mirror of https://gitee.com/openkylin/linux.git
1627 lines
46 KiB
C
1627 lines
46 KiB
C
/*
|
|
* Copyright 2010 Tilera Corporation. All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation, version 2.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
|
|
* NON INFRINGEMENT. See the GNU General Public License for
|
|
* more details.
|
|
*/
|
|
|
|
#include <linux/sched.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mmzone.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/module.h>
|
|
#include <linux/node.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/kexec.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/swiotlb.h>
|
|
#include <linux/initrd.h>
|
|
#include <linux/io.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/timex.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/start_kernel.h>
|
|
#include <linux/screen_info.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <hv/hypervisor.h>
|
|
#include <arch/interrupts.h>
|
|
|
|
/* <linux/smp.h> doesn't provide this definition. */
|
|
#ifndef CONFIG_SMP
|
|
#define setup_max_cpus 1
|
|
#endif
|
|
|
|
static inline int ABS(int x) { return x >= 0 ? x : -x; }
|
|
|
|
/* Chip information */
|
|
char chip_model[64] __write_once;
|
|
|
|
#ifdef CONFIG_VT
|
|
struct screen_info screen_info;
|
|
#endif
|
|
|
|
struct pglist_data node_data[MAX_NUMNODES] __read_mostly;
|
|
EXPORT_SYMBOL(node_data);
|
|
|
|
/* Information on the NUMA nodes that we compute early */
|
|
unsigned long __cpuinitdata node_start_pfn[MAX_NUMNODES];
|
|
unsigned long __cpuinitdata node_end_pfn[MAX_NUMNODES];
|
|
unsigned long __initdata node_memmap_pfn[MAX_NUMNODES];
|
|
unsigned long __initdata node_percpu_pfn[MAX_NUMNODES];
|
|
unsigned long __initdata node_free_pfn[MAX_NUMNODES];
|
|
|
|
static unsigned long __initdata node_percpu[MAX_NUMNODES];
|
|
|
|
/*
|
|
* per-CPU stack and boot info.
|
|
*/
|
|
DEFINE_PER_CPU(unsigned long, boot_sp) =
|
|
(unsigned long)init_stack + THREAD_SIZE;
|
|
|
|
#ifdef CONFIG_SMP
|
|
DEFINE_PER_CPU(unsigned long, boot_pc) = (unsigned long)start_kernel;
|
|
#else
|
|
/*
|
|
* The variable must be __initdata since it references __init code.
|
|
* With CONFIG_SMP it is per-cpu data, which is exempt from validation.
|
|
*/
|
|
unsigned long __initdata boot_pc = (unsigned long)start_kernel;
|
|
#endif
|
|
|
|
#ifdef CONFIG_HIGHMEM
|
|
/* Page frame index of end of lowmem on each controller. */
|
|
unsigned long __cpuinitdata node_lowmem_end_pfn[MAX_NUMNODES];
|
|
|
|
/* Number of pages that can be mapped into lowmem. */
|
|
static unsigned long __initdata mappable_physpages;
|
|
#endif
|
|
|
|
/* Data on which physical memory controller corresponds to which NUMA node */
|
|
int node_controller[MAX_NUMNODES] = { [0 ... MAX_NUMNODES-1] = -1 };
|
|
|
|
#ifdef CONFIG_HIGHMEM
|
|
/* Map information from VAs to PAs */
|
|
unsigned long pbase_map[1 << (32 - HPAGE_SHIFT)]
|
|
__write_once __attribute__((aligned(L2_CACHE_BYTES)));
|
|
EXPORT_SYMBOL(pbase_map);
|
|
|
|
/* Map information from PAs to VAs */
|
|
void *vbase_map[NR_PA_HIGHBIT_VALUES]
|
|
__write_once __attribute__((aligned(L2_CACHE_BYTES)));
|
|
EXPORT_SYMBOL(vbase_map);
|
|
#endif
|
|
|
|
/* Node number as a function of the high PA bits */
|
|
int highbits_to_node[NR_PA_HIGHBIT_VALUES] __write_once;
|
|
EXPORT_SYMBOL(highbits_to_node);
|
|
|
|
static unsigned int __initdata maxmem_pfn = -1U;
|
|
static unsigned int __initdata maxnodemem_pfn[MAX_NUMNODES] = {
|
|
[0 ... MAX_NUMNODES-1] = -1U
|
|
};
|
|
static nodemask_t __initdata isolnodes;
|
|
|
|
#if defined(CONFIG_PCI) && !defined(__tilegx__)
|
|
enum { DEFAULT_PCI_RESERVE_MB = 64 };
|
|
static unsigned int __initdata pci_reserve_mb = DEFAULT_PCI_RESERVE_MB;
|
|
unsigned long __initdata pci_reserve_start_pfn = -1U;
|
|
unsigned long __initdata pci_reserve_end_pfn = -1U;
|
|
#endif
|
|
|
|
static int __init setup_maxmem(char *str)
|
|
{
|
|
unsigned long long maxmem;
|
|
if (str == NULL || (maxmem = memparse(str, NULL)) == 0)
|
|
return -EINVAL;
|
|
|
|
maxmem_pfn = (maxmem >> HPAGE_SHIFT) << (HPAGE_SHIFT - PAGE_SHIFT);
|
|
pr_info("Forcing RAM used to no more than %dMB\n",
|
|
maxmem_pfn >> (20 - PAGE_SHIFT));
|
|
return 0;
|
|
}
|
|
early_param("maxmem", setup_maxmem);
|
|
|
|
static int __init setup_maxnodemem(char *str)
|
|
{
|
|
char *endp;
|
|
unsigned long long maxnodemem;
|
|
long node;
|
|
|
|
node = str ? simple_strtoul(str, &endp, 0) : INT_MAX;
|
|
if (node >= MAX_NUMNODES || *endp != ':')
|
|
return -EINVAL;
|
|
|
|
maxnodemem = memparse(endp+1, NULL);
|
|
maxnodemem_pfn[node] = (maxnodemem >> HPAGE_SHIFT) <<
|
|
(HPAGE_SHIFT - PAGE_SHIFT);
|
|
pr_info("Forcing RAM used on node %ld to no more than %dMB\n",
|
|
node, maxnodemem_pfn[node] >> (20 - PAGE_SHIFT));
|
|
return 0;
|
|
}
|
|
early_param("maxnodemem", setup_maxnodemem);
|
|
|
|
static int __init setup_isolnodes(char *str)
|
|
{
|
|
char buf[MAX_NUMNODES * 5];
|
|
if (str == NULL || nodelist_parse(str, isolnodes) != 0)
|
|
return -EINVAL;
|
|
|
|
nodelist_scnprintf(buf, sizeof(buf), isolnodes);
|
|
pr_info("Set isolnodes value to '%s'\n", buf);
|
|
return 0;
|
|
}
|
|
early_param("isolnodes", setup_isolnodes);
|
|
|
|
#if defined(CONFIG_PCI) && !defined(__tilegx__)
|
|
static int __init setup_pci_reserve(char* str)
|
|
{
|
|
unsigned long mb;
|
|
|
|
if (str == NULL || strict_strtoul(str, 0, &mb) != 0 ||
|
|
mb > 3 * 1024)
|
|
return -EINVAL;
|
|
|
|
pci_reserve_mb = mb;
|
|
pr_info("Reserving %dMB for PCIE root complex mappings\n",
|
|
pci_reserve_mb);
|
|
return 0;
|
|
}
|
|
early_param("pci_reserve", setup_pci_reserve);
|
|
#endif
|
|
|
|
#ifndef __tilegx__
|
|
/*
|
|
* vmalloc=size forces the vmalloc area to be exactly 'size' bytes.
|
|
* This can be used to increase (or decrease) the vmalloc area.
|
|
*/
|
|
static int __init parse_vmalloc(char *arg)
|
|
{
|
|
if (!arg)
|
|
return -EINVAL;
|
|
|
|
VMALLOC_RESERVE = (memparse(arg, &arg) + PGDIR_SIZE - 1) & PGDIR_MASK;
|
|
|
|
/* See validate_va() for more on this test. */
|
|
if ((long)_VMALLOC_START >= 0)
|
|
early_panic("\"vmalloc=%#lx\" value too large: maximum %#lx\n",
|
|
VMALLOC_RESERVE, _VMALLOC_END - 0x80000000UL);
|
|
|
|
return 0;
|
|
}
|
|
early_param("vmalloc", parse_vmalloc);
|
|
#endif
|
|
|
|
#ifdef CONFIG_HIGHMEM
|
|
/*
|
|
* Determine for each controller where its lowmem is mapped and how much of
|
|
* it is mapped there. On controller zero, the first few megabytes are
|
|
* already mapped in as code at MEM_SV_INTRPT, so in principle we could
|
|
* start our data mappings higher up, but for now we don't bother, to avoid
|
|
* additional confusion.
|
|
*
|
|
* One question is whether, on systems with more than 768 Mb and
|
|
* controllers of different sizes, to map in a proportionate amount of
|
|
* each one, or to try to map the same amount from each controller.
|
|
* (E.g. if we have three controllers with 256MB, 1GB, and 256MB
|
|
* respectively, do we map 256MB from each, or do we map 128 MB, 512
|
|
* MB, and 128 MB respectively?) For now we use a proportionate
|
|
* solution like the latter.
|
|
*
|
|
* The VA/PA mapping demands that we align our decisions at 16 MB
|
|
* boundaries so that we can rapidly convert VA to PA.
|
|
*/
|
|
static void *__init setup_pa_va_mapping(void)
|
|
{
|
|
unsigned long curr_pages = 0;
|
|
unsigned long vaddr = PAGE_OFFSET;
|
|
nodemask_t highonlynodes = isolnodes;
|
|
int i, j;
|
|
|
|
memset(pbase_map, -1, sizeof(pbase_map));
|
|
memset(vbase_map, -1, sizeof(vbase_map));
|
|
|
|
/* Node zero cannot be isolated for LOWMEM purposes. */
|
|
node_clear(0, highonlynodes);
|
|
|
|
/* Count up the number of pages on non-highonlynodes controllers. */
|
|
mappable_physpages = 0;
|
|
for_each_online_node(i) {
|
|
if (!node_isset(i, highonlynodes))
|
|
mappable_physpages +=
|
|
node_end_pfn[i] - node_start_pfn[i];
|
|
}
|
|
|
|
for_each_online_node(i) {
|
|
unsigned long start = node_start_pfn[i];
|
|
unsigned long end = node_end_pfn[i];
|
|
unsigned long size = end - start;
|
|
unsigned long vaddr_end;
|
|
|
|
if (node_isset(i, highonlynodes)) {
|
|
/* Mark this controller as having no lowmem. */
|
|
node_lowmem_end_pfn[i] = start;
|
|
continue;
|
|
}
|
|
|
|
curr_pages += size;
|
|
if (mappable_physpages > MAXMEM_PFN) {
|
|
vaddr_end = PAGE_OFFSET +
|
|
(((u64)curr_pages * MAXMEM_PFN /
|
|
mappable_physpages)
|
|
<< PAGE_SHIFT);
|
|
} else {
|
|
vaddr_end = PAGE_OFFSET + (curr_pages << PAGE_SHIFT);
|
|
}
|
|
for (j = 0; vaddr < vaddr_end; vaddr += HPAGE_SIZE, ++j) {
|
|
unsigned long this_pfn =
|
|
start + (j << HUGETLB_PAGE_ORDER);
|
|
pbase_map[vaddr >> HPAGE_SHIFT] = this_pfn;
|
|
if (vbase_map[__pfn_to_highbits(this_pfn)] ==
|
|
(void *)-1)
|
|
vbase_map[__pfn_to_highbits(this_pfn)] =
|
|
(void *)(vaddr & HPAGE_MASK);
|
|
}
|
|
node_lowmem_end_pfn[i] = start + (j << HUGETLB_PAGE_ORDER);
|
|
BUG_ON(node_lowmem_end_pfn[i] > end);
|
|
}
|
|
|
|
/* Return highest address of any mapped memory. */
|
|
return (void *)vaddr;
|
|
}
|
|
#endif /* CONFIG_HIGHMEM */
|
|
|
|
/*
|
|
* Register our most important memory mappings with the debug stub.
|
|
*
|
|
* This is up to 4 mappings for lowmem, one mapping per memory
|
|
* controller, plus one for our text segment.
|
|
*/
|
|
static void __cpuinit store_permanent_mappings(void)
|
|
{
|
|
int i;
|
|
|
|
for_each_online_node(i) {
|
|
HV_PhysAddr pa = ((HV_PhysAddr)node_start_pfn[i]) << PAGE_SHIFT;
|
|
#ifdef CONFIG_HIGHMEM
|
|
HV_PhysAddr high_mapped_pa = node_lowmem_end_pfn[i];
|
|
#else
|
|
HV_PhysAddr high_mapped_pa = node_end_pfn[i];
|
|
#endif
|
|
|
|
unsigned long pages = high_mapped_pa - node_start_pfn[i];
|
|
HV_VirtAddr addr = (HV_VirtAddr) __va(pa);
|
|
hv_store_mapping(addr, pages << PAGE_SHIFT, pa);
|
|
}
|
|
|
|
hv_store_mapping((HV_VirtAddr)_stext,
|
|
(uint32_t)(_einittext - _stext), 0);
|
|
}
|
|
|
|
/*
|
|
* Use hv_inquire_physical() to populate node_{start,end}_pfn[]
|
|
* and node_online_map, doing suitable sanity-checking.
|
|
* Also set min_low_pfn, max_low_pfn, and max_pfn.
|
|
*/
|
|
static void __init setup_memory(void)
|
|
{
|
|
int i, j;
|
|
int highbits_seen[NR_PA_HIGHBIT_VALUES] = { 0 };
|
|
#ifdef CONFIG_HIGHMEM
|
|
long highmem_pages;
|
|
#endif
|
|
#ifndef __tilegx__
|
|
int cap;
|
|
#endif
|
|
#if defined(CONFIG_HIGHMEM) || defined(__tilegx__)
|
|
long lowmem_pages;
|
|
#endif
|
|
|
|
/* We are using a char to hold the cpu_2_node[] mapping */
|
|
BUILD_BUG_ON(MAX_NUMNODES > 127);
|
|
|
|
/* Discover the ranges of memory available to us */
|
|
for (i = 0; ; ++i) {
|
|
unsigned long start, size, end, highbits;
|
|
HV_PhysAddrRange range = hv_inquire_physical(i);
|
|
if (range.size == 0)
|
|
break;
|
|
#ifdef CONFIG_FLATMEM
|
|
if (i > 0) {
|
|
pr_err("Can't use discontiguous PAs: %#llx..%#llx\n",
|
|
range.size, range.start + range.size);
|
|
continue;
|
|
}
|
|
#endif
|
|
#ifndef __tilegx__
|
|
if ((unsigned long)range.start) {
|
|
pr_err("Range not at 4GB multiple: %#llx..%#llx\n",
|
|
range.start, range.start + range.size);
|
|
continue;
|
|
}
|
|
#endif
|
|
if ((range.start & (HPAGE_SIZE-1)) != 0 ||
|
|
(range.size & (HPAGE_SIZE-1)) != 0) {
|
|
unsigned long long start_pa = range.start;
|
|
unsigned long long orig_size = range.size;
|
|
range.start = (start_pa + HPAGE_SIZE - 1) & HPAGE_MASK;
|
|
range.size -= (range.start - start_pa);
|
|
range.size &= HPAGE_MASK;
|
|
pr_err("Range not hugepage-aligned: %#llx..%#llx:"
|
|
" now %#llx-%#llx\n",
|
|
start_pa, start_pa + orig_size,
|
|
range.start, range.start + range.size);
|
|
}
|
|
highbits = __pa_to_highbits(range.start);
|
|
if (highbits >= NR_PA_HIGHBIT_VALUES) {
|
|
pr_err("PA high bits too high: %#llx..%#llx\n",
|
|
range.start, range.start + range.size);
|
|
continue;
|
|
}
|
|
if (highbits_seen[highbits]) {
|
|
pr_err("Range overlaps in high bits: %#llx..%#llx\n",
|
|
range.start, range.start + range.size);
|
|
continue;
|
|
}
|
|
highbits_seen[highbits] = 1;
|
|
if (PFN_DOWN(range.size) > maxnodemem_pfn[i]) {
|
|
int max_size = maxnodemem_pfn[i];
|
|
if (max_size > 0) {
|
|
pr_err("Maxnodemem reduced node %d to"
|
|
" %d pages\n", i, max_size);
|
|
range.size = PFN_PHYS(max_size);
|
|
} else {
|
|
pr_err("Maxnodemem disabled node %d\n", i);
|
|
continue;
|
|
}
|
|
}
|
|
if (num_physpages + PFN_DOWN(range.size) > maxmem_pfn) {
|
|
int max_size = maxmem_pfn - num_physpages;
|
|
if (max_size > 0) {
|
|
pr_err("Maxmem reduced node %d to %d pages\n",
|
|
i, max_size);
|
|
range.size = PFN_PHYS(max_size);
|
|
} else {
|
|
pr_err("Maxmem disabled node %d\n", i);
|
|
continue;
|
|
}
|
|
}
|
|
if (i >= MAX_NUMNODES) {
|
|
pr_err("Too many PA nodes (#%d): %#llx...%#llx\n",
|
|
i, range.size, range.size + range.start);
|
|
continue;
|
|
}
|
|
|
|
start = range.start >> PAGE_SHIFT;
|
|
size = range.size >> PAGE_SHIFT;
|
|
end = start + size;
|
|
|
|
#ifndef __tilegx__
|
|
if (((HV_PhysAddr)end << PAGE_SHIFT) !=
|
|
(range.start + range.size)) {
|
|
pr_err("PAs too high to represent: %#llx..%#llx\n",
|
|
range.start, range.start + range.size);
|
|
continue;
|
|
}
|
|
#endif
|
|
#if defined(CONFIG_PCI) && !defined(__tilegx__)
|
|
/*
|
|
* Blocks that overlap the pci reserved region must
|
|
* have enough space to hold the maximum percpu data
|
|
* region at the top of the range. If there isn't
|
|
* enough space above the reserved region, just
|
|
* truncate the node.
|
|
*/
|
|
if (start <= pci_reserve_start_pfn &&
|
|
end > pci_reserve_start_pfn) {
|
|
unsigned int per_cpu_size =
|
|
__per_cpu_end - __per_cpu_start;
|
|
unsigned int percpu_pages =
|
|
NR_CPUS * (PFN_UP(per_cpu_size) >> PAGE_SHIFT);
|
|
if (end < pci_reserve_end_pfn + percpu_pages) {
|
|
end = pci_reserve_start_pfn;
|
|
pr_err("PCI mapping region reduced node %d to"
|
|
" %ld pages\n", i, end - start);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
for (j = __pfn_to_highbits(start);
|
|
j <= __pfn_to_highbits(end - 1); j++)
|
|
highbits_to_node[j] = i;
|
|
|
|
node_start_pfn[i] = start;
|
|
node_end_pfn[i] = end;
|
|
node_controller[i] = range.controller;
|
|
num_physpages += size;
|
|
max_pfn = end;
|
|
|
|
/* Mark node as online */
|
|
node_set(i, node_online_map);
|
|
node_set(i, node_possible_map);
|
|
}
|
|
|
|
#ifndef __tilegx__
|
|
/*
|
|
* For 4KB pages, mem_map "struct page" data is 1% of the size
|
|
* of the physical memory, so can be quite big (640 MB for
|
|
* four 16G zones). These structures must be mapped in
|
|
* lowmem, and since we currently cap out at about 768 MB,
|
|
* it's impractical to try to use this much address space.
|
|
* For now, arbitrarily cap the amount of physical memory
|
|
* we're willing to use at 8 million pages (32GB of 4KB pages).
|
|
*/
|
|
cap = 8 * 1024 * 1024; /* 8 million pages */
|
|
if (num_physpages > cap) {
|
|
int num_nodes = num_online_nodes();
|
|
int cap_each = cap / num_nodes;
|
|
unsigned long dropped_pages = 0;
|
|
for (i = 0; i < num_nodes; ++i) {
|
|
int size = node_end_pfn[i] - node_start_pfn[i];
|
|
if (size > cap_each) {
|
|
dropped_pages += (size - cap_each);
|
|
node_end_pfn[i] = node_start_pfn[i] + cap_each;
|
|
}
|
|
}
|
|
num_physpages -= dropped_pages;
|
|
pr_warning("Only using %ldMB memory;"
|
|
" ignoring %ldMB.\n",
|
|
num_physpages >> (20 - PAGE_SHIFT),
|
|
dropped_pages >> (20 - PAGE_SHIFT));
|
|
pr_warning("Consider using a larger page size.\n");
|
|
}
|
|
#endif
|
|
|
|
/* Heap starts just above the last loaded address. */
|
|
min_low_pfn = PFN_UP((unsigned long)_end - PAGE_OFFSET);
|
|
|
|
#ifdef CONFIG_HIGHMEM
|
|
/* Find where we map lowmem from each controller. */
|
|
high_memory = setup_pa_va_mapping();
|
|
|
|
/* Set max_low_pfn based on what node 0 can directly address. */
|
|
max_low_pfn = node_lowmem_end_pfn[0];
|
|
|
|
lowmem_pages = (mappable_physpages > MAXMEM_PFN) ?
|
|
MAXMEM_PFN : mappable_physpages;
|
|
highmem_pages = (long) (num_physpages - lowmem_pages);
|
|
|
|
pr_notice("%ldMB HIGHMEM available.\n",
|
|
pages_to_mb(highmem_pages > 0 ? highmem_pages : 0));
|
|
pr_notice("%ldMB LOWMEM available.\n",
|
|
pages_to_mb(lowmem_pages));
|
|
#else
|
|
/* Set max_low_pfn based on what node 0 can directly address. */
|
|
max_low_pfn = node_end_pfn[0];
|
|
|
|
#ifndef __tilegx__
|
|
if (node_end_pfn[0] > MAXMEM_PFN) {
|
|
pr_warning("Only using %ldMB LOWMEM.\n",
|
|
MAXMEM>>20);
|
|
pr_warning("Use a HIGHMEM enabled kernel.\n");
|
|
max_low_pfn = MAXMEM_PFN;
|
|
max_pfn = MAXMEM_PFN;
|
|
num_physpages = MAXMEM_PFN;
|
|
node_end_pfn[0] = MAXMEM_PFN;
|
|
} else {
|
|
pr_notice("%ldMB memory available.\n",
|
|
pages_to_mb(node_end_pfn[0]));
|
|
}
|
|
for (i = 1; i < MAX_NUMNODES; ++i) {
|
|
node_start_pfn[i] = 0;
|
|
node_end_pfn[i] = 0;
|
|
}
|
|
high_memory = __va(node_end_pfn[0]);
|
|
#else
|
|
lowmem_pages = 0;
|
|
for (i = 0; i < MAX_NUMNODES; ++i) {
|
|
int pages = node_end_pfn[i] - node_start_pfn[i];
|
|
lowmem_pages += pages;
|
|
if (pages)
|
|
high_memory = pfn_to_kaddr(node_end_pfn[i]);
|
|
}
|
|
pr_notice("%ldMB memory available.\n",
|
|
pages_to_mb(lowmem_pages));
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* On 32-bit machines, we only put bootmem on the low controller,
|
|
* since PAs > 4GB can't be used in bootmem. In principle one could
|
|
* imagine, e.g., multiple 1 GB controllers all of which could support
|
|
* bootmem, but in practice using controllers this small isn't a
|
|
* particularly interesting scenario, so we just keep it simple and
|
|
* use only the first controller for bootmem on 32-bit machines.
|
|
*/
|
|
static inline int node_has_bootmem(int nid)
|
|
{
|
|
#ifdef CONFIG_64BIT
|
|
return 1;
|
|
#else
|
|
return nid == 0;
|
|
#endif
|
|
}
|
|
|
|
static inline unsigned long alloc_bootmem_pfn(int nid,
|
|
unsigned long size,
|
|
unsigned long goal)
|
|
{
|
|
void *kva = __alloc_bootmem_node(NODE_DATA(nid), size,
|
|
PAGE_SIZE, goal);
|
|
unsigned long pfn = kaddr_to_pfn(kva);
|
|
BUG_ON(goal && PFN_PHYS(pfn) != goal);
|
|
return pfn;
|
|
}
|
|
|
|
static void __init setup_bootmem_allocator_node(int i)
|
|
{
|
|
unsigned long start, end, mapsize, mapstart;
|
|
|
|
if (node_has_bootmem(i)) {
|
|
NODE_DATA(i)->bdata = &bootmem_node_data[i];
|
|
} else {
|
|
/* Share controller zero's bdata for now. */
|
|
NODE_DATA(i)->bdata = &bootmem_node_data[0];
|
|
return;
|
|
}
|
|
|
|
/* Skip up to after the bss in node 0. */
|
|
start = (i == 0) ? min_low_pfn : node_start_pfn[i];
|
|
|
|
/* Only lowmem, if we're a HIGHMEM build. */
|
|
#ifdef CONFIG_HIGHMEM
|
|
end = node_lowmem_end_pfn[i];
|
|
#else
|
|
end = node_end_pfn[i];
|
|
#endif
|
|
|
|
/* No memory here. */
|
|
if (end == start)
|
|
return;
|
|
|
|
/* Figure out where the bootmem bitmap is located. */
|
|
mapsize = bootmem_bootmap_pages(end - start);
|
|
if (i == 0) {
|
|
/* Use some space right before the heap on node 0. */
|
|
mapstart = start;
|
|
start += mapsize;
|
|
} else {
|
|
/* Allocate bitmap on node 0 to avoid page table issues. */
|
|
mapstart = alloc_bootmem_pfn(0, PFN_PHYS(mapsize), 0);
|
|
}
|
|
|
|
/* Initialize a node. */
|
|
init_bootmem_node(NODE_DATA(i), mapstart, start, end);
|
|
|
|
/* Free all the space back into the allocator. */
|
|
free_bootmem(PFN_PHYS(start), PFN_PHYS(end - start));
|
|
|
|
#if defined(CONFIG_PCI) && !defined(__tilegx__)
|
|
/*
|
|
* Throw away any memory aliased by the PCI region.
|
|
*/
|
|
if (pci_reserve_start_pfn < end && pci_reserve_end_pfn > start)
|
|
reserve_bootmem(PFN_PHYS(pci_reserve_start_pfn),
|
|
PFN_PHYS(pci_reserve_end_pfn -
|
|
pci_reserve_start_pfn),
|
|
BOOTMEM_EXCLUSIVE);
|
|
#endif
|
|
}
|
|
|
|
static void __init setup_bootmem_allocator(void)
|
|
{
|
|
int i;
|
|
for (i = 0; i < MAX_NUMNODES; ++i)
|
|
setup_bootmem_allocator_node(i);
|
|
|
|
#ifdef CONFIG_KEXEC
|
|
if (crashk_res.start != crashk_res.end)
|
|
reserve_bootmem(crashk_res.start, resource_size(&crashk_res), 0);
|
|
#endif
|
|
}
|
|
|
|
void *__init alloc_remap(int nid, unsigned long size)
|
|
{
|
|
int pages = node_end_pfn[nid] - node_start_pfn[nid];
|
|
void *map = pfn_to_kaddr(node_memmap_pfn[nid]);
|
|
BUG_ON(size != pages * sizeof(struct page));
|
|
memset(map, 0, size);
|
|
return map;
|
|
}
|
|
|
|
static int __init percpu_size(void)
|
|
{
|
|
int size = __per_cpu_end - __per_cpu_start;
|
|
size += PERCPU_MODULE_RESERVE;
|
|
size += PERCPU_DYNAMIC_EARLY_SIZE;
|
|
if (size < PCPU_MIN_UNIT_SIZE)
|
|
size = PCPU_MIN_UNIT_SIZE;
|
|
size = roundup(size, PAGE_SIZE);
|
|
|
|
/* In several places we assume the per-cpu data fits on a huge page. */
|
|
BUG_ON(kdata_huge && size > HPAGE_SIZE);
|
|
return size;
|
|
}
|
|
|
|
static void __init zone_sizes_init(void)
|
|
{
|
|
unsigned long zones_size[MAX_NR_ZONES] = { 0 };
|
|
int size = percpu_size();
|
|
int num_cpus = smp_height * smp_width;
|
|
const unsigned long dma_end = (1UL << (32 - PAGE_SHIFT));
|
|
|
|
int i;
|
|
|
|
for (i = 0; i < num_cpus; ++i)
|
|
node_percpu[cpu_to_node(i)] += size;
|
|
|
|
for_each_online_node(i) {
|
|
unsigned long start = node_start_pfn[i];
|
|
unsigned long end = node_end_pfn[i];
|
|
#ifdef CONFIG_HIGHMEM
|
|
unsigned long lowmem_end = node_lowmem_end_pfn[i];
|
|
#else
|
|
unsigned long lowmem_end = end;
|
|
#endif
|
|
int memmap_size = (end - start) * sizeof(struct page);
|
|
node_free_pfn[i] = start;
|
|
|
|
/*
|
|
* Set aside pages for per-cpu data and the mem_map array.
|
|
*
|
|
* Since the per-cpu data requires special homecaching,
|
|
* if we are in kdata_huge mode, we put it at the end of
|
|
* the lowmem region. If we're not in kdata_huge mode,
|
|
* we take the per-cpu pages from the bottom of the
|
|
* controller, since that avoids fragmenting a huge page
|
|
* that users might want. We always take the memmap
|
|
* from the bottom of the controller, since with
|
|
* kdata_huge that lets it be under a huge TLB entry.
|
|
*
|
|
* If the user has requested isolnodes for a controller,
|
|
* though, there'll be no lowmem, so we just alloc_bootmem
|
|
* the memmap. There will be no percpu memory either.
|
|
*/
|
|
if (i != 0 && cpu_isset(i, isolnodes)) {
|
|
node_memmap_pfn[i] =
|
|
alloc_bootmem_pfn(0, memmap_size, 0);
|
|
BUG_ON(node_percpu[i] != 0);
|
|
} else if (node_has_bootmem(start)) {
|
|
unsigned long goal = 0;
|
|
node_memmap_pfn[i] =
|
|
alloc_bootmem_pfn(i, memmap_size, 0);
|
|
if (kdata_huge)
|
|
goal = PFN_PHYS(lowmem_end) - node_percpu[i];
|
|
if (node_percpu[i])
|
|
node_percpu_pfn[i] =
|
|
alloc_bootmem_pfn(i, node_percpu[i],
|
|
goal);
|
|
} else {
|
|
/* In non-bootmem zones, just reserve some pages. */
|
|
node_memmap_pfn[i] = node_free_pfn[i];
|
|
node_free_pfn[i] += PFN_UP(memmap_size);
|
|
if (!kdata_huge) {
|
|
node_percpu_pfn[i] = node_free_pfn[i];
|
|
node_free_pfn[i] += PFN_UP(node_percpu[i]);
|
|
} else {
|
|
node_percpu_pfn[i] =
|
|
lowmem_end - PFN_UP(node_percpu[i]);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_HIGHMEM
|
|
if (start > lowmem_end) {
|
|
zones_size[ZONE_NORMAL] = 0;
|
|
zones_size[ZONE_HIGHMEM] = end - start;
|
|
} else {
|
|
zones_size[ZONE_NORMAL] = lowmem_end - start;
|
|
zones_size[ZONE_HIGHMEM] = end - lowmem_end;
|
|
}
|
|
#else
|
|
zones_size[ZONE_NORMAL] = end - start;
|
|
#endif
|
|
|
|
if (start < dma_end) {
|
|
zones_size[ZONE_DMA] = min(zones_size[ZONE_NORMAL],
|
|
dma_end - start);
|
|
zones_size[ZONE_NORMAL] -= zones_size[ZONE_DMA];
|
|
} else {
|
|
zones_size[ZONE_DMA] = 0;
|
|
}
|
|
|
|
/* Take zone metadata from controller 0 if we're isolnode. */
|
|
if (node_isset(i, isolnodes))
|
|
NODE_DATA(i)->bdata = &bootmem_node_data[0];
|
|
|
|
free_area_init_node(i, zones_size, start, NULL);
|
|
printk(KERN_DEBUG " Normal zone: %ld per-cpu pages\n",
|
|
PFN_UP(node_percpu[i]));
|
|
|
|
/* Track the type of memory on each node */
|
|
if (zones_size[ZONE_NORMAL] || zones_size[ZONE_DMA])
|
|
node_set_state(i, N_NORMAL_MEMORY);
|
|
#ifdef CONFIG_HIGHMEM
|
|
if (end != start)
|
|
node_set_state(i, N_HIGH_MEMORY);
|
|
#endif
|
|
|
|
node_set_online(i);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_NUMA
|
|
|
|
/* which logical CPUs are on which nodes */
|
|
struct cpumask node_2_cpu_mask[MAX_NUMNODES] __write_once;
|
|
EXPORT_SYMBOL(node_2_cpu_mask);
|
|
|
|
/* which node each logical CPU is on */
|
|
char cpu_2_node[NR_CPUS] __write_once __attribute__((aligned(L2_CACHE_BYTES)));
|
|
EXPORT_SYMBOL(cpu_2_node);
|
|
|
|
/* Return cpu_to_node() except for cpus not yet assigned, which return -1 */
|
|
static int __init cpu_to_bound_node(int cpu, struct cpumask* unbound_cpus)
|
|
{
|
|
if (!cpu_possible(cpu) || cpumask_test_cpu(cpu, unbound_cpus))
|
|
return -1;
|
|
else
|
|
return cpu_to_node(cpu);
|
|
}
|
|
|
|
/* Return number of immediately-adjacent tiles sharing the same NUMA node. */
|
|
static int __init node_neighbors(int node, int cpu,
|
|
struct cpumask *unbound_cpus)
|
|
{
|
|
int neighbors = 0;
|
|
int w = smp_width;
|
|
int h = smp_height;
|
|
int x = cpu % w;
|
|
int y = cpu / w;
|
|
if (x > 0 && cpu_to_bound_node(cpu-1, unbound_cpus) == node)
|
|
++neighbors;
|
|
if (x < w-1 && cpu_to_bound_node(cpu+1, unbound_cpus) == node)
|
|
++neighbors;
|
|
if (y > 0 && cpu_to_bound_node(cpu-w, unbound_cpus) == node)
|
|
++neighbors;
|
|
if (y < h-1 && cpu_to_bound_node(cpu+w, unbound_cpus) == node)
|
|
++neighbors;
|
|
return neighbors;
|
|
}
|
|
|
|
static void __init setup_numa_mapping(void)
|
|
{
|
|
int distance[MAX_NUMNODES][NR_CPUS];
|
|
HV_Coord coord;
|
|
int cpu, node, cpus, i, x, y;
|
|
int num_nodes = num_online_nodes();
|
|
struct cpumask unbound_cpus;
|
|
nodemask_t default_nodes;
|
|
|
|
cpumask_clear(&unbound_cpus);
|
|
|
|
/* Get set of nodes we will use for defaults */
|
|
nodes_andnot(default_nodes, node_online_map, isolnodes);
|
|
if (nodes_empty(default_nodes)) {
|
|
BUG_ON(!node_isset(0, node_online_map));
|
|
pr_err("Forcing NUMA node zero available as a default node\n");
|
|
node_set(0, default_nodes);
|
|
}
|
|
|
|
/* Populate the distance[] array */
|
|
memset(distance, -1, sizeof(distance));
|
|
cpu = 0;
|
|
for (coord.y = 0; coord.y < smp_height; ++coord.y) {
|
|
for (coord.x = 0; coord.x < smp_width;
|
|
++coord.x, ++cpu) {
|
|
BUG_ON(cpu >= nr_cpu_ids);
|
|
if (!cpu_possible(cpu)) {
|
|
cpu_2_node[cpu] = -1;
|
|
continue;
|
|
}
|
|
for_each_node_mask(node, default_nodes) {
|
|
HV_MemoryControllerInfo info =
|
|
hv_inquire_memory_controller(
|
|
coord, node_controller[node]);
|
|
distance[node][cpu] =
|
|
ABS(info.coord.x) + ABS(info.coord.y);
|
|
}
|
|
cpumask_set_cpu(cpu, &unbound_cpus);
|
|
}
|
|
}
|
|
cpus = cpu;
|
|
|
|
/*
|
|
* Round-robin through the NUMA nodes until all the cpus are
|
|
* assigned. We could be more clever here (e.g. create four
|
|
* sorted linked lists on the same set of cpu nodes, and pull
|
|
* off them in round-robin sequence, removing from all four
|
|
* lists each time) but given the relatively small numbers
|
|
* involved, O(n^2) seem OK for a one-time cost.
|
|
*/
|
|
node = first_node(default_nodes);
|
|
while (!cpumask_empty(&unbound_cpus)) {
|
|
int best_cpu = -1;
|
|
int best_distance = INT_MAX;
|
|
for (cpu = 0; cpu < cpus; ++cpu) {
|
|
if (cpumask_test_cpu(cpu, &unbound_cpus)) {
|
|
/*
|
|
* Compute metric, which is how much
|
|
* closer the cpu is to this memory
|
|
* controller than the others, shifted
|
|
* up, and then the number of
|
|
* neighbors already in the node as an
|
|
* epsilon adjustment to try to keep
|
|
* the nodes compact.
|
|
*/
|
|
int d = distance[node][cpu] * num_nodes;
|
|
for_each_node_mask(i, default_nodes) {
|
|
if (i != node)
|
|
d -= distance[i][cpu];
|
|
}
|
|
d *= 8; /* allow space for epsilon */
|
|
d -= node_neighbors(node, cpu, &unbound_cpus);
|
|
if (d < best_distance) {
|
|
best_cpu = cpu;
|
|
best_distance = d;
|
|
}
|
|
}
|
|
}
|
|
BUG_ON(best_cpu < 0);
|
|
cpumask_set_cpu(best_cpu, &node_2_cpu_mask[node]);
|
|
cpu_2_node[best_cpu] = node;
|
|
cpumask_clear_cpu(best_cpu, &unbound_cpus);
|
|
node = next_node(node, default_nodes);
|
|
if (node == MAX_NUMNODES)
|
|
node = first_node(default_nodes);
|
|
}
|
|
|
|
/* Print out node assignments and set defaults for disabled cpus */
|
|
cpu = 0;
|
|
for (y = 0; y < smp_height; ++y) {
|
|
printk(KERN_DEBUG "NUMA cpu-to-node row %d:", y);
|
|
for (x = 0; x < smp_width; ++x, ++cpu) {
|
|
if (cpu_to_node(cpu) < 0) {
|
|
pr_cont(" -");
|
|
cpu_2_node[cpu] = first_node(default_nodes);
|
|
} else {
|
|
pr_cont(" %d", cpu_to_node(cpu));
|
|
}
|
|
}
|
|
pr_cont("\n");
|
|
}
|
|
}
|
|
|
|
static struct cpu cpu_devices[NR_CPUS];
|
|
|
|
static int __init topology_init(void)
|
|
{
|
|
int i;
|
|
|
|
for_each_online_node(i)
|
|
register_one_node(i);
|
|
|
|
for (i = 0; i < smp_height * smp_width; ++i)
|
|
register_cpu(&cpu_devices[i], i);
|
|
|
|
return 0;
|
|
}
|
|
|
|
subsys_initcall(topology_init);
|
|
|
|
#else /* !CONFIG_NUMA */
|
|
|
|
#define setup_numa_mapping() do { } while (0)
|
|
|
|
#endif /* CONFIG_NUMA */
|
|
|
|
/*
|
|
* Initialize hugepage support on this cpu. We do this on all cores
|
|
* early in boot: before argument parsing for the boot cpu, and after
|
|
* argument parsing but before the init functions run on the secondaries.
|
|
* So the values we set up here in the hypervisor may be overridden on
|
|
* the boot cpu as arguments are parsed.
|
|
*/
|
|
static __cpuinit void init_super_pages(void)
|
|
{
|
|
#ifdef CONFIG_HUGETLB_SUPER_PAGES
|
|
int i;
|
|
for (i = 0; i < HUGE_SHIFT_ENTRIES; ++i)
|
|
hv_set_pte_super_shift(i, huge_shift[i]);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* setup_cpu() - Do all necessary per-cpu, tile-specific initialization.
|
|
* @boot: Is this the boot cpu?
|
|
*
|
|
* Called from setup_arch() on the boot cpu, or online_secondary().
|
|
*/
|
|
void __cpuinit setup_cpu(int boot)
|
|
{
|
|
/* The boot cpu sets up its permanent mappings much earlier. */
|
|
if (!boot)
|
|
store_permanent_mappings();
|
|
|
|
/* Allow asynchronous TLB interrupts. */
|
|
#if CHIP_HAS_TILE_DMA()
|
|
arch_local_irq_unmask(INT_DMATLB_MISS);
|
|
arch_local_irq_unmask(INT_DMATLB_ACCESS);
|
|
#endif
|
|
#if CHIP_HAS_SN_PROC()
|
|
arch_local_irq_unmask(INT_SNITLB_MISS);
|
|
#endif
|
|
#ifdef __tilegx__
|
|
arch_local_irq_unmask(INT_SINGLE_STEP_K);
|
|
#endif
|
|
|
|
/*
|
|
* Allow user access to many generic SPRs, like the cycle
|
|
* counter, PASS/FAIL/DONE, INTERRUPT_CRITICAL_SECTION, etc.
|
|
*/
|
|
__insn_mtspr(SPR_MPL_WORLD_ACCESS_SET_0, 1);
|
|
|
|
#if CHIP_HAS_SN()
|
|
/* Static network is not restricted. */
|
|
__insn_mtspr(SPR_MPL_SN_ACCESS_SET_0, 1);
|
|
#endif
|
|
#if CHIP_HAS_SN_PROC()
|
|
__insn_mtspr(SPR_MPL_SN_NOTIFY_SET_0, 1);
|
|
__insn_mtspr(SPR_MPL_SN_CPL_SET_0, 1);
|
|
#endif
|
|
|
|
/*
|
|
* Set the MPL for interrupt control 0 & 1 to the corresponding
|
|
* values. This includes access to the SYSTEM_SAVE and EX_CONTEXT
|
|
* SPRs, as well as the interrupt mask.
|
|
*/
|
|
__insn_mtspr(SPR_MPL_INTCTRL_0_SET_0, 1);
|
|
__insn_mtspr(SPR_MPL_INTCTRL_1_SET_1, 1);
|
|
|
|
/* Initialize IRQ support for this cpu. */
|
|
setup_irq_regs();
|
|
|
|
#ifdef CONFIG_HARDWALL
|
|
/* Reset the network state on this cpu. */
|
|
reset_network_state();
|
|
#endif
|
|
|
|
init_super_pages();
|
|
}
|
|
|
|
#ifdef CONFIG_BLK_DEV_INITRD
|
|
|
|
/*
|
|
* Note that the kernel can potentially support other compression
|
|
* techniques than gz, though we don't do so by default. If we ever
|
|
* decide to do so we can either look for other filename extensions,
|
|
* or just allow a file with this name to be compressed with an
|
|
* arbitrary compressor (somewhat counterintuitively).
|
|
*/
|
|
static int __initdata set_initramfs_file;
|
|
static char __initdata initramfs_file[128] = "initramfs.cpio.gz";
|
|
|
|
static int __init setup_initramfs_file(char *str)
|
|
{
|
|
if (str == NULL)
|
|
return -EINVAL;
|
|
strncpy(initramfs_file, str, sizeof(initramfs_file) - 1);
|
|
set_initramfs_file = 1;
|
|
|
|
return 0;
|
|
}
|
|
early_param("initramfs_file", setup_initramfs_file);
|
|
|
|
/*
|
|
* We look for an "initramfs.cpio.gz" file in the hvfs.
|
|
* If there is one, we allocate some memory for it and it will be
|
|
* unpacked to the initramfs.
|
|
*/
|
|
static void __init load_hv_initrd(void)
|
|
{
|
|
HV_FS_StatInfo stat;
|
|
int fd, rc;
|
|
void *initrd;
|
|
|
|
fd = hv_fs_findfile((HV_VirtAddr) initramfs_file);
|
|
if (fd == HV_ENOENT) {
|
|
if (set_initramfs_file)
|
|
pr_warning("No such hvfs initramfs file '%s'\n",
|
|
initramfs_file);
|
|
return;
|
|
}
|
|
BUG_ON(fd < 0);
|
|
stat = hv_fs_fstat(fd);
|
|
BUG_ON(stat.size < 0);
|
|
if (stat.flags & HV_FS_ISDIR) {
|
|
pr_warning("Ignoring hvfs file '%s': it's a directory.\n",
|
|
initramfs_file);
|
|
return;
|
|
}
|
|
initrd = alloc_bootmem_pages(stat.size);
|
|
rc = hv_fs_pread(fd, (HV_VirtAddr) initrd, stat.size, 0);
|
|
if (rc != stat.size) {
|
|
pr_err("Error reading %d bytes from hvfs file '%s': %d\n",
|
|
stat.size, initramfs_file, rc);
|
|
free_initrd_mem((unsigned long) initrd, stat.size);
|
|
return;
|
|
}
|
|
initrd_start = (unsigned long) initrd;
|
|
initrd_end = initrd_start + stat.size;
|
|
}
|
|
|
|
void __init free_initrd_mem(unsigned long begin, unsigned long end)
|
|
{
|
|
free_bootmem(__pa(begin), end - begin);
|
|
}
|
|
|
|
#else
|
|
static inline void load_hv_initrd(void) {}
|
|
#endif /* CONFIG_BLK_DEV_INITRD */
|
|
|
|
static void __init validate_hv(void)
|
|
{
|
|
/*
|
|
* It may already be too late, but let's check our built-in
|
|
* configuration against what the hypervisor is providing.
|
|
*/
|
|
unsigned long glue_size = hv_sysconf(HV_SYSCONF_GLUE_SIZE);
|
|
int hv_page_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_SMALL);
|
|
int hv_hpage_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_LARGE);
|
|
HV_ASIDRange asid_range;
|
|
|
|
#ifndef CONFIG_SMP
|
|
HV_Topology topology = hv_inquire_topology();
|
|
BUG_ON(topology.coord.x != 0 || topology.coord.y != 0);
|
|
if (topology.width != 1 || topology.height != 1) {
|
|
pr_warning("Warning: booting UP kernel on %dx%d grid;"
|
|
" will ignore all but first tile.\n",
|
|
topology.width, topology.height);
|
|
}
|
|
#endif
|
|
|
|
if (PAGE_OFFSET + HV_GLUE_START_CPA + glue_size > (unsigned long)_text)
|
|
early_panic("Hypervisor glue size %ld is too big!\n",
|
|
glue_size);
|
|
if (hv_page_size != PAGE_SIZE)
|
|
early_panic("Hypervisor page size %#x != our %#lx\n",
|
|
hv_page_size, PAGE_SIZE);
|
|
if (hv_hpage_size != HPAGE_SIZE)
|
|
early_panic("Hypervisor huge page size %#x != our %#lx\n",
|
|
hv_hpage_size, HPAGE_SIZE);
|
|
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* Some hypervisor APIs take a pointer to a bitmap array
|
|
* whose size is at least the number of cpus on the chip.
|
|
* We use a struct cpumask for this, so it must be big enough.
|
|
*/
|
|
if ((smp_height * smp_width) > nr_cpu_ids)
|
|
early_panic("Hypervisor %d x %d grid too big for Linux"
|
|
" NR_CPUS %d\n", smp_height, smp_width,
|
|
nr_cpu_ids);
|
|
#endif
|
|
|
|
/*
|
|
* Check that we're using allowed ASIDs, and initialize the
|
|
* various asid variables to their appropriate initial states.
|
|
*/
|
|
asid_range = hv_inquire_asid(0);
|
|
__get_cpu_var(current_asid) = min_asid = asid_range.start;
|
|
max_asid = asid_range.start + asid_range.size - 1;
|
|
|
|
if (hv_confstr(HV_CONFSTR_CHIP_MODEL, (HV_VirtAddr)chip_model,
|
|
sizeof(chip_model)) < 0) {
|
|
pr_err("Warning: HV_CONFSTR_CHIP_MODEL not available\n");
|
|
strlcpy(chip_model, "unknown", sizeof(chip_model));
|
|
}
|
|
}
|
|
|
|
static void __init validate_va(void)
|
|
{
|
|
#ifndef __tilegx__ /* FIXME: GX: probably some validation relevant here */
|
|
/*
|
|
* Similarly, make sure we're only using allowed VAs.
|
|
* We assume we can contiguously use MEM_USER_INTRPT .. MEM_HV_INTRPT,
|
|
* and 0 .. KERNEL_HIGH_VADDR.
|
|
* In addition, make sure we CAN'T use the end of memory, since
|
|
* we use the last chunk of each pgd for the pgd_list.
|
|
*/
|
|
int i, user_kernel_ok = 0;
|
|
unsigned long max_va = 0;
|
|
unsigned long list_va =
|
|
((PGD_LIST_OFFSET / sizeof(pgd_t)) << PGDIR_SHIFT);
|
|
|
|
for (i = 0; ; ++i) {
|
|
HV_VirtAddrRange range = hv_inquire_virtual(i);
|
|
if (range.size == 0)
|
|
break;
|
|
if (range.start <= MEM_USER_INTRPT &&
|
|
range.start + range.size >= MEM_HV_INTRPT)
|
|
user_kernel_ok = 1;
|
|
if (range.start == 0)
|
|
max_va = range.size;
|
|
BUG_ON(range.start + range.size > list_va);
|
|
}
|
|
if (!user_kernel_ok)
|
|
early_panic("Hypervisor not configured for user/kernel VAs\n");
|
|
if (max_va == 0)
|
|
early_panic("Hypervisor not configured for low VAs\n");
|
|
if (max_va < KERNEL_HIGH_VADDR)
|
|
early_panic("Hypervisor max VA %#lx smaller than %#lx\n",
|
|
max_va, KERNEL_HIGH_VADDR);
|
|
|
|
/* Kernel PCs must have their high bit set; see intvec.S. */
|
|
if ((long)VMALLOC_START >= 0)
|
|
early_panic(
|
|
"Linux VMALLOC region below the 2GB line (%#lx)!\n"
|
|
"Reconfigure the kernel with fewer NR_HUGE_VMAPS\n"
|
|
"or smaller VMALLOC_RESERVE.\n",
|
|
VMALLOC_START);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* cpu_lotar_map lists all the cpus that are valid for the supervisor
|
|
* to cache data on at a page level, i.e. what cpus can be placed in
|
|
* the LOTAR field of a PTE. It is equivalent to the set of possible
|
|
* cpus plus any other cpus that are willing to share their cache.
|
|
* It is set by hv_inquire_tiles(HV_INQ_TILES_LOTAR).
|
|
*/
|
|
struct cpumask __write_once cpu_lotar_map;
|
|
EXPORT_SYMBOL(cpu_lotar_map);
|
|
|
|
#if CHIP_HAS_CBOX_HOME_MAP()
|
|
/*
|
|
* hash_for_home_map lists all the tiles that hash-for-home data
|
|
* will be cached on. Note that this may includes tiles that are not
|
|
* valid for this supervisor to use otherwise (e.g. if a hypervisor
|
|
* device is being shared between multiple supervisors).
|
|
* It is set by hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE).
|
|
*/
|
|
struct cpumask hash_for_home_map;
|
|
EXPORT_SYMBOL(hash_for_home_map);
|
|
#endif
|
|
|
|
/*
|
|
* cpu_cacheable_map lists all the cpus whose caches the hypervisor can
|
|
* flush on our behalf. It is set to cpu_possible_mask OR'ed with
|
|
* hash_for_home_map, and it is what should be passed to
|
|
* hv_flush_remote() to flush all caches. Note that if there are
|
|
* dedicated hypervisor driver tiles that have authorized use of their
|
|
* cache, those tiles will only appear in cpu_lotar_map, NOT in
|
|
* cpu_cacheable_map, as they are a special case.
|
|
*/
|
|
struct cpumask __write_once cpu_cacheable_map;
|
|
EXPORT_SYMBOL(cpu_cacheable_map);
|
|
|
|
static __initdata struct cpumask disabled_map;
|
|
|
|
static int __init disabled_cpus(char *str)
|
|
{
|
|
int boot_cpu = smp_processor_id();
|
|
|
|
if (str == NULL || cpulist_parse_crop(str, &disabled_map) != 0)
|
|
return -EINVAL;
|
|
if (cpumask_test_cpu(boot_cpu, &disabled_map)) {
|
|
pr_err("disabled_cpus: can't disable boot cpu %d\n", boot_cpu);
|
|
cpumask_clear_cpu(boot_cpu, &disabled_map);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
early_param("disabled_cpus", disabled_cpus);
|
|
|
|
void __init print_disabled_cpus(void)
|
|
{
|
|
if (!cpumask_empty(&disabled_map)) {
|
|
char buf[100];
|
|
cpulist_scnprintf(buf, sizeof(buf), &disabled_map);
|
|
pr_info("CPUs not available for Linux: %s\n", buf);
|
|
}
|
|
}
|
|
|
|
static void __init setup_cpu_maps(void)
|
|
{
|
|
struct cpumask hv_disabled_map, cpu_possible_init;
|
|
int boot_cpu = smp_processor_id();
|
|
int cpus, i, rc;
|
|
|
|
/* Learn which cpus are allowed by the hypervisor. */
|
|
rc = hv_inquire_tiles(HV_INQ_TILES_AVAIL,
|
|
(HV_VirtAddr) cpumask_bits(&cpu_possible_init),
|
|
sizeof(cpu_cacheable_map));
|
|
if (rc < 0)
|
|
early_panic("hv_inquire_tiles(AVAIL) failed: rc %d\n", rc);
|
|
if (!cpumask_test_cpu(boot_cpu, &cpu_possible_init))
|
|
early_panic("Boot CPU %d disabled by hypervisor!\n", boot_cpu);
|
|
|
|
/* Compute the cpus disabled by the hvconfig file. */
|
|
cpumask_complement(&hv_disabled_map, &cpu_possible_init);
|
|
|
|
/* Include them with the cpus disabled by "disabled_cpus". */
|
|
cpumask_or(&disabled_map, &disabled_map, &hv_disabled_map);
|
|
|
|
/*
|
|
* Disable every cpu after "setup_max_cpus". But don't mark
|
|
* as disabled the cpus that are outside of our initial rectangle,
|
|
* since that turns out to be confusing.
|
|
*/
|
|
cpus = 1; /* this cpu */
|
|
cpumask_set_cpu(boot_cpu, &disabled_map); /* ignore this cpu */
|
|
for (i = 0; cpus < setup_max_cpus; ++i)
|
|
if (!cpumask_test_cpu(i, &disabled_map))
|
|
++cpus;
|
|
for (; i < smp_height * smp_width; ++i)
|
|
cpumask_set_cpu(i, &disabled_map);
|
|
cpumask_clear_cpu(boot_cpu, &disabled_map); /* reset this cpu */
|
|
for (i = smp_height * smp_width; i < NR_CPUS; ++i)
|
|
cpumask_clear_cpu(i, &disabled_map);
|
|
|
|
/*
|
|
* Setup cpu_possible map as every cpu allocated to us, minus
|
|
* the results of any "disabled_cpus" settings.
|
|
*/
|
|
cpumask_andnot(&cpu_possible_init, &cpu_possible_init, &disabled_map);
|
|
init_cpu_possible(&cpu_possible_init);
|
|
|
|
/* Learn which cpus are valid for LOTAR caching. */
|
|
rc = hv_inquire_tiles(HV_INQ_TILES_LOTAR,
|
|
(HV_VirtAddr) cpumask_bits(&cpu_lotar_map),
|
|
sizeof(cpu_lotar_map));
|
|
if (rc < 0) {
|
|
pr_err("warning: no HV_INQ_TILES_LOTAR; using AVAIL\n");
|
|
cpu_lotar_map = *cpu_possible_mask;
|
|
}
|
|
|
|
#if CHIP_HAS_CBOX_HOME_MAP()
|
|
/* Retrieve set of CPUs used for hash-for-home caching */
|
|
rc = hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE,
|
|
(HV_VirtAddr) hash_for_home_map.bits,
|
|
sizeof(hash_for_home_map));
|
|
if (rc < 0)
|
|
early_panic("hv_inquire_tiles(HFH_CACHE) failed: rc %d\n", rc);
|
|
cpumask_or(&cpu_cacheable_map, cpu_possible_mask, &hash_for_home_map);
|
|
#else
|
|
cpu_cacheable_map = *cpu_possible_mask;
|
|
#endif
|
|
}
|
|
|
|
|
|
static int __init dataplane(char *str)
|
|
{
|
|
pr_warning("WARNING: dataplane support disabled in this kernel\n");
|
|
return 0;
|
|
}
|
|
|
|
early_param("dataplane", dataplane);
|
|
|
|
#ifdef CONFIG_CMDLINE_BOOL
|
|
static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
|
|
#endif
|
|
|
|
void __init setup_arch(char **cmdline_p)
|
|
{
|
|
int len;
|
|
|
|
#if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE)
|
|
len = hv_get_command_line((HV_VirtAddr) boot_command_line,
|
|
COMMAND_LINE_SIZE);
|
|
if (boot_command_line[0])
|
|
pr_warning("WARNING: ignoring dynamic command line \"%s\"\n",
|
|
boot_command_line);
|
|
strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
|
|
#else
|
|
char *hv_cmdline;
|
|
#if defined(CONFIG_CMDLINE_BOOL)
|
|
if (builtin_cmdline[0]) {
|
|
int builtin_len = strlcpy(boot_command_line, builtin_cmdline,
|
|
COMMAND_LINE_SIZE);
|
|
if (builtin_len < COMMAND_LINE_SIZE-1)
|
|
boot_command_line[builtin_len++] = ' ';
|
|
hv_cmdline = &boot_command_line[builtin_len];
|
|
len = COMMAND_LINE_SIZE - builtin_len;
|
|
} else
|
|
#endif
|
|
{
|
|
hv_cmdline = boot_command_line;
|
|
len = COMMAND_LINE_SIZE;
|
|
}
|
|
len = hv_get_command_line((HV_VirtAddr) hv_cmdline, len);
|
|
if (len < 0 || len > COMMAND_LINE_SIZE)
|
|
early_panic("hv_get_command_line failed: %d\n", len);
|
|
#endif
|
|
|
|
*cmdline_p = boot_command_line;
|
|
|
|
/* Set disabled_map and setup_max_cpus very early */
|
|
parse_early_param();
|
|
|
|
/* Make sure the kernel is compatible with the hypervisor. */
|
|
validate_hv();
|
|
validate_va();
|
|
|
|
setup_cpu_maps();
|
|
|
|
|
|
#if defined(CONFIG_PCI) && !defined(__tilegx__)
|
|
/*
|
|
* Initialize the PCI structures. This is done before memory
|
|
* setup so that we know whether or not a pci_reserve region
|
|
* is necessary.
|
|
*/
|
|
if (tile_pci_init() == 0)
|
|
pci_reserve_mb = 0;
|
|
|
|
/* PCI systems reserve a region just below 4GB for mapping iomem. */
|
|
pci_reserve_end_pfn = (1 << (32 - PAGE_SHIFT));
|
|
pci_reserve_start_pfn = pci_reserve_end_pfn -
|
|
(pci_reserve_mb << (20 - PAGE_SHIFT));
|
|
#endif
|
|
|
|
init_mm.start_code = (unsigned long) _text;
|
|
init_mm.end_code = (unsigned long) _etext;
|
|
init_mm.end_data = (unsigned long) _edata;
|
|
init_mm.brk = (unsigned long) _end;
|
|
|
|
setup_memory();
|
|
store_permanent_mappings();
|
|
setup_bootmem_allocator();
|
|
|
|
/*
|
|
* NOTE: before this point _nobody_ is allowed to allocate
|
|
* any memory using the bootmem allocator.
|
|
*/
|
|
|
|
#ifdef CONFIG_SWIOTLB
|
|
swiotlb_init(0);
|
|
#endif
|
|
|
|
paging_init();
|
|
setup_numa_mapping();
|
|
zone_sizes_init();
|
|
set_page_homes();
|
|
setup_cpu(1);
|
|
setup_clock();
|
|
load_hv_initrd();
|
|
}
|
|
|
|
|
|
/*
|
|
* Set up per-cpu memory.
|
|
*/
|
|
|
|
unsigned long __per_cpu_offset[NR_CPUS] __write_once;
|
|
EXPORT_SYMBOL(__per_cpu_offset);
|
|
|
|
static size_t __initdata pfn_offset[MAX_NUMNODES] = { 0 };
|
|
static unsigned long __initdata percpu_pfn[NR_CPUS] = { 0 };
|
|
|
|
/*
|
|
* As the percpu code allocates pages, we return the pages from the
|
|
* end of the node for the specified cpu.
|
|
*/
|
|
static void *__init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
|
|
{
|
|
int nid = cpu_to_node(cpu);
|
|
unsigned long pfn = node_percpu_pfn[nid] + pfn_offset[nid];
|
|
|
|
BUG_ON(size % PAGE_SIZE != 0);
|
|
pfn_offset[nid] += size / PAGE_SIZE;
|
|
BUG_ON(node_percpu[nid] < size);
|
|
node_percpu[nid] -= size;
|
|
if (percpu_pfn[cpu] == 0)
|
|
percpu_pfn[cpu] = pfn;
|
|
return pfn_to_kaddr(pfn);
|
|
}
|
|
|
|
/*
|
|
* Pages reserved for percpu memory are not freeable, and in any case we are
|
|
* on a short path to panic() in setup_per_cpu_area() at this point anyway.
|
|
*/
|
|
static void __init pcpu_fc_free(void *ptr, size_t size)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Set up vmalloc page tables using bootmem for the percpu code.
|
|
*/
|
|
static void __init pcpu_fc_populate_pte(unsigned long addr)
|
|
{
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
|
|
BUG_ON(pgd_addr_invalid(addr));
|
|
if (addr < VMALLOC_START || addr >= VMALLOC_END)
|
|
panic("PCPU addr %#lx outside vmalloc range %#lx..%#lx;"
|
|
" try increasing CONFIG_VMALLOC_RESERVE\n",
|
|
addr, VMALLOC_START, VMALLOC_END);
|
|
|
|
pgd = swapper_pg_dir + pgd_index(addr);
|
|
pud = pud_offset(pgd, addr);
|
|
BUG_ON(!pud_present(*pud));
|
|
pmd = pmd_offset(pud, addr);
|
|
if (pmd_present(*pmd)) {
|
|
BUG_ON(pmd_huge_page(*pmd));
|
|
} else {
|
|
pte = __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE,
|
|
HV_PAGE_TABLE_ALIGN, 0);
|
|
pmd_populate_kernel(&init_mm, pmd, pte);
|
|
}
|
|
}
|
|
|
|
void __init setup_per_cpu_areas(void)
|
|
{
|
|
struct page *pg;
|
|
unsigned long delta, pfn, lowmem_va;
|
|
unsigned long size = percpu_size();
|
|
char *ptr;
|
|
int rc, cpu, i;
|
|
|
|
rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE, pcpu_fc_alloc,
|
|
pcpu_fc_free, pcpu_fc_populate_pte);
|
|
if (rc < 0)
|
|
panic("Cannot initialize percpu area (err=%d)", rc);
|
|
|
|
delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
|
|
for_each_possible_cpu(cpu) {
|
|
__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
|
|
|
|
/* finv the copy out of cache so we can change homecache */
|
|
ptr = pcpu_base_addr + pcpu_unit_offsets[cpu];
|
|
__finv_buffer(ptr, size);
|
|
pfn = percpu_pfn[cpu];
|
|
|
|
/* Rewrite the page tables to cache on that cpu */
|
|
pg = pfn_to_page(pfn);
|
|
for (i = 0; i < size; i += PAGE_SIZE, ++pfn, ++pg) {
|
|
|
|
/* Update the vmalloc mapping and page home. */
|
|
unsigned long addr = (unsigned long)ptr + i;
|
|
pte_t *ptep = virt_to_pte(NULL, addr);
|
|
pte_t pte = *ptep;
|
|
BUG_ON(pfn != pte_pfn(pte));
|
|
pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_TILE_L3);
|
|
pte = set_remote_cache_cpu(pte, cpu);
|
|
set_pte_at(&init_mm, addr, ptep, pte);
|
|
|
|
/* Update the lowmem mapping for consistency. */
|
|
lowmem_va = (unsigned long)pfn_to_kaddr(pfn);
|
|
ptep = virt_to_pte(NULL, lowmem_va);
|
|
if (pte_huge(*ptep)) {
|
|
printk(KERN_DEBUG "early shatter of huge page"
|
|
" at %#lx\n", lowmem_va);
|
|
shatter_pmd((pmd_t *)ptep);
|
|
ptep = virt_to_pte(NULL, lowmem_va);
|
|
BUG_ON(pte_huge(*ptep));
|
|
}
|
|
BUG_ON(pfn != pte_pfn(*ptep));
|
|
set_pte_at(&init_mm, lowmem_va, ptep, pte);
|
|
}
|
|
}
|
|
|
|
/* Set our thread pointer appropriately. */
|
|
set_my_cpu_offset(__per_cpu_offset[smp_processor_id()]);
|
|
|
|
/* Make sure the finv's have completed. */
|
|
mb_incoherent();
|
|
|
|
/* Flush the TLB so we reference it properly from here on out. */
|
|
local_flush_tlb_all();
|
|
}
|
|
|
|
static struct resource data_resource = {
|
|
.name = "Kernel data",
|
|
.start = 0,
|
|
.end = 0,
|
|
.flags = IORESOURCE_BUSY | IORESOURCE_MEM
|
|
};
|
|
|
|
static struct resource code_resource = {
|
|
.name = "Kernel code",
|
|
.start = 0,
|
|
.end = 0,
|
|
.flags = IORESOURCE_BUSY | IORESOURCE_MEM
|
|
};
|
|
|
|
/*
|
|
* On Pro, we reserve all resources above 4GB so that PCI won't try to put
|
|
* mappings above 4GB.
|
|
*/
|
|
#if defined(CONFIG_PCI) && !defined(__tilegx__)
|
|
static struct resource* __init
|
|
insert_non_bus_resource(void)
|
|
{
|
|
struct resource *res =
|
|
kzalloc(sizeof(struct resource), GFP_ATOMIC);
|
|
res->name = "Non-Bus Physical Address Space";
|
|
res->start = (1ULL << 32);
|
|
res->end = -1LL;
|
|
res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
|
|
if (insert_resource(&iomem_resource, res)) {
|
|
kfree(res);
|
|
return NULL;
|
|
}
|
|
return res;
|
|
}
|
|
#endif
|
|
|
|
static struct resource* __init
|
|
insert_ram_resource(u64 start_pfn, u64 end_pfn)
|
|
{
|
|
struct resource *res =
|
|
kzalloc(sizeof(struct resource), GFP_ATOMIC);
|
|
res->name = "System RAM";
|
|
res->start = start_pfn << PAGE_SHIFT;
|
|
res->end = (end_pfn << PAGE_SHIFT) - 1;
|
|
res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
|
|
if (insert_resource(&iomem_resource, res)) {
|
|
kfree(res);
|
|
return NULL;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
* Request address space for all standard resources
|
|
*
|
|
* If the system includes PCI root complex drivers, we need to create
|
|
* a window just below 4GB where PCI BARs can be mapped.
|
|
*/
|
|
static int __init request_standard_resources(void)
|
|
{
|
|
int i;
|
|
enum { CODE_DELTA = MEM_SV_INTRPT - PAGE_OFFSET };
|
|
|
|
#if defined(CONFIG_PCI) && !defined(__tilegx__)
|
|
insert_non_bus_resource();
|
|
#endif
|
|
|
|
for_each_online_node(i) {
|
|
u64 start_pfn = node_start_pfn[i];
|
|
u64 end_pfn = node_end_pfn[i];
|
|
|
|
#if defined(CONFIG_PCI) && !defined(__tilegx__)
|
|
if (start_pfn <= pci_reserve_start_pfn &&
|
|
end_pfn > pci_reserve_start_pfn) {
|
|
if (end_pfn > pci_reserve_end_pfn)
|
|
insert_ram_resource(pci_reserve_end_pfn,
|
|
end_pfn);
|
|
end_pfn = pci_reserve_start_pfn;
|
|
}
|
|
#endif
|
|
insert_ram_resource(start_pfn, end_pfn);
|
|
}
|
|
|
|
code_resource.start = __pa(_text - CODE_DELTA);
|
|
code_resource.end = __pa(_etext - CODE_DELTA)-1;
|
|
data_resource.start = __pa(_sdata);
|
|
data_resource.end = __pa(_end)-1;
|
|
|
|
insert_resource(&iomem_resource, &code_resource);
|
|
insert_resource(&iomem_resource, &data_resource);
|
|
|
|
#ifdef CONFIG_KEXEC
|
|
insert_resource(&iomem_resource, &crashk_res);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
subsys_initcall(request_standard_resources);
|