linux/drivers/infiniband/core/umem_odp.c

801 lines
23 KiB
C

/*
* Copyright (c) 2014 Mellanox Technologies. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/types.h>
#include <linux/sched.h>
#include <linux/sched/mm.h>
#include <linux/sched/task.h>
#include <linux/pid.h>
#include <linux/slab.h>
#include <linux/export.h>
#include <linux/vmalloc.h>
#include <linux/hugetlb.h>
#include <linux/interval_tree_generic.h>
#include <rdma/ib_verbs.h>
#include <rdma/ib_umem.h>
#include <rdma/ib_umem_odp.h>
/*
* The ib_umem list keeps track of memory regions for which the HW
* device request to receive notification when the related memory
* mapping is changed.
*
* ib_umem_lock protects the list.
*/
static u64 node_start(struct umem_odp_node *n)
{
struct ib_umem_odp *umem_odp =
container_of(n, struct ib_umem_odp, interval_tree);
return ib_umem_start(&umem_odp->umem);
}
/* Note that the representation of the intervals in the interval tree
* considers the ending point as contained in the interval, while the
* function ib_umem_end returns the first address which is not contained
* in the umem.
*/
static u64 node_last(struct umem_odp_node *n)
{
struct ib_umem_odp *umem_odp =
container_of(n, struct ib_umem_odp, interval_tree);
return ib_umem_end(&umem_odp->umem) - 1;
}
INTERVAL_TREE_DEFINE(struct umem_odp_node, rb, u64, __subtree_last,
node_start, node_last, static, rbt_ib_umem)
static void ib_umem_notifier_start_account(struct ib_umem_odp *umem_odp)
{
mutex_lock(&umem_odp->umem_mutex);
if (umem_odp->notifiers_count++ == 0)
/*
* Initialize the completion object for waiting on
* notifiers. Since notifier_count is zero, no one should be
* waiting right now.
*/
reinit_completion(&umem_odp->notifier_completion);
mutex_unlock(&umem_odp->umem_mutex);
}
static void ib_umem_notifier_end_account(struct ib_umem_odp *umem_odp)
{
mutex_lock(&umem_odp->umem_mutex);
/*
* This sequence increase will notify the QP page fault that the page
* that is going to be mapped in the spte could have been freed.
*/
++umem_odp->notifiers_seq;
if (--umem_odp->notifiers_count == 0)
complete_all(&umem_odp->notifier_completion);
mutex_unlock(&umem_odp->umem_mutex);
}
static int ib_umem_notifier_release_trampoline(struct ib_umem_odp *umem_odp,
u64 start, u64 end, void *cookie)
{
struct ib_umem *umem = &umem_odp->umem;
/*
* Increase the number of notifiers running, to
* prevent any further fault handling on this MR.
*/
ib_umem_notifier_start_account(umem_odp);
umem_odp->dying = 1;
/* Make sure that the fact the umem is dying is out before we release
* all pending page faults. */
smp_wmb();
complete_all(&umem_odp->notifier_completion);
umem->context->invalidate_range(umem_odp, ib_umem_start(umem),
ib_umem_end(umem));
return 0;
}
static void ib_umem_notifier_release(struct mmu_notifier *mn,
struct mm_struct *mm)
{
struct ib_ucontext_per_mm *per_mm =
container_of(mn, struct ib_ucontext_per_mm, mn);
down_read(&per_mm->umem_rwsem);
if (per_mm->active)
rbt_ib_umem_for_each_in_range(
&per_mm->umem_tree, 0, ULLONG_MAX,
ib_umem_notifier_release_trampoline, true, NULL);
up_read(&per_mm->umem_rwsem);
}
static int invalidate_range_start_trampoline(struct ib_umem_odp *item,
u64 start, u64 end, void *cookie)
{
ib_umem_notifier_start_account(item);
item->umem.context->invalidate_range(item, start, end);
return 0;
}
static int ib_umem_notifier_invalidate_range_start(struct mmu_notifier *mn,
const struct mmu_notifier_range *range)
{
struct ib_ucontext_per_mm *per_mm =
container_of(mn, struct ib_ucontext_per_mm, mn);
if (range->blockable)
down_read(&per_mm->umem_rwsem);
else if (!down_read_trylock(&per_mm->umem_rwsem))
return -EAGAIN;
if (!per_mm->active) {
up_read(&per_mm->umem_rwsem);
/*
* At this point active is permanently set and visible to this
* CPU without a lock, that fact is relied on to skip the unlock
* in range_end.
*/
return 0;
}
return rbt_ib_umem_for_each_in_range(&per_mm->umem_tree, range->start,
range->end,
invalidate_range_start_trampoline,
range->blockable, NULL);
}
static int invalidate_range_end_trampoline(struct ib_umem_odp *item, u64 start,
u64 end, void *cookie)
{
ib_umem_notifier_end_account(item);
return 0;
}
static void ib_umem_notifier_invalidate_range_end(struct mmu_notifier *mn,
const struct mmu_notifier_range *range)
{
struct ib_ucontext_per_mm *per_mm =
container_of(mn, struct ib_ucontext_per_mm, mn);
if (unlikely(!per_mm->active))
return;
rbt_ib_umem_for_each_in_range(&per_mm->umem_tree, range->start,
range->end,
invalidate_range_end_trampoline, true, NULL);
up_read(&per_mm->umem_rwsem);
}
static const struct mmu_notifier_ops ib_umem_notifiers = {
.release = ib_umem_notifier_release,
.invalidate_range_start = ib_umem_notifier_invalidate_range_start,
.invalidate_range_end = ib_umem_notifier_invalidate_range_end,
};
static void add_umem_to_per_mm(struct ib_umem_odp *umem_odp)
{
struct ib_ucontext_per_mm *per_mm = umem_odp->per_mm;
struct ib_umem *umem = &umem_odp->umem;
down_write(&per_mm->umem_rwsem);
if (likely(ib_umem_start(umem) != ib_umem_end(umem)))
rbt_ib_umem_insert(&umem_odp->interval_tree,
&per_mm->umem_tree);
up_write(&per_mm->umem_rwsem);
}
static void remove_umem_from_per_mm(struct ib_umem_odp *umem_odp)
{
struct ib_ucontext_per_mm *per_mm = umem_odp->per_mm;
struct ib_umem *umem = &umem_odp->umem;
down_write(&per_mm->umem_rwsem);
if (likely(ib_umem_start(umem) != ib_umem_end(umem)))
rbt_ib_umem_remove(&umem_odp->interval_tree,
&per_mm->umem_tree);
complete_all(&umem_odp->notifier_completion);
up_write(&per_mm->umem_rwsem);
}
static struct ib_ucontext_per_mm *alloc_per_mm(struct ib_ucontext *ctx,
struct mm_struct *mm)
{
struct ib_ucontext_per_mm *per_mm;
int ret;
per_mm = kzalloc(sizeof(*per_mm), GFP_KERNEL);
if (!per_mm)
return ERR_PTR(-ENOMEM);
per_mm->context = ctx;
per_mm->mm = mm;
per_mm->umem_tree = RB_ROOT_CACHED;
init_rwsem(&per_mm->umem_rwsem);
per_mm->active = ctx->invalidate_range;
rcu_read_lock();
per_mm->tgid = get_task_pid(current->group_leader, PIDTYPE_PID);
rcu_read_unlock();
WARN_ON(mm != current->mm);
per_mm->mn.ops = &ib_umem_notifiers;
ret = mmu_notifier_register(&per_mm->mn, per_mm->mm);
if (ret) {
dev_err(&ctx->device->dev,
"Failed to register mmu_notifier %d\n", ret);
goto out_pid;
}
list_add(&per_mm->ucontext_list, &ctx->per_mm_list);
return per_mm;
out_pid:
put_pid(per_mm->tgid);
kfree(per_mm);
return ERR_PTR(ret);
}
static int get_per_mm(struct ib_umem_odp *umem_odp)
{
struct ib_ucontext *ctx = umem_odp->umem.context;
struct ib_ucontext_per_mm *per_mm;
/*
* Generally speaking we expect only one or two per_mm in this list,
* so no reason to optimize this search today.
*/
mutex_lock(&ctx->per_mm_list_lock);
list_for_each_entry(per_mm, &ctx->per_mm_list, ucontext_list) {
if (per_mm->mm == umem_odp->umem.owning_mm)
goto found;
}
per_mm = alloc_per_mm(ctx, umem_odp->umem.owning_mm);
if (IS_ERR(per_mm)) {
mutex_unlock(&ctx->per_mm_list_lock);
return PTR_ERR(per_mm);
}
found:
umem_odp->per_mm = per_mm;
per_mm->odp_mrs_count++;
mutex_unlock(&ctx->per_mm_list_lock);
return 0;
}
static void free_per_mm(struct rcu_head *rcu)
{
kfree(container_of(rcu, struct ib_ucontext_per_mm, rcu));
}
void put_per_mm(struct ib_umem_odp *umem_odp)
{
struct ib_ucontext_per_mm *per_mm = umem_odp->per_mm;
struct ib_ucontext *ctx = umem_odp->umem.context;
bool need_free;
mutex_lock(&ctx->per_mm_list_lock);
umem_odp->per_mm = NULL;
per_mm->odp_mrs_count--;
need_free = per_mm->odp_mrs_count == 0;
if (need_free)
list_del(&per_mm->ucontext_list);
mutex_unlock(&ctx->per_mm_list_lock);
if (!need_free)
return;
/*
* NOTE! mmu_notifier_unregister() can happen between a start/end
* callback, resulting in an start/end, and thus an unbalanced
* lock. This doesn't really matter to us since we are about to kfree
* the memory that holds the lock, however LOCKDEP doesn't like this.
*/
down_write(&per_mm->umem_rwsem);
per_mm->active = false;
up_write(&per_mm->umem_rwsem);
WARN_ON(!RB_EMPTY_ROOT(&per_mm->umem_tree.rb_root));
mmu_notifier_unregister_no_release(&per_mm->mn, per_mm->mm);
put_pid(per_mm->tgid);
mmu_notifier_call_srcu(&per_mm->rcu, free_per_mm);
}
struct ib_umem_odp *ib_alloc_odp_umem(struct ib_ucontext_per_mm *per_mm,
unsigned long addr, size_t size)
{
struct ib_ucontext *ctx = per_mm->context;
struct ib_umem_odp *odp_data;
struct ib_umem *umem;
int pages = size >> PAGE_SHIFT;
int ret;
odp_data = kzalloc(sizeof(*odp_data), GFP_KERNEL);
if (!odp_data)
return ERR_PTR(-ENOMEM);
umem = &odp_data->umem;
umem->context = ctx;
umem->length = size;
umem->address = addr;
umem->page_shift = PAGE_SHIFT;
umem->writable = 1;
umem->is_odp = 1;
odp_data->per_mm = per_mm;
mutex_init(&odp_data->umem_mutex);
init_completion(&odp_data->notifier_completion);
odp_data->page_list =
vzalloc(array_size(pages, sizeof(*odp_data->page_list)));
if (!odp_data->page_list) {
ret = -ENOMEM;
goto out_odp_data;
}
odp_data->dma_list =
vzalloc(array_size(pages, sizeof(*odp_data->dma_list)));
if (!odp_data->dma_list) {
ret = -ENOMEM;
goto out_page_list;
}
/*
* Caller must ensure that the umem_odp that the per_mm came from
* cannot be freed during the call to ib_alloc_odp_umem.
*/
mutex_lock(&ctx->per_mm_list_lock);
per_mm->odp_mrs_count++;
mutex_unlock(&ctx->per_mm_list_lock);
add_umem_to_per_mm(odp_data);
return odp_data;
out_page_list:
vfree(odp_data->page_list);
out_odp_data:
kfree(odp_data);
return ERR_PTR(ret);
}
EXPORT_SYMBOL(ib_alloc_odp_umem);
int ib_umem_odp_get(struct ib_umem_odp *umem_odp, int access)
{
struct ib_umem *umem = &umem_odp->umem;
/*
* NOTE: This must called in a process context where umem->owning_mm
* == current->mm
*/
struct mm_struct *mm = umem->owning_mm;
int ret_val;
if (access & IB_ACCESS_HUGETLB) {
struct vm_area_struct *vma;
struct hstate *h;
down_read(&mm->mmap_sem);
vma = find_vma(mm, ib_umem_start(umem));
if (!vma || !is_vm_hugetlb_page(vma)) {
up_read(&mm->mmap_sem);
return -EINVAL;
}
h = hstate_vma(vma);
umem->page_shift = huge_page_shift(h);
up_read(&mm->mmap_sem);
umem->hugetlb = 1;
} else {
umem->hugetlb = 0;
}
mutex_init(&umem_odp->umem_mutex);
init_completion(&umem_odp->notifier_completion);
if (ib_umem_num_pages(umem)) {
umem_odp->page_list =
vzalloc(array_size(sizeof(*umem_odp->page_list),
ib_umem_num_pages(umem)));
if (!umem_odp->page_list)
return -ENOMEM;
umem_odp->dma_list =
vzalloc(array_size(sizeof(*umem_odp->dma_list),
ib_umem_num_pages(umem)));
if (!umem_odp->dma_list) {
ret_val = -ENOMEM;
goto out_page_list;
}
}
ret_val = get_per_mm(umem_odp);
if (ret_val)
goto out_dma_list;
add_umem_to_per_mm(umem_odp);
return 0;
out_dma_list:
vfree(umem_odp->dma_list);
out_page_list:
vfree(umem_odp->page_list);
return ret_val;
}
void ib_umem_odp_release(struct ib_umem_odp *umem_odp)
{
struct ib_umem *umem = &umem_odp->umem;
/*
* Ensure that no more pages are mapped in the umem.
*
* It is the driver's responsibility to ensure, before calling us,
* that the hardware will not attempt to access the MR any more.
*/
ib_umem_odp_unmap_dma_pages(umem_odp, ib_umem_start(umem),
ib_umem_end(umem));
remove_umem_from_per_mm(umem_odp);
put_per_mm(umem_odp);
vfree(umem_odp->dma_list);
vfree(umem_odp->page_list);
}
/*
* Map for DMA and insert a single page into the on-demand paging page tables.
*
* @umem: the umem to insert the page to.
* @page_index: index in the umem to add the page to.
* @page: the page struct to map and add.
* @access_mask: access permissions needed for this page.
* @current_seq: sequence number for synchronization with invalidations.
* the sequence number is taken from
* umem_odp->notifiers_seq.
*
* The function returns -EFAULT if the DMA mapping operation fails. It returns
* -EAGAIN if a concurrent invalidation prevents us from updating the page.
*
* The page is released via put_page even if the operation failed. For
* on-demand pinning, the page is released whenever it isn't stored in the
* umem.
*/
static int ib_umem_odp_map_dma_single_page(
struct ib_umem_odp *umem_odp,
int page_index,
struct page *page,
u64 access_mask,
unsigned long current_seq)
{
struct ib_umem *umem = &umem_odp->umem;
struct ib_device *dev = umem->context->device;
dma_addr_t dma_addr;
int stored_page = 0;
int remove_existing_mapping = 0;
int ret = 0;
/*
* Note: we avoid writing if seq is different from the initial seq, to
* handle case of a racing notifier. This check also allows us to bail
* early if we have a notifier running in parallel with us.
*/
if (ib_umem_mmu_notifier_retry(umem_odp, current_seq)) {
ret = -EAGAIN;
goto out;
}
if (!(umem_odp->dma_list[page_index])) {
dma_addr = ib_dma_map_page(dev,
page,
0, BIT(umem->page_shift),
DMA_BIDIRECTIONAL);
if (ib_dma_mapping_error(dev, dma_addr)) {
ret = -EFAULT;
goto out;
}
umem_odp->dma_list[page_index] = dma_addr | access_mask;
umem_odp->page_list[page_index] = page;
umem->npages++;
stored_page = 1;
} else if (umem_odp->page_list[page_index] == page) {
umem_odp->dma_list[page_index] |= access_mask;
} else {
pr_err("error: got different pages in IB device and from get_user_pages. IB device page: %p, gup page: %p\n",
umem_odp->page_list[page_index], page);
/* Better remove the mapping now, to prevent any further
* damage. */
remove_existing_mapping = 1;
}
out:
/* On Demand Paging - avoid pinning the page */
if (umem->context->invalidate_range || !stored_page)
put_page(page);
if (remove_existing_mapping && umem->context->invalidate_range) {
ib_umem_notifier_start_account(umem_odp);
umem->context->invalidate_range(
umem_odp,
ib_umem_start(umem) + (page_index << umem->page_shift),
ib_umem_start(umem) +
((page_index + 1) << umem->page_shift));
ib_umem_notifier_end_account(umem_odp);
ret = -EAGAIN;
}
return ret;
}
/**
* ib_umem_odp_map_dma_pages - Pin and DMA map userspace memory in an ODP MR.
*
* Pins the range of pages passed in the argument, and maps them to
* DMA addresses. The DMA addresses of the mapped pages is updated in
* umem_odp->dma_list.
*
* Returns the number of pages mapped in success, negative error code
* for failure.
* An -EAGAIN error code is returned when a concurrent mmu notifier prevents
* the function from completing its task.
* An -ENOENT error code indicates that userspace process is being terminated
* and mm was already destroyed.
* @umem_odp: the umem to map and pin
* @user_virt: the address from which we need to map.
* @bcnt: the minimal number of bytes to pin and map. The mapping might be
* bigger due to alignment, and may also be smaller in case of an error
* pinning or mapping a page. The actual pages mapped is returned in
* the return value.
* @access_mask: bit mask of the requested access permissions for the given
* range.
* @current_seq: the MMU notifiers sequance value for synchronization with
* invalidations. the sequance number is read from
* umem_odp->notifiers_seq before calling this function
*/
int ib_umem_odp_map_dma_pages(struct ib_umem_odp *umem_odp, u64 user_virt,
u64 bcnt, u64 access_mask,
unsigned long current_seq)
{
struct ib_umem *umem = &umem_odp->umem;
struct task_struct *owning_process = NULL;
struct mm_struct *owning_mm = umem_odp->umem.owning_mm;
struct page **local_page_list = NULL;
u64 page_mask, off;
int j, k, ret = 0, start_idx, npages = 0, page_shift;
unsigned int flags = 0;
phys_addr_t p = 0;
if (access_mask == 0)
return -EINVAL;
if (user_virt < ib_umem_start(umem) ||
user_virt + bcnt > ib_umem_end(umem))
return -EFAULT;
local_page_list = (struct page **)__get_free_page(GFP_KERNEL);
if (!local_page_list)
return -ENOMEM;
page_shift = umem->page_shift;
page_mask = ~(BIT(page_shift) - 1);
off = user_virt & (~page_mask);
user_virt = user_virt & page_mask;
bcnt += off; /* Charge for the first page offset as well. */
/*
* owning_process is allowed to be NULL, this means somehow the mm is
* existing beyond the lifetime of the originating process.. Presumably
* mmget_not_zero will fail in this case.
*/
owning_process = get_pid_task(umem_odp->per_mm->tgid, PIDTYPE_PID);
if (WARN_ON(!mmget_not_zero(umem_odp->umem.owning_mm))) {
ret = -EINVAL;
goto out_put_task;
}
if (access_mask & ODP_WRITE_ALLOWED_BIT)
flags |= FOLL_WRITE;
start_idx = (user_virt - ib_umem_start(umem)) >> page_shift;
k = start_idx;
while (bcnt > 0) {
const size_t gup_num_pages = min_t(size_t,
(bcnt + BIT(page_shift) - 1) >> page_shift,
PAGE_SIZE / sizeof(struct page *));
down_read(&owning_mm->mmap_sem);
/*
* Note: this might result in redundent page getting. We can
* avoid this by checking dma_list to be 0 before calling
* get_user_pages. However, this make the code much more
* complex (and doesn't gain us much performance in most use
* cases).
*/
npages = get_user_pages_remote(owning_process, owning_mm,
user_virt, gup_num_pages,
flags, local_page_list, NULL, NULL);
up_read(&owning_mm->mmap_sem);
if (npages < 0) {
if (npages != -EAGAIN)
pr_warn("fail to get %zu user pages with error %d\n", gup_num_pages, npages);
else
pr_debug("fail to get %zu user pages with error %d\n", gup_num_pages, npages);
break;
}
bcnt -= min_t(size_t, npages << PAGE_SHIFT, bcnt);
mutex_lock(&umem_odp->umem_mutex);
for (j = 0; j < npages; j++, user_virt += PAGE_SIZE) {
if (user_virt & ~page_mask) {
p += PAGE_SIZE;
if (page_to_phys(local_page_list[j]) != p) {
ret = -EFAULT;
break;
}
put_page(local_page_list[j]);
continue;
}
ret = ib_umem_odp_map_dma_single_page(
umem_odp, k, local_page_list[j],
access_mask, current_seq);
if (ret < 0) {
if (ret != -EAGAIN)
pr_warn("ib_umem_odp_map_dma_single_page failed with error %d\n", ret);
else
pr_debug("ib_umem_odp_map_dma_single_page failed with error %d\n", ret);
break;
}
p = page_to_phys(local_page_list[j]);
k++;
}
mutex_unlock(&umem_odp->umem_mutex);
if (ret < 0) {
/* Release left over pages when handling errors. */
for (++j; j < npages; ++j)
put_page(local_page_list[j]);
break;
}
}
if (ret >= 0) {
if (npages < 0 && k == start_idx)
ret = npages;
else
ret = k - start_idx;
}
mmput(owning_mm);
out_put_task:
if (owning_process)
put_task_struct(owning_process);
free_page((unsigned long)local_page_list);
return ret;
}
EXPORT_SYMBOL(ib_umem_odp_map_dma_pages);
void ib_umem_odp_unmap_dma_pages(struct ib_umem_odp *umem_odp, u64 virt,
u64 bound)
{
struct ib_umem *umem = &umem_odp->umem;
int idx;
u64 addr;
struct ib_device *dev = umem->context->device;
virt = max_t(u64, virt, ib_umem_start(umem));
bound = min_t(u64, bound, ib_umem_end(umem));
/* Note that during the run of this function, the
* notifiers_count of the MR is > 0, preventing any racing
* faults from completion. We might be racing with other
* invalidations, so we must make sure we free each page only
* once. */
mutex_lock(&umem_odp->umem_mutex);
for (addr = virt; addr < bound; addr += BIT(umem->page_shift)) {
idx = (addr - ib_umem_start(umem)) >> umem->page_shift;
if (umem_odp->page_list[idx]) {
struct page *page = umem_odp->page_list[idx];
dma_addr_t dma = umem_odp->dma_list[idx];
dma_addr_t dma_addr = dma & ODP_DMA_ADDR_MASK;
WARN_ON(!dma_addr);
ib_dma_unmap_page(dev, dma_addr, PAGE_SIZE,
DMA_BIDIRECTIONAL);
if (dma & ODP_WRITE_ALLOWED_BIT) {
struct page *head_page = compound_head(page);
/*
* set_page_dirty prefers being called with
* the page lock. However, MMU notifiers are
* called sometimes with and sometimes without
* the lock. We rely on the umem_mutex instead
* to prevent other mmu notifiers from
* continuing and allowing the page mapping to
* be removed.
*/
set_page_dirty(head_page);
}
/* on demand pinning support */
if (!umem->context->invalidate_range)
put_page(page);
umem_odp->page_list[idx] = NULL;
umem_odp->dma_list[idx] = 0;
umem->npages--;
}
}
mutex_unlock(&umem_odp->umem_mutex);
}
EXPORT_SYMBOL(ib_umem_odp_unmap_dma_pages);
/* @last is not a part of the interval. See comment for function
* node_last.
*/
int rbt_ib_umem_for_each_in_range(struct rb_root_cached *root,
u64 start, u64 last,
umem_call_back cb,
bool blockable,
void *cookie)
{
int ret_val = 0;
struct umem_odp_node *node, *next;
struct ib_umem_odp *umem;
if (unlikely(start == last))
return ret_val;
for (node = rbt_ib_umem_iter_first(root, start, last - 1);
node; node = next) {
/* TODO move the blockable decision up to the callback */
if (!blockable)
return -EAGAIN;
next = rbt_ib_umem_iter_next(node, start, last - 1);
umem = container_of(node, struct ib_umem_odp, interval_tree);
ret_val = cb(umem, start, last, cookie) || ret_val;
}
return ret_val;
}
EXPORT_SYMBOL(rbt_ib_umem_for_each_in_range);
struct ib_umem_odp *rbt_ib_umem_lookup(struct rb_root_cached *root,
u64 addr, u64 length)
{
struct umem_odp_node *node;
node = rbt_ib_umem_iter_first(root, addr, addr + length - 1);
if (node)
return container_of(node, struct ib_umem_odp, interval_tree);
return NULL;
}
EXPORT_SYMBOL(rbt_ib_umem_lookup);