release_dev;
ret = device_register(dev);
if (ret < 0)
printk(KERN_WARNING "IDE: %s: device_register error: "
"%d\n", __func__, ret);
}
}
static void ide_port_init_devices(ide_hwif_t *hwif)
{
const struct ide_port_ops *port_ops = hwif->port_ops;
ide_drive_t *drive;
int i;
ide_port_for_each_dev(i, drive, hwif) {
drive->dn = i + hwif->channel * 2;
if (hwif->host_flags & IDE_HFLAG_IO_32BIT)
drive->io_32bit = 1;
if (hwif->host_flags & IDE_HFLAG_NO_IO_32BIT)
drive->dev_flags |= IDE_DFLAG_NO_IO_32BIT;
if (hwif->host_flags & IDE_HFLAG_UNMASK_IRQS)
drive->dev_flags |= IDE_DFLAG_UNMASK;
if (hwif->host_flags & IDE_HFLAG_NO_UNMASK_IRQS)
drive->dev_flags |= IDE_DFLAG_NO_UNMASK;
drive->pio_mode = XFER_PIO_0;
if (port_ops && port_ops->init_dev)
port_ops->init_dev(drive);
}
}
static void ide_init_port(ide_hwif_t *hwif, unsigned int port,
const struct ide_port_info *d)
{
hwif->channel = port;
hwif->chipset = d->chipset ? d->chipset : ide_pci;
if (d->init_iops)
d->init_iops(hwif);
/* ->host_flags may be set by ->init_iops (or even earlier...) */
hwif->host_flags |= d->host_flags;
hwif->pio_mask = d->pio_mask;
if (d->tp_ops)
hwif->tp_ops = d->tp_ops;
/* ->set_pio_mode for DTC2278 is currently limited to port 0 */
if ((hwif->host_flags & IDE_HFLAG_DTC2278) == 0 || hwif->channel == 0)
hwif->port_ops = d->port_ops;
hwif->swdma_mask = d->swdma_mask;
hwif->mwdma_mask = d->mwdma_mask;
hwif->ultra_mask = d->udma_mask;
if ((d->host_flags & IDE_HFLAG_NO_DMA) == 0) {
int rc;
hwif->dma_ops = d->dma_ops;
if (d->init_dma)
rc = d->init_dma(hwif, d);
else
rc = ide_hwif_setup_dma(hwif, d);
if (rc < 0) {
printk(KERN_INFO "%s: DMA disabled\n", hwif->name);
hwif->dma_ops = NULL;
hwif->dma_base = 0;
hwif->swdma_mask = 0;
hwif->mwdma_mask = 0;
hwif->ultra_mask = 0;
}
}
if ((d->host_flags & IDE_HFLAG_SERIALIZE) ||
((d->host_flags & IDE_HFLAG_SERIALIZE_DMA) && hwif->dma_base))
hwif->host->host_flags |= IDE_HFLAG_SERIALIZE;
if (d->max_sectors)
hwif->rqsize = d->max_sectors;
else {
if ((hwif->host_flags & IDE_HFLAG_NO_LBA48) ||
(hwif->host_flags & IDE_HFLAG_NO_LBA48_DMA))
hwif->rqsize = 256;
else
hwif->rqsize = 65536;
}
/* call chipset specific routine for each enabled port */
if (d->init_hwif)
d->init_hwif(hwif);
}
static void ide_port_cable_detect(ide_hwif_t *hwif)
{
const struct ide_port_ops *port_ops = hwif->port_ops;
if (port_ops && port_ops->cable_detect && (hwif->ultra_mask & 0x78)) {
if (hwif->cbl != ATA_CBL_PATA40_SHORT)
hwif->cbl = port_ops->cable_detect(hwif);
}
}
static const u8 ide_hwif_to_major[] =
{ IDE0_MAJOR, IDE1_MAJOR, IDE2_MAJOR, IDE3_MAJOR, IDE4_MAJOR,
IDE5_MAJOR, IDE6_MAJOR, IDE7_MAJOR, IDE8_MAJOR, IDE9_MAJOR };
static void ide_port_init_devices_data(ide_hwif_t *hwif)
{
ide_drive_t *drive;
int i;
ide_port_for_each_dev(i, drive, hwif) {
u8 j = (hwif->index * MAX_DRIVES) + i;
u16 *saved_id = drive->id;
struct request *saved_sense_rq = drive->sense_rq;
memset(drive, 0, sizeof(*drive));
memset(saved_id, 0, SECTOR_SIZE);
drive->id = saved_id;
drive->sense_rq = saved_sense_rq;
drive->media = ide_disk;
drive->select = (i << 4) | ATA_DEVICE_OBS;
drive->hwif = hwif;
drive->ready_stat = ATA_DRDY;
drive->bad_wstat = BAD_W_STAT;
drive->special_flags = IDE_SFLAG_RECALIBRATE |
IDE_SFLAG_SET_GEOMETRY;
drive->name[0] = 'h';
drive->name[1] = 'd';
drive->name[2] = 'a' + j;
drive->max_failures = IDE_DEFAULT_MAX_FAILURES;
INIT_LIST_HEAD(&drive->list);
init_completion(&drive->gendev_rel_comp);
}
}
static void ide_init_port_data(ide_hwif_t *hwif, unsigned int index)
{
/* fill in any non-zero initial values */
hwif->index = index;
hwif->major = ide_hwif_to_major[index];
hwif->name[0] = 'i';
hwif->name[1] = 'd';
hwif->name[2] = 'e';
hwif->name[3] = '0' + index;
spin_lock_init(&hwif->lock);
init_timer(&hwif->timer);
hwif->timer.function = &ide_timer_expiry;
hwif->timer.data = (unsigned long)hwif;
init_completion(&hwif->gendev_rel_comp);
hwif->tp_ops = &default_tp_ops;
ide_port_init_devices_data(hwif);
}
static void ide_init_port_hw(ide_hwif_t *hwif, struct ide_hw *hw)
{
memcpy(&hwif->io_ports, &hw->io_ports, sizeof(hwif->io_ports));
hwif->irq = hw->irq;
hwif->dev = hw->dev;
hwif->gendev.parent = hw->parent ? hw->parent : hw->dev;
hwif->config_data = hw->config;
}
static unsigned int ide_indexes;
/**
* ide_find_port_slot - find free port slot
* @d: IDE port info
*
* Return the new port slot index or -ENOENT if we are out of free slots.
*/
static int ide_find_port_slot(const struct ide_port_info *d)
{
int idx = -ENOENT;
u8 bootable = (d && (d->host_flags & IDE_HFLAG_NON_BOOTABLE)) ? 0 : 1;
u8 i = (d && (d->host_flags & IDE_HFLAG_QD_2ND_PORT)) ? 1 : 0;
/*
* Claim an unassigned slot.
*
* Give preference to claiming other slots before claiming ide0/ide1,
* just in case there's another interface yet-to-be-scanned
* which uses ports 0x1f0/0x170 (the ide0/ide1 defaults).
*
* Unless there is a bootable card that does not use the standard
* ports 0x1f0/0x170 (the ide0/ide1 defaults).
*/
mutex_lock(&ide_cfg_mtx);
if (bootable) {
if ((ide_indexes | i) != (1 << MAX_HWIFS) - 1)
idx = ffz(ide_indexes | i);
} else {
if ((ide_indexes | 3) != (1 << MAX_HWIFS) - 1)
idx = ffz(ide_indexes | 3);
else if ((ide_indexes & 3) != 3)
idx = ffz(ide_indexes);
}
if (idx >= 0)
ide_indexes |= (1 << idx);
mutex_unlock(&ide_cfg_mtx);
return idx;
}
static void ide_free_port_slot(int idx)
{
mutex_lock(&ide_cfg_mtx);
ide_indexes &= ~(1 << idx);
mutex_unlock(&ide_cfg_mtx);
}
static void ide_port_free_devices(ide_hwif_t *hwif)
{
ide_drive_t *drive;
int i;
ide_port_for_each_dev(i, drive, hwif) {
kfree(drive->sense_rq);
kfree(drive->id);
kfree(drive);
}
}
static int ide_port_alloc_devices(ide_hwif_t *hwif, int node)
{
ide_drive_t *drive;
int i;
for (i = 0; i < MAX_DRIVES; i++) {
drive = kzalloc_node(sizeof(*drive), GFP_KERNEL, node);
if (drive == NULL)
goto out_nomem;
/*
* In order to keep things simple we have an id
* block for all drives at all times. If the device
* is pre ATA or refuses ATA/ATAPI identify we
* will add faked data to this.
*
* Also note that 0 everywhere means "can't do X"
*/
drive->id = kzalloc_node(SECTOR_SIZE, GFP_KERNEL, node);
if (drive->id == NULL)
goto out_free_drive;
drive->sense_rq = kmalloc(sizeof(struct request) +
sizeof(struct ide_request), GFP_KERNEL);
if (!drive->sense_rq)
goto out_free_id;
hwif->devices[i] = drive;
}
return 0;
out_free_id:
kfree(drive->id);
out_free_drive:
kfree(drive);
out_nomem:
ide_port_free_devices(hwif);
return -ENOMEM;
}
struct ide_host *ide_host_alloc(const struct ide_port_info *d,
struct ide_hw **hws, unsigned int n_ports)
{
struct ide_host *host;
struct device *dev = hws[0] ? hws[0]->dev : NULL;
int node = dev ? dev_to_node(dev) : -1;
int i;
host = kzalloc_node(sizeof(*host), GFP_KERNEL, node);
if (host == NULL)
return NULL;
for (i = 0; i < n_ports; i++) {
ide_hwif_t *hwif;
int idx;
if (hws[i] == NULL)
continue;
hwif = kzalloc_node(sizeof(*hwif), GFP_KERNEL, node);
if (hwif == NULL)
continue;
if (ide_port_alloc_devices(hwif, node) < 0) {
kfree(hwif);
continue;
}
idx = ide_find_port_slot(d);
if (idx < 0) {
printk(KERN_ERR "%s: no free slot for interface\n",
d ? d->name : "ide");
ide_port_free_devices(hwif);
kfree(hwif);
continue;
}
ide_init_port_data(hwif, idx);
hwif->host = host;
host->ports[i] = hwif;
host->n_ports++;
}
if (host->n_ports == 0) {
kfree(host);
return NULL;
}
host->dev[0] = dev;
if (d) {
host->init_chipset = d->init_chipset;
host->get_lock = d->get_lock;
host->release_lock = d->release_lock;
host->host_flags = d->host_flags;
host->irq_flags = d->irq_flags;
}
return host;
}
EXPORT_SYMBOL_GPL(ide_host_alloc);
static void ide_port_free(ide_hwif_t *hwif)
{
ide_port_free_devices(hwif);
ide_free_port_slot(hwif->index);
kfree(hwif);
}
static void ide_disable_port(ide_hwif_t *hwif)
{
struct ide_host *host = hwif->host;
int i;
printk(KERN_INFO "%s: disabling port\n", hwif->name);
for (i = 0; i < MAX_HOST_PORTS; i++) {
if (host->ports[i] == hwif) {
host->ports[i] = NULL;
host->n_ports--;
}
}
ide_port_free(hwif);
}
int ide_host_register(struct ide_host *host, const struct ide_port_info *d,
struct ide_hw **hws)
{
ide_hwif_t *hwif, *mate = NULL;
int i, j = 0;
ide_host_for_each_port(i, hwif, host) {
if (hwif == NULL) {
mate = NULL;
continue;
}
ide_init_port_hw(hwif, hws[i]);
ide_port_apply_params(hwif);
if ((i & 1) && mate) {
hwif->mate = mate;
mate->mate = hwif;
}
mate = (i & 1) ? NULL : hwif;
ide_init_port(hwif, i & 1, d);
ide_port_cable_detect(hwif);
hwif->port_flags |= IDE_PFLAG_PROBING;
ide_port_init_devices(hwif);
}
ide_host_for_each_port(i, hwif, host) {
if (hwif == NULL)
continue;
if (ide_probe_port(hwif) == 0)
hwif->present = 1;
hwif->port_flags &= ~IDE_PFLAG_PROBING;
if ((hwif->host_flags & IDE_HFLAG_4DRIVES) == 0 ||
hwif->mate == NULL || hwif->mate->present == 0) {
if (ide_register_port(hwif)) {
ide_disable_port(hwif);
continue;
}
}
if (hwif->present)
ide_port_tune_devices(hwif);
}
ide_host_enable_irqs(host);
ide_host_for_each_port(i, hwif, host) {
if (hwif == NULL)
continue;
if (hwif_init(hwif) == 0) {
printk(KERN_INFO "%s: failed to initialize IDE "
"interface\n", hwif->name);
device_unregister(&hwif->gendev);
ide_disable_port(hwif);
continue;
}
if (hwif->present)
if (ide_port_setup_devices(hwif) == 0) {
hwif->present = 0;
continue;
}
j++;
ide_acpi_init_port(hwif);
if (hwif->present)
ide_acpi_port_init_devices(hwif);
}
ide_host_for_each_port(i, hwif, host) {
if (hwif == NULL)
continue;
ide_sysfs_register_port(hwif);
ide_proc_register_port(hwif);
if (hwif->present) {
ide_proc_port_register_devices(hwif);
hwif_register_devices(hwif);
}
}
return j ? 0 : -1;
}
EXPORT_SYMBOL_GPL(ide_host_register);
int ide_host_add(const struct ide_port_info *d, struct ide_hw **hws,
unsigned int n_ports, struct ide_host **hostp)
{
struct ide_host *host;
int rc;
host = ide_host_alloc(d, hws, n_ports);
if (host == NULL)
return -ENOMEM;
rc = ide_host_register(host, d, hws);
if (rc) {
ide_host_free(host);
return rc;
}
if (hostp)
*hostp = host;
return 0;
}
EXPORT_SYMBOL_GPL(ide_host_add);
static void __ide_port_unregister_devices(ide_hwif_t *hwif)
{
ide_drive_t *drive;
int i;
ide_port_for_each_present_dev(i, drive, hwif) {
device_unregister(&drive->gendev);
wait_for_completion(&drive->gendev_rel_comp);
}
}
void ide_port_unregister_devices(ide_hwif_t *hwif)
{
mutex_lock(&ide_cfg_mtx);
__ide_port_unregister_devices(hwif);
hwif->present = 0;
ide_port_init_devices_data(hwif);
mutex_unlock(&ide_cfg_mtx);
}
EXPORT_SYMBOL_GPL(ide_port_unregister_devices);
/**
* ide_unregister - free an IDE interface
* @hwif: IDE interface
*
* Perform the final unregister of an IDE interface.
*
* Locking:
* The caller must not hold the IDE locks.
*
* It is up to the caller to be sure there is no pending I/O here,
* and that the interface will not be reopened (present/vanishing
* locking isn't yet done BTW).
*/
static void ide_unregister(ide_hwif_t *hwif)
{
BUG_ON(in_interrupt());
BUG_ON(irqs_disabled());
mutex_lock(&ide_cfg_mtx);
if (hwif->present) {
__ide_port_unregister_devices(hwif);
hwif->present = 0;
}
ide_proc_unregister_port(hwif);
if (!hwif->host->get_lock)
free_irq(hwif->irq, hwif);
device_unregister(hwif->portdev);
device_unregister(&hwif->gendev);
wait_for_completion(&hwif->gendev_rel_comp);
/*
* Remove us from the kernel's knowledge
*/
blk_unregister_region(MKDEV(hwif->major, 0), MAX_DRIVES<<PARTN_BITS);
kfree(hwif->sg_table);
unregister_blkdev(hwif->major, hwif->name);
ide_release_dma_engine(hwif);
mutex_unlock(&ide_cfg_mtx);
}
void ide_host_free(struct ide_host *host)
{
ide_hwif_t *hwif;
int i;
ide_host_for_each_port(i, hwif, host) {
if (hwif)
ide_port_free(hwif);
}
kfree(host);
}
EXPORT_SYMBOL_GPL(ide_host_free);
void ide_host_remove(struct ide_host *host)
{
ide_hwif_t *hwif;
int i;
ide_host_for_each_port(i, hwif, host) {
if (hwif)
ide_unregister(hwif);
}
ide_host_free(host);
}
EXPORT_SYMBOL_GPL(ide_host_remove);
void ide_port_scan(ide_hwif_t *hwif)
{
int rc;
ide_port_apply_params(hwif);
ide_port_cable_detect(hwif);
hwif->port_flags |= IDE_PFLAG_PROBING;
ide_port_init_devices(hwif);
rc = ide_probe_port(hwif);
hwif->port_flags &= ~IDE_PFLAG_PROBING;
if (rc < 0)
return;
hwif->present = 1;
ide_port_tune_devices(hwif);
ide_port_setup_devices(hwif);
ide_acpi_port_init_devices(hwif);
hwif_register_devices(hwif);
ide_proc_port_register_devices(hwif);
}
EXPORT_SYMBOL_GPL(ide_port_scan);