linux/drivers/gpu/drm/vmwgfx/vmwgfx_resource.c

1539 lines
41 KiB
C

/**************************************************************************
*
* Copyright © 2009-2015 VMware, Inc., Palo Alto, CA., USA
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
#include "vmwgfx_drv.h"
#include <drm/vmwgfx_drm.h>
#include <drm/ttm/ttm_object.h>
#include <drm/ttm/ttm_placement.h>
#include <drm/drmP.h>
#include "vmwgfx_resource_priv.h"
#include "vmwgfx_binding.h"
#define VMW_RES_EVICT_ERR_COUNT 10
struct vmw_user_dma_buffer {
struct ttm_prime_object prime;
struct vmw_dma_buffer dma;
};
struct vmw_bo_user_rep {
uint32_t handle;
uint64_t map_handle;
};
static inline struct vmw_dma_buffer *
vmw_dma_buffer(struct ttm_buffer_object *bo)
{
return container_of(bo, struct vmw_dma_buffer, base);
}
static inline struct vmw_user_dma_buffer *
vmw_user_dma_buffer(struct ttm_buffer_object *bo)
{
struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
return container_of(vmw_bo, struct vmw_user_dma_buffer, dma);
}
struct vmw_resource *vmw_resource_reference(struct vmw_resource *res)
{
kref_get(&res->kref);
return res;
}
struct vmw_resource *
vmw_resource_reference_unless_doomed(struct vmw_resource *res)
{
return kref_get_unless_zero(&res->kref) ? res : NULL;
}
/**
* vmw_resource_release_id - release a resource id to the id manager.
*
* @res: Pointer to the resource.
*
* Release the resource id to the resource id manager and set it to -1
*/
void vmw_resource_release_id(struct vmw_resource *res)
{
struct vmw_private *dev_priv = res->dev_priv;
struct idr *idr = &dev_priv->res_idr[res->func->res_type];
write_lock(&dev_priv->resource_lock);
if (res->id != -1)
idr_remove(idr, res->id);
res->id = -1;
write_unlock(&dev_priv->resource_lock);
}
static void vmw_resource_release(struct kref *kref)
{
struct vmw_resource *res =
container_of(kref, struct vmw_resource, kref);
struct vmw_private *dev_priv = res->dev_priv;
int id;
struct idr *idr = &dev_priv->res_idr[res->func->res_type];
write_lock(&dev_priv->resource_lock);
res->avail = false;
list_del_init(&res->lru_head);
write_unlock(&dev_priv->resource_lock);
if (res->backup) {
struct ttm_buffer_object *bo = &res->backup->base;
ttm_bo_reserve(bo, false, false, NULL);
if (!list_empty(&res->mob_head) &&
res->func->unbind != NULL) {
struct ttm_validate_buffer val_buf;
val_buf.bo = bo;
val_buf.shared = false;
res->func->unbind(res, false, &val_buf);
}
res->backup_dirty = false;
list_del_init(&res->mob_head);
ttm_bo_unreserve(bo);
vmw_dmabuf_unreference(&res->backup);
}
if (likely(res->hw_destroy != NULL)) {
mutex_lock(&dev_priv->binding_mutex);
vmw_binding_res_list_kill(&res->binding_head);
mutex_unlock(&dev_priv->binding_mutex);
res->hw_destroy(res);
}
id = res->id;
if (res->res_free != NULL)
res->res_free(res);
else
kfree(res);
write_lock(&dev_priv->resource_lock);
if (id != -1)
idr_remove(idr, id);
write_unlock(&dev_priv->resource_lock);
}
void vmw_resource_unreference(struct vmw_resource **p_res)
{
struct vmw_resource *res = *p_res;
*p_res = NULL;
kref_put(&res->kref, vmw_resource_release);
}
/**
* vmw_resource_alloc_id - release a resource id to the id manager.
*
* @res: Pointer to the resource.
*
* Allocate the lowest free resource from the resource manager, and set
* @res->id to that id. Returns 0 on success and -ENOMEM on failure.
*/
int vmw_resource_alloc_id(struct vmw_resource *res)
{
struct vmw_private *dev_priv = res->dev_priv;
int ret;
struct idr *idr = &dev_priv->res_idr[res->func->res_type];
BUG_ON(res->id != -1);
idr_preload(GFP_KERNEL);
write_lock(&dev_priv->resource_lock);
ret = idr_alloc(idr, res, 1, 0, GFP_NOWAIT);
if (ret >= 0)
res->id = ret;
write_unlock(&dev_priv->resource_lock);
idr_preload_end();
return ret < 0 ? ret : 0;
}
/**
* vmw_resource_init - initialize a struct vmw_resource
*
* @dev_priv: Pointer to a device private struct.
* @res: The struct vmw_resource to initialize.
* @obj_type: Resource object type.
* @delay_id: Boolean whether to defer device id allocation until
* the first validation.
* @res_free: Resource destructor.
* @func: Resource function table.
*/
int vmw_resource_init(struct vmw_private *dev_priv, struct vmw_resource *res,
bool delay_id,
void (*res_free) (struct vmw_resource *res),
const struct vmw_res_func *func)
{
kref_init(&res->kref);
res->hw_destroy = NULL;
res->res_free = res_free;
res->avail = false;
res->dev_priv = dev_priv;
res->func = func;
INIT_LIST_HEAD(&res->lru_head);
INIT_LIST_HEAD(&res->mob_head);
INIT_LIST_HEAD(&res->binding_head);
res->id = -1;
res->backup = NULL;
res->backup_offset = 0;
res->backup_dirty = false;
res->res_dirty = false;
if (delay_id)
return 0;
else
return vmw_resource_alloc_id(res);
}
/**
* vmw_resource_activate
*
* @res: Pointer to the newly created resource
* @hw_destroy: Destroy function. NULL if none.
*
* Activate a resource after the hardware has been made aware of it.
* Set tye destroy function to @destroy. Typically this frees the
* resource and destroys the hardware resources associated with it.
* Activate basically means that the function vmw_resource_lookup will
* find it.
*/
void vmw_resource_activate(struct vmw_resource *res,
void (*hw_destroy) (struct vmw_resource *))
{
struct vmw_private *dev_priv = res->dev_priv;
write_lock(&dev_priv->resource_lock);
res->avail = true;
res->hw_destroy = hw_destroy;
write_unlock(&dev_priv->resource_lock);
}
/**
* vmw_user_resource_lookup_handle - lookup a struct resource from a
* TTM user-space handle and perform basic type checks
*
* @dev_priv: Pointer to a device private struct
* @tfile: Pointer to a struct ttm_object_file identifying the caller
* @handle: The TTM user-space handle
* @converter: Pointer to an object describing the resource type
* @p_res: On successful return the location pointed to will contain
* a pointer to a refcounted struct vmw_resource.
*
* If the handle can't be found or is associated with an incorrect resource
* type, -EINVAL will be returned.
*/
int vmw_user_resource_lookup_handle(struct vmw_private *dev_priv,
struct ttm_object_file *tfile,
uint32_t handle,
const struct vmw_user_resource_conv
*converter,
struct vmw_resource **p_res)
{
struct ttm_base_object *base;
struct vmw_resource *res;
int ret = -EINVAL;
base = ttm_base_object_lookup(tfile, handle);
if (unlikely(base == NULL))
return -EINVAL;
if (unlikely(ttm_base_object_type(base) != converter->object_type))
goto out_bad_resource;
res = converter->base_obj_to_res(base);
read_lock(&dev_priv->resource_lock);
if (!res->avail || res->res_free != converter->res_free) {
read_unlock(&dev_priv->resource_lock);
goto out_bad_resource;
}
kref_get(&res->kref);
read_unlock(&dev_priv->resource_lock);
*p_res = res;
ret = 0;
out_bad_resource:
ttm_base_object_unref(&base);
return ret;
}
/**
* Helper function that looks either a surface or dmabuf.
*
* The pointer this pointed at by out_surf and out_buf needs to be null.
*/
int vmw_user_lookup_handle(struct vmw_private *dev_priv,
struct ttm_object_file *tfile,
uint32_t handle,
struct vmw_surface **out_surf,
struct vmw_dma_buffer **out_buf)
{
struct vmw_resource *res;
int ret;
BUG_ON(*out_surf || *out_buf);
ret = vmw_user_resource_lookup_handle(dev_priv, tfile, handle,
user_surface_converter,
&res);
if (!ret) {
*out_surf = vmw_res_to_srf(res);
return 0;
}
*out_surf = NULL;
ret = vmw_user_dmabuf_lookup(tfile, handle, out_buf, NULL);
return ret;
}
/**
* Buffer management.
*/
/**
* vmw_dmabuf_acc_size - Calculate the pinned memory usage of buffers
*
* @dev_priv: Pointer to a struct vmw_private identifying the device.
* @size: The requested buffer size.
* @user: Whether this is an ordinary dma buffer or a user dma buffer.
*/
static size_t vmw_dmabuf_acc_size(struct vmw_private *dev_priv, size_t size,
bool user)
{
static size_t struct_size, user_struct_size;
size_t num_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
size_t page_array_size = ttm_round_pot(num_pages * sizeof(void *));
if (unlikely(struct_size == 0)) {
size_t backend_size = ttm_round_pot(vmw_tt_size);
struct_size = backend_size +
ttm_round_pot(sizeof(struct vmw_dma_buffer));
user_struct_size = backend_size +
ttm_round_pot(sizeof(struct vmw_user_dma_buffer));
}
if (dev_priv->map_mode == vmw_dma_alloc_coherent)
page_array_size +=
ttm_round_pot(num_pages * sizeof(dma_addr_t));
return ((user) ? user_struct_size : struct_size) +
page_array_size;
}
void vmw_dmabuf_bo_free(struct ttm_buffer_object *bo)
{
struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
kfree(vmw_bo);
}
static void vmw_user_dmabuf_destroy(struct ttm_buffer_object *bo)
{
struct vmw_user_dma_buffer *vmw_user_bo = vmw_user_dma_buffer(bo);
ttm_prime_object_kfree(vmw_user_bo, prime);
}
int vmw_dmabuf_init(struct vmw_private *dev_priv,
struct vmw_dma_buffer *vmw_bo,
size_t size, struct ttm_placement *placement,
bool interruptible,
void (*bo_free) (struct ttm_buffer_object *bo))
{
struct ttm_bo_device *bdev = &dev_priv->bdev;
size_t acc_size;
int ret;
bool user = (bo_free == &vmw_user_dmabuf_destroy);
BUG_ON(!bo_free && (!user && (bo_free != vmw_dmabuf_bo_free)));
acc_size = vmw_dmabuf_acc_size(dev_priv, size, user);
memset(vmw_bo, 0, sizeof(*vmw_bo));
INIT_LIST_HEAD(&vmw_bo->res_list);
ret = ttm_bo_init(bdev, &vmw_bo->base, size,
ttm_bo_type_device, placement,
0, interruptible,
NULL, acc_size, NULL, NULL, bo_free);
return ret;
}
static void vmw_user_dmabuf_release(struct ttm_base_object **p_base)
{
struct vmw_user_dma_buffer *vmw_user_bo;
struct ttm_base_object *base = *p_base;
struct ttm_buffer_object *bo;
*p_base = NULL;
if (unlikely(base == NULL))
return;
vmw_user_bo = container_of(base, struct vmw_user_dma_buffer,
prime.base);
bo = &vmw_user_bo->dma.base;
ttm_bo_unref(&bo);
}
static void vmw_user_dmabuf_ref_obj_release(struct ttm_base_object *base,
enum ttm_ref_type ref_type)
{
struct vmw_user_dma_buffer *user_bo;
user_bo = container_of(base, struct vmw_user_dma_buffer, prime.base);
switch (ref_type) {
case TTM_REF_SYNCCPU_WRITE:
ttm_bo_synccpu_write_release(&user_bo->dma.base);
break;
default:
BUG();
}
}
/**
* vmw_user_dmabuf_alloc - Allocate a user dma buffer
*
* @dev_priv: Pointer to a struct device private.
* @tfile: Pointer to a struct ttm_object_file on which to register the user
* object.
* @size: Size of the dma buffer.
* @shareable: Boolean whether the buffer is shareable with other open files.
* @handle: Pointer to where the handle value should be assigned.
* @p_dma_buf: Pointer to where the refcounted struct vmw_dma_buffer pointer
* should be assigned.
*/
int vmw_user_dmabuf_alloc(struct vmw_private *dev_priv,
struct ttm_object_file *tfile,
uint32_t size,
bool shareable,
uint32_t *handle,
struct vmw_dma_buffer **p_dma_buf,
struct ttm_base_object **p_base)
{
struct vmw_user_dma_buffer *user_bo;
struct ttm_buffer_object *tmp;
int ret;
user_bo = kzalloc(sizeof(*user_bo), GFP_KERNEL);
if (unlikely(user_bo == NULL)) {
DRM_ERROR("Failed to allocate a buffer.\n");
return -ENOMEM;
}
ret = vmw_dmabuf_init(dev_priv, &user_bo->dma, size,
(dev_priv->has_mob) ?
&vmw_sys_placement :
&vmw_vram_sys_placement, true,
&vmw_user_dmabuf_destroy);
if (unlikely(ret != 0))
return ret;
tmp = ttm_bo_reference(&user_bo->dma.base);
ret = ttm_prime_object_init(tfile,
size,
&user_bo->prime,
shareable,
ttm_buffer_type,
&vmw_user_dmabuf_release,
&vmw_user_dmabuf_ref_obj_release);
if (unlikely(ret != 0)) {
ttm_bo_unref(&tmp);
goto out_no_base_object;
}
*p_dma_buf = &user_bo->dma;
if (p_base) {
*p_base = &user_bo->prime.base;
kref_get(&(*p_base)->refcount);
}
*handle = user_bo->prime.base.hash.key;
out_no_base_object:
return ret;
}
/**
* vmw_user_dmabuf_verify_access - verify access permissions on this
* buffer object.
*
* @bo: Pointer to the buffer object being accessed
* @tfile: Identifying the caller.
*/
int vmw_user_dmabuf_verify_access(struct ttm_buffer_object *bo,
struct ttm_object_file *tfile)
{
struct vmw_user_dma_buffer *vmw_user_bo;
if (unlikely(bo->destroy != vmw_user_dmabuf_destroy))
return -EPERM;
vmw_user_bo = vmw_user_dma_buffer(bo);
/* Check that the caller has opened the object. */
if (likely(ttm_ref_object_exists(tfile, &vmw_user_bo->prime.base)))
return 0;
DRM_ERROR("Could not grant buffer access.\n");
return -EPERM;
}
/**
* vmw_user_dmabuf_synccpu_grab - Grab a struct vmw_user_dma_buffer for cpu
* access, idling previous GPU operations on the buffer and optionally
* blocking it for further command submissions.
*
* @user_bo: Pointer to the buffer object being grabbed for CPU access
* @tfile: Identifying the caller.
* @flags: Flags indicating how the grab should be performed.
*
* A blocking grab will be automatically released when @tfile is closed.
*/
static int vmw_user_dmabuf_synccpu_grab(struct vmw_user_dma_buffer *user_bo,
struct ttm_object_file *tfile,
uint32_t flags)
{
struct ttm_buffer_object *bo = &user_bo->dma.base;
bool existed;
int ret;
if (flags & drm_vmw_synccpu_allow_cs) {
bool nonblock = !!(flags & drm_vmw_synccpu_dontblock);
long lret;
lret = reservation_object_wait_timeout_rcu(bo->resv, true, true,
nonblock ? 0 : MAX_SCHEDULE_TIMEOUT);
if (!lret)
return -EBUSY;
else if (lret < 0)
return lret;
return 0;
}
ret = ttm_bo_synccpu_write_grab
(bo, !!(flags & drm_vmw_synccpu_dontblock));
if (unlikely(ret != 0))
return ret;
ret = ttm_ref_object_add(tfile, &user_bo->prime.base,
TTM_REF_SYNCCPU_WRITE, &existed, false);
if (ret != 0 || existed)
ttm_bo_synccpu_write_release(&user_bo->dma.base);
return ret;
}
/**
* vmw_user_dmabuf_synccpu_release - Release a previous grab for CPU access,
* and unblock command submission on the buffer if blocked.
*
* @handle: Handle identifying the buffer object.
* @tfile: Identifying the caller.
* @flags: Flags indicating the type of release.
*/
static int vmw_user_dmabuf_synccpu_release(uint32_t handle,
struct ttm_object_file *tfile,
uint32_t flags)
{
if (!(flags & drm_vmw_synccpu_allow_cs))
return ttm_ref_object_base_unref(tfile, handle,
TTM_REF_SYNCCPU_WRITE);
return 0;
}
/**
* vmw_user_dmabuf_synccpu_release - ioctl function implementing the synccpu
* functionality.
*
* @dev: Identifies the drm device.
* @data: Pointer to the ioctl argument.
* @file_priv: Identifies the caller.
*
* This function checks the ioctl arguments for validity and calls the
* relevant synccpu functions.
*/
int vmw_user_dmabuf_synccpu_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_vmw_synccpu_arg *arg =
(struct drm_vmw_synccpu_arg *) data;
struct vmw_dma_buffer *dma_buf;
struct vmw_user_dma_buffer *user_bo;
struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
struct ttm_base_object *buffer_base;
int ret;
if ((arg->flags & (drm_vmw_synccpu_read | drm_vmw_synccpu_write)) == 0
|| (arg->flags & ~(drm_vmw_synccpu_read | drm_vmw_synccpu_write |
drm_vmw_synccpu_dontblock |
drm_vmw_synccpu_allow_cs)) != 0) {
DRM_ERROR("Illegal synccpu flags.\n");
return -EINVAL;
}
switch (arg->op) {
case drm_vmw_synccpu_grab:
ret = vmw_user_dmabuf_lookup(tfile, arg->handle, &dma_buf,
&buffer_base);
if (unlikely(ret != 0))
return ret;
user_bo = container_of(dma_buf, struct vmw_user_dma_buffer,
dma);
ret = vmw_user_dmabuf_synccpu_grab(user_bo, tfile, arg->flags);
vmw_dmabuf_unreference(&dma_buf);
ttm_base_object_unref(&buffer_base);
if (unlikely(ret != 0 && ret != -ERESTARTSYS &&
ret != -EBUSY)) {
DRM_ERROR("Failed synccpu grab on handle 0x%08x.\n",
(unsigned int) arg->handle);
return ret;
}
break;
case drm_vmw_synccpu_release:
ret = vmw_user_dmabuf_synccpu_release(arg->handle, tfile,
arg->flags);
if (unlikely(ret != 0)) {
DRM_ERROR("Failed synccpu release on handle 0x%08x.\n",
(unsigned int) arg->handle);
return ret;
}
break;
default:
DRM_ERROR("Invalid synccpu operation.\n");
return -EINVAL;
}
return 0;
}
int vmw_dmabuf_alloc_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct vmw_private *dev_priv = vmw_priv(dev);
union drm_vmw_alloc_dmabuf_arg *arg =
(union drm_vmw_alloc_dmabuf_arg *)data;
struct drm_vmw_alloc_dmabuf_req *req = &arg->req;
struct drm_vmw_dmabuf_rep *rep = &arg->rep;
struct vmw_dma_buffer *dma_buf;
uint32_t handle;
int ret;
ret = ttm_read_lock(&dev_priv->reservation_sem, true);
if (unlikely(ret != 0))
return ret;
ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile,
req->size, false, &handle, &dma_buf,
NULL);
if (unlikely(ret != 0))
goto out_no_dmabuf;
rep->handle = handle;
rep->map_handle = drm_vma_node_offset_addr(&dma_buf->base.vma_node);
rep->cur_gmr_id = handle;
rep->cur_gmr_offset = 0;
vmw_dmabuf_unreference(&dma_buf);
out_no_dmabuf:
ttm_read_unlock(&dev_priv->reservation_sem);
return ret;
}
int vmw_dmabuf_unref_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_vmw_unref_dmabuf_arg *arg =
(struct drm_vmw_unref_dmabuf_arg *)data;
return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
arg->handle,
TTM_REF_USAGE);
}
int vmw_user_dmabuf_lookup(struct ttm_object_file *tfile,
uint32_t handle, struct vmw_dma_buffer **out,
struct ttm_base_object **p_base)
{
struct vmw_user_dma_buffer *vmw_user_bo;
struct ttm_base_object *base;
base = ttm_base_object_lookup(tfile, handle);
if (unlikely(base == NULL)) {
pr_err("Invalid buffer object handle 0x%08lx\n",
(unsigned long)handle);
return -ESRCH;
}
if (unlikely(ttm_base_object_type(base) != ttm_buffer_type)) {
ttm_base_object_unref(&base);
pr_err("Invalid buffer object handle 0x%08lx\n",
(unsigned long)handle);
return -EINVAL;
}
vmw_user_bo = container_of(base, struct vmw_user_dma_buffer,
prime.base);
(void)ttm_bo_reference(&vmw_user_bo->dma.base);
if (p_base)
*p_base = base;
else
ttm_base_object_unref(&base);
*out = &vmw_user_bo->dma;
return 0;
}
int vmw_user_dmabuf_reference(struct ttm_object_file *tfile,
struct vmw_dma_buffer *dma_buf,
uint32_t *handle)
{
struct vmw_user_dma_buffer *user_bo;
if (dma_buf->base.destroy != vmw_user_dmabuf_destroy)
return -EINVAL;
user_bo = container_of(dma_buf, struct vmw_user_dma_buffer, dma);
*handle = user_bo->prime.base.hash.key;
return ttm_ref_object_add(tfile, &user_bo->prime.base,
TTM_REF_USAGE, NULL, false);
}
/**
* vmw_dumb_create - Create a dumb kms buffer
*
* @file_priv: Pointer to a struct drm_file identifying the caller.
* @dev: Pointer to the drm device.
* @args: Pointer to a struct drm_mode_create_dumb structure
*
* This is a driver callback for the core drm create_dumb functionality.
* Note that this is very similar to the vmw_dmabuf_alloc ioctl, except
* that the arguments have a different format.
*/
int vmw_dumb_create(struct drm_file *file_priv,
struct drm_device *dev,
struct drm_mode_create_dumb *args)
{
struct vmw_private *dev_priv = vmw_priv(dev);
struct vmw_dma_buffer *dma_buf;
int ret;
args->pitch = args->width * ((args->bpp + 7) / 8);
args->size = args->pitch * args->height;
ret = ttm_read_lock(&dev_priv->reservation_sem, true);
if (unlikely(ret != 0))
return ret;
ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile,
args->size, false, &args->handle,
&dma_buf, NULL);
if (unlikely(ret != 0))
goto out_no_dmabuf;
vmw_dmabuf_unreference(&dma_buf);
out_no_dmabuf:
ttm_read_unlock(&dev_priv->reservation_sem);
return ret;
}
/**
* vmw_dumb_map_offset - Return the address space offset of a dumb buffer
*
* @file_priv: Pointer to a struct drm_file identifying the caller.
* @dev: Pointer to the drm device.
* @handle: Handle identifying the dumb buffer.
* @offset: The address space offset returned.
*
* This is a driver callback for the core drm dumb_map_offset functionality.
*/
int vmw_dumb_map_offset(struct drm_file *file_priv,
struct drm_device *dev, uint32_t handle,
uint64_t *offset)
{
struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
struct vmw_dma_buffer *out_buf;
int ret;
ret = vmw_user_dmabuf_lookup(tfile, handle, &out_buf, NULL);
if (ret != 0)
return -EINVAL;
*offset = drm_vma_node_offset_addr(&out_buf->base.vma_node);
vmw_dmabuf_unreference(&out_buf);
return 0;
}
/**
* vmw_dumb_destroy - Destroy a dumb boffer
*
* @file_priv: Pointer to a struct drm_file identifying the caller.
* @dev: Pointer to the drm device.
* @handle: Handle identifying the dumb buffer.
*
* This is a driver callback for the core drm dumb_destroy functionality.
*/
int vmw_dumb_destroy(struct drm_file *file_priv,
struct drm_device *dev,
uint32_t handle)
{
return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
handle, TTM_REF_USAGE);
}
/**
* vmw_resource_buf_alloc - Allocate a backup buffer for a resource.
*
* @res: The resource for which to allocate a backup buffer.
* @interruptible: Whether any sleeps during allocation should be
* performed while interruptible.
*/
static int vmw_resource_buf_alloc(struct vmw_resource *res,
bool interruptible)
{
unsigned long size =
(res->backup_size + PAGE_SIZE - 1) & PAGE_MASK;
struct vmw_dma_buffer *backup;
int ret;
if (likely(res->backup)) {
BUG_ON(res->backup->base.num_pages * PAGE_SIZE < size);
return 0;
}
backup = kzalloc(sizeof(*backup), GFP_KERNEL);
if (unlikely(backup == NULL))
return -ENOMEM;
ret = vmw_dmabuf_init(res->dev_priv, backup, res->backup_size,
res->func->backup_placement,
interruptible,
&vmw_dmabuf_bo_free);
if (unlikely(ret != 0))
goto out_no_dmabuf;
res->backup = backup;
out_no_dmabuf:
return ret;
}
/**
* vmw_resource_do_validate - Make a resource up-to-date and visible
* to the device.
*
* @res: The resource to make visible to the device.
* @val_buf: Information about a buffer possibly
* containing backup data if a bind operation is needed.
*
* On hardware resource shortage, this function returns -EBUSY and
* should be retried once resources have been freed up.
*/
static int vmw_resource_do_validate(struct vmw_resource *res,
struct ttm_validate_buffer *val_buf)
{
int ret = 0;
const struct vmw_res_func *func = res->func;
if (unlikely(res->id == -1)) {
ret = func->create(res);
if (unlikely(ret != 0))
return ret;
}
if (func->bind &&
((func->needs_backup && list_empty(&res->mob_head) &&
val_buf->bo != NULL) ||
(!func->needs_backup && val_buf->bo != NULL))) {
ret = func->bind(res, val_buf);
if (unlikely(ret != 0))
goto out_bind_failed;
if (func->needs_backup)
list_add_tail(&res->mob_head, &res->backup->res_list);
}
/*
* Only do this on write operations, and move to
* vmw_resource_unreserve if it can be called after
* backup buffers have been unreserved. Otherwise
* sort out locking.
*/
res->res_dirty = true;
return 0;
out_bind_failed:
func->destroy(res);
return ret;
}
/**
* vmw_resource_unreserve - Unreserve a resource previously reserved for
* command submission.
*
* @res: Pointer to the struct vmw_resource to unreserve.
* @switch_backup: Backup buffer has been switched.
* @new_backup: Pointer to new backup buffer if command submission
* switched. May be NULL.
* @new_backup_offset: New backup offset if @switch_backup is true.
*
* Currently unreserving a resource means putting it back on the device's
* resource lru list, so that it can be evicted if necessary.
*/
void vmw_resource_unreserve(struct vmw_resource *res,
bool switch_backup,
struct vmw_dma_buffer *new_backup,
unsigned long new_backup_offset)
{
struct vmw_private *dev_priv = res->dev_priv;
if (!list_empty(&res->lru_head))
return;
if (switch_backup && new_backup != res->backup) {
if (res->backup) {
lockdep_assert_held(&res->backup->base.resv->lock.base);
list_del_init(&res->mob_head);
vmw_dmabuf_unreference(&res->backup);
}
if (new_backup) {
res->backup = vmw_dmabuf_reference(new_backup);
lockdep_assert_held(&new_backup->base.resv->lock.base);
list_add_tail(&res->mob_head, &new_backup->res_list);
} else {
res->backup = NULL;
}
}
if (switch_backup)
res->backup_offset = new_backup_offset;
if (!res->func->may_evict || res->id == -1 || res->pin_count)
return;
write_lock(&dev_priv->resource_lock);
list_add_tail(&res->lru_head,
&res->dev_priv->res_lru[res->func->res_type]);
write_unlock(&dev_priv->resource_lock);
}
/**
* vmw_resource_check_buffer - Check whether a backup buffer is needed
* for a resource and in that case, allocate
* one, reserve and validate it.
*
* @res: The resource for which to allocate a backup buffer.
* @interruptible: Whether any sleeps during allocation should be
* performed while interruptible.
* @val_buf: On successful return contains data about the
* reserved and validated backup buffer.
*/
static int
vmw_resource_check_buffer(struct vmw_resource *res,
bool interruptible,
struct ttm_validate_buffer *val_buf)
{
struct list_head val_list;
bool backup_dirty = false;
int ret;
if (unlikely(res->backup == NULL)) {
ret = vmw_resource_buf_alloc(res, interruptible);
if (unlikely(ret != 0))
return ret;
}
INIT_LIST_HEAD(&val_list);
val_buf->bo = ttm_bo_reference(&res->backup->base);
val_buf->shared = false;
list_add_tail(&val_buf->head, &val_list);
ret = ttm_eu_reserve_buffers(NULL, &val_list, interruptible, NULL);
if (unlikely(ret != 0))
goto out_no_reserve;
if (res->func->needs_backup && list_empty(&res->mob_head))
return 0;
backup_dirty = res->backup_dirty;
ret = ttm_bo_validate(&res->backup->base,
res->func->backup_placement,
true, false);
if (unlikely(ret != 0))
goto out_no_validate;
return 0;
out_no_validate:
ttm_eu_backoff_reservation(NULL, &val_list);
out_no_reserve:
ttm_bo_unref(&val_buf->bo);
if (backup_dirty)
vmw_dmabuf_unreference(&res->backup);
return ret;
}
/**
* vmw_resource_reserve - Reserve a resource for command submission
*
* @res: The resource to reserve.
*
* This function takes the resource off the LRU list and make sure
* a backup buffer is present for guest-backed resources. However,
* the buffer may not be bound to the resource at this point.
*
*/
int vmw_resource_reserve(struct vmw_resource *res, bool interruptible,
bool no_backup)
{
struct vmw_private *dev_priv = res->dev_priv;
int ret;
write_lock(&dev_priv->resource_lock);
list_del_init(&res->lru_head);
write_unlock(&dev_priv->resource_lock);
if (res->func->needs_backup && res->backup == NULL &&
!no_backup) {
ret = vmw_resource_buf_alloc(res, interruptible);
if (unlikely(ret != 0)) {
DRM_ERROR("Failed to allocate a backup buffer "
"of size %lu. bytes\n",
(unsigned long) res->backup_size);
return ret;
}
}
return 0;
}
/**
* vmw_resource_backoff_reservation - Unreserve and unreference a
* backup buffer
*.
* @val_buf: Backup buffer information.
*/
static void
vmw_resource_backoff_reservation(struct ttm_validate_buffer *val_buf)
{
struct list_head val_list;
if (likely(val_buf->bo == NULL))
return;
INIT_LIST_HEAD(&val_list);
list_add_tail(&val_buf->head, &val_list);
ttm_eu_backoff_reservation(NULL, &val_list);
ttm_bo_unref(&val_buf->bo);
}
/**
* vmw_resource_do_evict - Evict a resource, and transfer its data
* to a backup buffer.
*
* @res: The resource to evict.
* @interruptible: Whether to wait interruptible.
*/
static int vmw_resource_do_evict(struct vmw_resource *res, bool interruptible)
{
struct ttm_validate_buffer val_buf;
const struct vmw_res_func *func = res->func;
int ret;
BUG_ON(!func->may_evict);
val_buf.bo = NULL;
val_buf.shared = false;
ret = vmw_resource_check_buffer(res, interruptible, &val_buf);
if (unlikely(ret != 0))
return ret;
if (unlikely(func->unbind != NULL &&
(!func->needs_backup || !list_empty(&res->mob_head)))) {
ret = func->unbind(res, res->res_dirty, &val_buf);
if (unlikely(ret != 0))
goto out_no_unbind;
list_del_init(&res->mob_head);
}
ret = func->destroy(res);
res->backup_dirty = true;
res->res_dirty = false;
out_no_unbind:
vmw_resource_backoff_reservation(&val_buf);
return ret;
}
/**
* vmw_resource_validate - Make a resource up-to-date and visible
* to the device.
*
* @res: The resource to make visible to the device.
*
* On succesful return, any backup DMA buffer pointed to by @res->backup will
* be reserved and validated.
* On hardware resource shortage, this function will repeatedly evict
* resources of the same type until the validation succeeds.
*/
int vmw_resource_validate(struct vmw_resource *res)
{
int ret;
struct vmw_resource *evict_res;
struct vmw_private *dev_priv = res->dev_priv;
struct list_head *lru_list = &dev_priv->res_lru[res->func->res_type];
struct ttm_validate_buffer val_buf;
unsigned err_count = 0;
if (!res->func->create)
return 0;
val_buf.bo = NULL;
val_buf.shared = false;
if (res->backup)
val_buf.bo = &res->backup->base;
do {
ret = vmw_resource_do_validate(res, &val_buf);
if (likely(ret != -EBUSY))
break;
write_lock(&dev_priv->resource_lock);
if (list_empty(lru_list) || !res->func->may_evict) {
DRM_ERROR("Out of device device resources "
"for %s.\n", res->func->type_name);
ret = -EBUSY;
write_unlock(&dev_priv->resource_lock);
break;
}
evict_res = vmw_resource_reference
(list_first_entry(lru_list, struct vmw_resource,
lru_head));
list_del_init(&evict_res->lru_head);
write_unlock(&dev_priv->resource_lock);
ret = vmw_resource_do_evict(evict_res, true);
if (unlikely(ret != 0)) {
write_lock(&dev_priv->resource_lock);
list_add_tail(&evict_res->lru_head, lru_list);
write_unlock(&dev_priv->resource_lock);
if (ret == -ERESTARTSYS ||
++err_count > VMW_RES_EVICT_ERR_COUNT) {
vmw_resource_unreference(&evict_res);
goto out_no_validate;
}
}
vmw_resource_unreference(&evict_res);
} while (1);
if (unlikely(ret != 0))
goto out_no_validate;
else if (!res->func->needs_backup && res->backup) {
list_del_init(&res->mob_head);
vmw_dmabuf_unreference(&res->backup);
}
return 0;
out_no_validate:
return ret;
}
/**
* vmw_fence_single_bo - Utility function to fence a single TTM buffer
* object without unreserving it.
*
* @bo: Pointer to the struct ttm_buffer_object to fence.
* @fence: Pointer to the fence. If NULL, this function will
* insert a fence into the command stream..
*
* Contrary to the ttm_eu version of this function, it takes only
* a single buffer object instead of a list, and it also doesn't
* unreserve the buffer object, which needs to be done separately.
*/
void vmw_fence_single_bo(struct ttm_buffer_object *bo,
struct vmw_fence_obj *fence)
{
struct ttm_bo_device *bdev = bo->bdev;
struct vmw_private *dev_priv =
container_of(bdev, struct vmw_private, bdev);
if (fence == NULL) {
vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL);
reservation_object_add_excl_fence(bo->resv, &fence->base);
dma_fence_put(&fence->base);
} else
reservation_object_add_excl_fence(bo->resv, &fence->base);
}
/**
* vmw_resource_move_notify - TTM move_notify_callback
*
* @bo: The TTM buffer object about to move.
* @mem: The struct ttm_mem_reg indicating to what memory
* region the move is taking place.
*
* Evicts the Guest Backed hardware resource if the backup
* buffer is being moved out of MOB memory.
* Note that this function should not race with the resource
* validation code as long as it accesses only members of struct
* resource that remain static while bo::res is !NULL and
* while we have @bo reserved. struct resource::backup is *not* a
* static member. The resource validation code will take care
* to set @bo::res to NULL, while having @bo reserved when the
* buffer is no longer bound to the resource, so @bo:res can be
* used to determine whether there is a need to unbind and whether
* it is safe to unbind.
*/
void vmw_resource_move_notify(struct ttm_buffer_object *bo,
struct ttm_mem_reg *mem)
{
struct vmw_dma_buffer *dma_buf;
if (mem == NULL)
return;
if (bo->destroy != vmw_dmabuf_bo_free &&
bo->destroy != vmw_user_dmabuf_destroy)
return;
dma_buf = container_of(bo, struct vmw_dma_buffer, base);
if (mem->mem_type != VMW_PL_MOB) {
struct vmw_resource *res, *n;
struct ttm_validate_buffer val_buf;
val_buf.bo = bo;
val_buf.shared = false;
list_for_each_entry_safe(res, n, &dma_buf->res_list, mob_head) {
if (unlikely(res->func->unbind == NULL))
continue;
(void) res->func->unbind(res, true, &val_buf);
res->backup_dirty = true;
res->res_dirty = false;
list_del_init(&res->mob_head);
}
(void) ttm_bo_wait(bo, false, false);
}
}
/**
* vmw_query_readback_all - Read back cached query states
*
* @dx_query_mob: Buffer containing the DX query MOB
*
* Read back cached states from the device if they exist. This function
* assumings binding_mutex is held.
*/
int vmw_query_readback_all(struct vmw_dma_buffer *dx_query_mob)
{
struct vmw_resource *dx_query_ctx;
struct vmw_private *dev_priv;
struct {
SVGA3dCmdHeader header;
SVGA3dCmdDXReadbackAllQuery body;
} *cmd;
/* No query bound, so do nothing */
if (!dx_query_mob || !dx_query_mob->dx_query_ctx)
return 0;
dx_query_ctx = dx_query_mob->dx_query_ctx;
dev_priv = dx_query_ctx->dev_priv;
cmd = vmw_fifo_reserve_dx(dev_priv, sizeof(*cmd), dx_query_ctx->id);
if (unlikely(cmd == NULL)) {
DRM_ERROR("Failed reserving FIFO space for "
"query MOB read back.\n");
return -ENOMEM;
}
cmd->header.id = SVGA_3D_CMD_DX_READBACK_ALL_QUERY;
cmd->header.size = sizeof(cmd->body);
cmd->body.cid = dx_query_ctx->id;
vmw_fifo_commit(dev_priv, sizeof(*cmd));
/* Triggers a rebind the next time affected context is bound */
dx_query_mob->dx_query_ctx = NULL;
return 0;
}
/**
* vmw_query_move_notify - Read back cached query states
*
* @bo: The TTM buffer object about to move.
* @mem: The memory region @bo is moving to.
*
* Called before the query MOB is swapped out to read back cached query
* states from the device.
*/
void vmw_query_move_notify(struct ttm_buffer_object *bo,
struct ttm_mem_reg *mem)
{
struct vmw_dma_buffer *dx_query_mob;
struct ttm_bo_device *bdev = bo->bdev;
struct vmw_private *dev_priv;
dev_priv = container_of(bdev, struct vmw_private, bdev);
mutex_lock(&dev_priv->binding_mutex);
dx_query_mob = container_of(bo, struct vmw_dma_buffer, base);
if (mem == NULL || !dx_query_mob || !dx_query_mob->dx_query_ctx) {
mutex_unlock(&dev_priv->binding_mutex);
return;
}
/* If BO is being moved from MOB to system memory */
if (mem->mem_type == TTM_PL_SYSTEM && bo->mem.mem_type == VMW_PL_MOB) {
struct vmw_fence_obj *fence;
(void) vmw_query_readback_all(dx_query_mob);
mutex_unlock(&dev_priv->binding_mutex);
/* Create a fence and attach the BO to it */
(void) vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL);
vmw_fence_single_bo(bo, fence);
if (fence != NULL)
vmw_fence_obj_unreference(&fence);
(void) ttm_bo_wait(bo, false, false);
} else
mutex_unlock(&dev_priv->binding_mutex);
}
/**
* vmw_resource_needs_backup - Return whether a resource needs a backup buffer.
*
* @res: The resource being queried.
*/
bool vmw_resource_needs_backup(const struct vmw_resource *res)
{
return res->func->needs_backup;
}
/**
* vmw_resource_evict_type - Evict all resources of a specific type
*
* @dev_priv: Pointer to a device private struct
* @type: The resource type to evict
*
* To avoid thrashing starvation or as part of the hibernation sequence,
* try to evict all evictable resources of a specific type.
*/
static void vmw_resource_evict_type(struct vmw_private *dev_priv,
enum vmw_res_type type)
{
struct list_head *lru_list = &dev_priv->res_lru[type];
struct vmw_resource *evict_res;
unsigned err_count = 0;
int ret;
do {
write_lock(&dev_priv->resource_lock);
if (list_empty(lru_list))
goto out_unlock;
evict_res = vmw_resource_reference(
list_first_entry(lru_list, struct vmw_resource,
lru_head));
list_del_init(&evict_res->lru_head);
write_unlock(&dev_priv->resource_lock);
ret = vmw_resource_do_evict(evict_res, false);
if (unlikely(ret != 0)) {
write_lock(&dev_priv->resource_lock);
list_add_tail(&evict_res->lru_head, lru_list);
write_unlock(&dev_priv->resource_lock);
if (++err_count > VMW_RES_EVICT_ERR_COUNT) {
vmw_resource_unreference(&evict_res);
return;
}
}
vmw_resource_unreference(&evict_res);
} while (1);
out_unlock:
write_unlock(&dev_priv->resource_lock);
}
/**
* vmw_resource_evict_all - Evict all evictable resources
*
* @dev_priv: Pointer to a device private struct
*
* To avoid thrashing starvation or as part of the hibernation sequence,
* evict all evictable resources. In particular this means that all
* guest-backed resources that are registered with the device are
* evicted and the OTable becomes clean.
*/
void vmw_resource_evict_all(struct vmw_private *dev_priv)
{
enum vmw_res_type type;
mutex_lock(&dev_priv->cmdbuf_mutex);
for (type = 0; type < vmw_res_max; ++type)
vmw_resource_evict_type(dev_priv, type);
mutex_unlock(&dev_priv->cmdbuf_mutex);
}
/**
* vmw_resource_pin - Add a pin reference on a resource
*
* @res: The resource to add a pin reference on
*
* This function adds a pin reference, and if needed validates the resource.
* Having a pin reference means that the resource can never be evicted, and
* its id will never change as long as there is a pin reference.
* This function returns 0 on success and a negative error code on failure.
*/
int vmw_resource_pin(struct vmw_resource *res, bool interruptible)
{
struct vmw_private *dev_priv = res->dev_priv;
int ret;
ttm_write_lock(&dev_priv->reservation_sem, interruptible);
mutex_lock(&dev_priv->cmdbuf_mutex);
ret = vmw_resource_reserve(res, interruptible, false);
if (ret)
goto out_no_reserve;
if (res->pin_count == 0) {
struct vmw_dma_buffer *vbo = NULL;
if (res->backup) {
vbo = res->backup;
ttm_bo_reserve(&vbo->base, interruptible, false, NULL);
if (!vbo->pin_count) {
ret = ttm_bo_validate
(&vbo->base,
res->func->backup_placement,
interruptible, false);
if (ret) {
ttm_bo_unreserve(&vbo->base);
goto out_no_validate;
}
}
/* Do we really need to pin the MOB as well? */
vmw_bo_pin_reserved(vbo, true);
}
ret = vmw_resource_validate(res);
if (vbo)
ttm_bo_unreserve(&vbo->base);
if (ret)
goto out_no_validate;
}
res->pin_count++;
out_no_validate:
vmw_resource_unreserve(res, false, NULL, 0UL);
out_no_reserve:
mutex_unlock(&dev_priv->cmdbuf_mutex);
ttm_write_unlock(&dev_priv->reservation_sem);
return ret;
}
/**
* vmw_resource_unpin - Remove a pin reference from a resource
*
* @res: The resource to remove a pin reference from
*
* Having a pin reference means that the resource can never be evicted, and
* its id will never change as long as there is a pin reference.
*/
void vmw_resource_unpin(struct vmw_resource *res)
{
struct vmw_private *dev_priv = res->dev_priv;
int ret;
(void) ttm_read_lock(&dev_priv->reservation_sem, false);
mutex_lock(&dev_priv->cmdbuf_mutex);
ret = vmw_resource_reserve(res, false, true);
WARN_ON(ret);
WARN_ON(res->pin_count == 0);
if (--res->pin_count == 0 && res->backup) {
struct vmw_dma_buffer *vbo = res->backup;
(void) ttm_bo_reserve(&vbo->base, false, false, NULL);
vmw_bo_pin_reserved(vbo, false);
ttm_bo_unreserve(&vbo->base);
}
vmw_resource_unreserve(res, false, NULL, 0UL);
mutex_unlock(&dev_priv->cmdbuf_mutex);
ttm_read_unlock(&dev_priv->reservation_sem);
}
/**
* vmw_res_type - Return the resource type
*
* @res: Pointer to the resource
*/
enum vmw_res_type vmw_res_type(const struct vmw_resource *res)
{
return res->func->res_type;
}