linux/arch/powerpc/platforms/cell/celleb_scc_epci.c

439 lines
10 KiB
C

/*
* Support for SCC external PCI
*
* (C) Copyright 2004-2007 TOSHIBA CORPORATION
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#undef DEBUG
#include <linux/kernel.h>
#include <linux/threads.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/pci_regs.h>
#include <linux/bootmem.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/prom.h>
#include <asm/pci-bridge.h>
#include <asm/ppc-pci.h>
#include "celleb_scc.h"
#include "celleb_pci.h"
#define MAX_PCI_DEVICES 32
#define MAX_PCI_FUNCTIONS 8
#define iob() __asm__ __volatile__("eieio; sync":::"memory")
static inline PCI_IO_ADDR celleb_epci_get_epci_base(
struct pci_controller *hose)
{
/*
* Note:
* Celleb epci uses cfg_addr as a base address for
* epci control registers.
*/
return hose->cfg_addr;
}
static inline PCI_IO_ADDR celleb_epci_get_epci_cfg(
struct pci_controller *hose)
{
/*
* Note:
* Celleb epci uses cfg_data as a base address for
* configuration area for epci devices.
*/
return hose->cfg_data;
}
static inline void clear_and_disable_master_abort_interrupt(
struct pci_controller *hose)
{
PCI_IO_ADDR epci_base;
PCI_IO_ADDR reg;
epci_base = celleb_epci_get_epci_base(hose);
reg = epci_base + PCI_COMMAND;
out_be32(reg, in_be32(reg) | (PCI_STATUS_REC_MASTER_ABORT << 16));
}
static int celleb_epci_check_abort(struct pci_controller *hose,
PCI_IO_ADDR addr)
{
PCI_IO_ADDR reg;
PCI_IO_ADDR epci_base;
u32 val;
iob();
epci_base = celleb_epci_get_epci_base(hose);
reg = epci_base + PCI_COMMAND;
val = in_be32(reg);
if (val & (PCI_STATUS_REC_MASTER_ABORT << 16)) {
out_be32(reg,
(val & 0xffff) | (PCI_STATUS_REC_MASTER_ABORT << 16));
/* clear PCI Controller error, FRE, PMFE */
reg = epci_base + SCC_EPCI_STATUS;
out_be32(reg, SCC_EPCI_INT_PAI);
reg = epci_base + SCC_EPCI_VCSR;
val = in_be32(reg) & 0xffff;
val |= SCC_EPCI_VCSR_FRE;
out_be32(reg, val);
reg = epci_base + SCC_EPCI_VISTAT;
out_be32(reg, SCC_EPCI_VISTAT_PMFE);
return PCIBIOS_DEVICE_NOT_FOUND;
}
return PCIBIOS_SUCCESSFUL;
}
static PCI_IO_ADDR celleb_epci_make_config_addr(struct pci_bus *bus,
struct pci_controller *hose, unsigned int devfn, int where)
{
PCI_IO_ADDR addr;
if (bus != hose->bus)
addr = celleb_epci_get_epci_cfg(hose) +
(((bus->number & 0xff) << 16)
| ((devfn & 0xff) << 8)
| (where & 0xff)
| 0x01000000);
else
addr = celleb_epci_get_epci_cfg(hose) +
(((devfn & 0xff) << 8) | (where & 0xff));
pr_debug("EPCI: config_addr = 0x%p\n", addr);
return addr;
}
static int celleb_epci_read_config(struct pci_bus *bus,
unsigned int devfn, int where, int size, u32 *val)
{
PCI_IO_ADDR epci_base;
PCI_IO_ADDR addr;
struct device_node *node;
struct pci_controller *hose;
/* allignment check */
BUG_ON(where % size);
node = (struct device_node *)bus->sysdata;
hose = pci_find_hose_for_OF_device(node);
if (!celleb_epci_get_epci_cfg(hose))
return PCIBIOS_DEVICE_NOT_FOUND;
if (bus->number == hose->first_busno && devfn == 0) {
/* EPCI controller self */
epci_base = celleb_epci_get_epci_base(hose);
addr = epci_base + where;
switch (size) {
case 1:
*val = in_8(addr);
break;
case 2:
*val = in_be16(addr);
break;
case 4:
*val = in_be32(addr);
break;
default:
return PCIBIOS_DEVICE_NOT_FOUND;
}
} else {
clear_and_disable_master_abort_interrupt(hose);
addr = celleb_epci_make_config_addr(bus, hose, devfn, where);
switch (size) {
case 1:
*val = in_8(addr);
break;
case 2:
*val = in_le16(addr);
break;
case 4:
*val = in_le32(addr);
break;
default:
return PCIBIOS_DEVICE_NOT_FOUND;
}
}
pr_debug("EPCI: "
"addr=0x%p, devfn=0x%x, where=0x%x, size=0x%x, val=0x%x\n",
addr, devfn, where, size, *val);
return celleb_epci_check_abort(hose, NULL);
}
static int celleb_epci_write_config(struct pci_bus *bus,
unsigned int devfn, int where, int size, u32 val)
{
PCI_IO_ADDR epci_base;
PCI_IO_ADDR addr;
struct device_node *node;
struct pci_controller *hose;
/* allignment check */
BUG_ON(where % size);
node = (struct device_node *)bus->sysdata;
hose = pci_find_hose_for_OF_device(node);
if (!celleb_epci_get_epci_cfg(hose))
return PCIBIOS_DEVICE_NOT_FOUND;
if (bus->number == hose->first_busno && devfn == 0) {
/* EPCI controller self */
epci_base = celleb_epci_get_epci_base(hose);
addr = epci_base + where;
switch (size) {
case 1:
out_8(addr, val);
break;
case 2:
out_be16(addr, val);
break;
case 4:
out_be32(addr, val);
break;
default:
return PCIBIOS_DEVICE_NOT_FOUND;
}
} else {
clear_and_disable_master_abort_interrupt(hose);
addr = celleb_epci_make_config_addr(bus, hose, devfn, where);
switch (size) {
case 1:
out_8(addr, val);
break;
case 2:
out_le16(addr, val);
break;
case 4:
out_le32(addr, val);
break;
default:
return PCIBIOS_DEVICE_NOT_FOUND;
}
}
return celleb_epci_check_abort(hose, addr);
}
struct pci_ops celleb_epci_ops = {
.read = celleb_epci_read_config,
.write = celleb_epci_write_config,
};
/* to be moved in FW */
static int __init celleb_epci_init(struct pci_controller *hose)
{
u32 val;
PCI_IO_ADDR reg;
PCI_IO_ADDR epci_base;
int hwres = 0;
epci_base = celleb_epci_get_epci_base(hose);
/* PCI core reset(Internal bus and PCI clock) */
reg = epci_base + SCC_EPCI_CKCTRL;
val = in_be32(reg);
if (val == 0x00030101)
hwres = 1;
else {
val &= ~(SCC_EPCI_CKCTRL_CRST0 | SCC_EPCI_CKCTRL_CRST1);
out_be32(reg, val);
/* set PCI core clock */
val = in_be32(reg);
val |= (SCC_EPCI_CKCTRL_OCLKEN | SCC_EPCI_CKCTRL_LCLKEN);
out_be32(reg, val);
/* release PCI core reset (internal bus) */
val = in_be32(reg);
val |= SCC_EPCI_CKCTRL_CRST0;
out_be32(reg, val);
/* set PCI clock select */
reg = epci_base + SCC_EPCI_CLKRST;
val = in_be32(reg);
val &= ~SCC_EPCI_CLKRST_CKS_MASK;
val |= SCC_EPCI_CLKRST_CKS_2;
out_be32(reg, val);
/* set arbiter */
reg = epci_base + SCC_EPCI_ABTSET;
out_be32(reg, 0x0f1f001f); /* temporary value */
/* buffer on */
reg = epci_base + SCC_EPCI_CLKRST;
val = in_be32(reg);
val |= SCC_EPCI_CLKRST_BC;
out_be32(reg, val);
/* PCI clock enable */
val = in_be32(reg);
val |= SCC_EPCI_CLKRST_PCKEN;
out_be32(reg, val);
/* release PCI core reset (all) */
reg = epci_base + SCC_EPCI_CKCTRL;
val = in_be32(reg);
val |= (SCC_EPCI_CKCTRL_CRST0 | SCC_EPCI_CKCTRL_CRST1);
out_be32(reg, val);
/* set base translation registers. (already set by Beat) */
/* set base address masks. (already set by Beat) */
}
/* release interrupt masks and clear all interrupts */
reg = epci_base + SCC_EPCI_INTSET;
out_be32(reg, 0x013f011f); /* all interrupts enable */
reg = epci_base + SCC_EPCI_VIENAB;
val = SCC_EPCI_VIENAB_PMPEE | SCC_EPCI_VIENAB_PMFEE;
out_be32(reg, val);
reg = epci_base + SCC_EPCI_STATUS;
out_be32(reg, 0xffffffff);
reg = epci_base + SCC_EPCI_VISTAT;
out_be32(reg, 0xffffffff);
/* disable PCI->IB address translation */
reg = epci_base + SCC_EPCI_VCSR;
val = in_be32(reg);
val &= ~(SCC_EPCI_VCSR_DR | SCC_EPCI_VCSR_AT);
out_be32(reg, val);
/* set base addresses. (no need to set?) */
/* memory space, bus master enable */
reg = epci_base + PCI_COMMAND;
val = PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER;
out_be32(reg, val);
/* endian mode setup */
reg = epci_base + SCC_EPCI_ECMODE;
val = 0x00550155;
out_be32(reg, val);
/* set control option */
reg = epci_base + SCC_EPCI_CNTOPT;
val = in_be32(reg);
val |= SCC_EPCI_CNTOPT_O2PMB;
out_be32(reg, val);
/* XXX: temporay: set registers for address conversion setup */
reg = epci_base + SCC_EPCI_CNF10_REG;
out_be32(reg, 0x80000008);
reg = epci_base + SCC_EPCI_CNF14_REG;
out_be32(reg, 0x40000008);
reg = epci_base + SCC_EPCI_BAM0;
out_be32(reg, 0x80000000);
reg = epci_base + SCC_EPCI_BAM1;
out_be32(reg, 0xe0000000);
reg = epci_base + SCC_EPCI_PVBAT;
out_be32(reg, 0x80000000);
if (!hwres) {
/* release external PCI reset */
reg = epci_base + SCC_EPCI_CLKRST;
val = in_be32(reg);
val |= SCC_EPCI_CLKRST_PCIRST;
out_be32(reg, val);
}
return 0;
}
static int __init celleb_setup_epci(struct device_node *node,
struct pci_controller *hose)
{
struct resource r;
pr_debug("PCI: celleb_setup_epci()\n");
/*
* Note:
* Celleb epci uses cfg_addr and cfg_data member of
* pci_controller structure in irregular way.
*
* cfg_addr is used to map for control registers of
* celleb epci.
*
* cfg_data is used for configuration area of devices
* on Celleb epci buses.
*/
if (of_address_to_resource(node, 0, &r))
goto error;
hose->cfg_addr = ioremap(r.start, (r.end - r.start + 1));
if (!hose->cfg_addr)
goto error;
pr_debug("EPCI: cfg_addr map 0x%016lx->0x%016lx + 0x%016lx\n",
r.start, (unsigned long)hose->cfg_addr, (r.end - r.start + 1));
if (of_address_to_resource(node, 2, &r))
goto error;
hose->cfg_data = ioremap(r.start, (r.end - r.start + 1));
if (!hose->cfg_data)
goto error;
pr_debug("EPCI: cfg_data map 0x%016lx->0x%016lx + 0x%016lx\n",
r.start, (unsigned long)hose->cfg_data, (r.end - r.start + 1));
hose->ops = &celleb_epci_ops;
celleb_epci_init(hose);
return 0;
error:
if (hose->cfg_addr)
iounmap(hose->cfg_addr);
if (hose->cfg_data)
iounmap(hose->cfg_data);
return 1;
}
struct celleb_phb_spec celleb_epci_spec __initdata = {
.setup = celleb_setup_epci,
.ops = &spiderpci_ops,
.iowa_init = &spiderpci_iowa_init,
.iowa_data = (void *)0,
};