mirror of https://gitee.com/openkylin/linux.git
1230 lines
32 KiB
C
1230 lines
32 KiB
C
/*
|
|
* Copyright (C) 2013 Broadcom Corporation
|
|
* Copyright 2013 Linaro Limited
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation version 2.
|
|
*
|
|
* This program is distributed "as is" WITHOUT ANY WARRANTY of any
|
|
* kind, whether express or implied; without even the implied warranty
|
|
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*/
|
|
|
|
#include "clk-kona.h"
|
|
|
|
#include <linux/delay.h>
|
|
|
|
/*
|
|
* "Policies" affect the frequencies of bus clocks provided by a
|
|
* CCU. (I believe these polices are named "Deep Sleep", "Economy",
|
|
* "Normal", and "Turbo".) A lower policy number has lower power
|
|
* consumption, and policy 2 is the default.
|
|
*/
|
|
#define CCU_POLICY_COUNT 4
|
|
|
|
#define CCU_ACCESS_PASSWORD 0xA5A500
|
|
#define CLK_GATE_DELAY_LOOP 2000
|
|
|
|
/* Bitfield operations */
|
|
|
|
/* Produces a mask of set bits covering a range of a 32-bit value */
|
|
static inline u32 bitfield_mask(u32 shift, u32 width)
|
|
{
|
|
return ((1 << width) - 1) << shift;
|
|
}
|
|
|
|
/* Extract the value of a bitfield found within a given register value */
|
|
static inline u32 bitfield_extract(u32 reg_val, u32 shift, u32 width)
|
|
{
|
|
return (reg_val & bitfield_mask(shift, width)) >> shift;
|
|
}
|
|
|
|
/* Replace the value of a bitfield found within a given register value */
|
|
static inline u32 bitfield_replace(u32 reg_val, u32 shift, u32 width, u32 val)
|
|
{
|
|
u32 mask = bitfield_mask(shift, width);
|
|
|
|
return (reg_val & ~mask) | (val << shift);
|
|
}
|
|
|
|
/* Divider and scaling helpers */
|
|
|
|
/*
|
|
* Implement DIV_ROUND_CLOSEST() for 64-bit dividend and both values
|
|
* unsigned. Note that unlike do_div(), the remainder is discarded
|
|
* and the return value is the quotient (not the remainder).
|
|
*/
|
|
u64 do_div_round_closest(u64 dividend, unsigned long divisor)
|
|
{
|
|
u64 result;
|
|
|
|
result = dividend + ((u64)divisor >> 1);
|
|
(void)do_div(result, divisor);
|
|
|
|
return result;
|
|
}
|
|
|
|
/* Convert a divider into the scaled divisor value it represents. */
|
|
static inline u64 scaled_div_value(struct bcm_clk_div *div, u32 reg_div)
|
|
{
|
|
return (u64)reg_div + ((u64)1 << div->u.s.frac_width);
|
|
}
|
|
|
|
/*
|
|
* Build a scaled divider value as close as possible to the
|
|
* given whole part (div_value) and fractional part (expressed
|
|
* in billionths).
|
|
*/
|
|
u64 scaled_div_build(struct bcm_clk_div *div, u32 div_value, u32 billionths)
|
|
{
|
|
u64 combined;
|
|
|
|
BUG_ON(!div_value);
|
|
BUG_ON(billionths >= BILLION);
|
|
|
|
combined = (u64)div_value * BILLION + billionths;
|
|
combined <<= div->u.s.frac_width;
|
|
|
|
return do_div_round_closest(combined, BILLION);
|
|
}
|
|
|
|
/* The scaled minimum divisor representable by a divider */
|
|
static inline u64
|
|
scaled_div_min(struct bcm_clk_div *div)
|
|
{
|
|
if (divider_is_fixed(div))
|
|
return (u64)div->u.fixed;
|
|
|
|
return scaled_div_value(div, 0);
|
|
}
|
|
|
|
/* The scaled maximum divisor representable by a divider */
|
|
u64 scaled_div_max(struct bcm_clk_div *div)
|
|
{
|
|
u32 reg_div;
|
|
|
|
if (divider_is_fixed(div))
|
|
return (u64)div->u.fixed;
|
|
|
|
reg_div = ((u32)1 << div->u.s.width) - 1;
|
|
|
|
return scaled_div_value(div, reg_div);
|
|
}
|
|
|
|
/*
|
|
* Convert a scaled divisor into its divider representation as
|
|
* stored in a divider register field.
|
|
*/
|
|
static inline u32
|
|
divider(struct bcm_clk_div *div, u64 scaled_div)
|
|
{
|
|
BUG_ON(scaled_div < scaled_div_min(div));
|
|
BUG_ON(scaled_div > scaled_div_max(div));
|
|
|
|
return (u32)(scaled_div - ((u64)1 << div->u.s.frac_width));
|
|
}
|
|
|
|
/* Return a rate scaled for use when dividing by a scaled divisor. */
|
|
static inline u64
|
|
scale_rate(struct bcm_clk_div *div, u32 rate)
|
|
{
|
|
if (divider_is_fixed(div))
|
|
return (u64)rate;
|
|
|
|
return (u64)rate << div->u.s.frac_width;
|
|
}
|
|
|
|
/* CCU access */
|
|
|
|
/* Read a 32-bit register value from a CCU's address space. */
|
|
static inline u32 __ccu_read(struct ccu_data *ccu, u32 reg_offset)
|
|
{
|
|
return readl(ccu->base + reg_offset);
|
|
}
|
|
|
|
/* Write a 32-bit register value into a CCU's address space. */
|
|
static inline void
|
|
__ccu_write(struct ccu_data *ccu, u32 reg_offset, u32 reg_val)
|
|
{
|
|
writel(reg_val, ccu->base + reg_offset);
|
|
}
|
|
|
|
static inline unsigned long ccu_lock(struct ccu_data *ccu)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&ccu->lock, flags);
|
|
|
|
return flags;
|
|
}
|
|
static inline void ccu_unlock(struct ccu_data *ccu, unsigned long flags)
|
|
{
|
|
spin_unlock_irqrestore(&ccu->lock, flags);
|
|
}
|
|
|
|
/*
|
|
* Enable/disable write access to CCU protected registers. The
|
|
* WR_ACCESS register for all CCUs is at offset 0.
|
|
*/
|
|
static inline void __ccu_write_enable(struct ccu_data *ccu)
|
|
{
|
|
if (ccu->write_enabled) {
|
|
pr_err("%s: access already enabled for %s\n", __func__,
|
|
ccu->name);
|
|
return;
|
|
}
|
|
ccu->write_enabled = true;
|
|
__ccu_write(ccu, 0, CCU_ACCESS_PASSWORD | 1);
|
|
}
|
|
|
|
static inline void __ccu_write_disable(struct ccu_data *ccu)
|
|
{
|
|
if (!ccu->write_enabled) {
|
|
pr_err("%s: access wasn't enabled for %s\n", __func__,
|
|
ccu->name);
|
|
return;
|
|
}
|
|
|
|
__ccu_write(ccu, 0, CCU_ACCESS_PASSWORD);
|
|
ccu->write_enabled = false;
|
|
}
|
|
|
|
/*
|
|
* Poll a register in a CCU's address space, returning when the
|
|
* specified bit in that register's value is set (or clear). Delay
|
|
* a microsecond after each read of the register. Returns true if
|
|
* successful, or false if we gave up trying.
|
|
*
|
|
* Caller must ensure the CCU lock is held.
|
|
*/
|
|
static inline bool
|
|
__ccu_wait_bit(struct ccu_data *ccu, u32 reg_offset, u32 bit, bool want)
|
|
{
|
|
unsigned int tries;
|
|
u32 bit_mask = 1 << bit;
|
|
|
|
for (tries = 0; tries < CLK_GATE_DELAY_LOOP; tries++) {
|
|
u32 val;
|
|
bool bit_val;
|
|
|
|
val = __ccu_read(ccu, reg_offset);
|
|
bit_val = (val & bit_mask) != 0;
|
|
if (bit_val == want)
|
|
return true;
|
|
udelay(1);
|
|
}
|
|
pr_warn("%s: %s/0x%04x bit %u was never %s\n", __func__,
|
|
ccu->name, reg_offset, bit, want ? "set" : "clear");
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Policy operations */
|
|
|
|
static bool __ccu_policy_engine_start(struct ccu_data *ccu, bool sync)
|
|
{
|
|
struct bcm_policy_ctl *control = &ccu->policy.control;
|
|
u32 offset;
|
|
u32 go_bit;
|
|
u32 mask;
|
|
bool ret;
|
|
|
|
/* If we don't need to control policy for this CCU, we're done. */
|
|
if (!policy_ctl_exists(control))
|
|
return true;
|
|
|
|
offset = control->offset;
|
|
go_bit = control->go_bit;
|
|
|
|
/* Ensure we're not busy before we start */
|
|
ret = __ccu_wait_bit(ccu, offset, go_bit, false);
|
|
if (!ret) {
|
|
pr_err("%s: ccu %s policy engine wouldn't go idle\n",
|
|
__func__, ccu->name);
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* If it's a synchronous request, we'll wait for the voltage
|
|
* and frequency of the active load to stabilize before
|
|
* returning. To do this we select the active load by
|
|
* setting the ATL bit.
|
|
*
|
|
* An asynchronous request instead ramps the voltage in the
|
|
* background, and when that process stabilizes, the target
|
|
* load is copied to the active load and the CCU frequency
|
|
* is switched. We do this by selecting the target load
|
|
* (ATL bit clear) and setting the request auto-copy (AC bit
|
|
* set).
|
|
*
|
|
* Note, we do NOT read-modify-write this register.
|
|
*/
|
|
mask = (u32)1 << go_bit;
|
|
if (sync)
|
|
mask |= 1 << control->atl_bit;
|
|
else
|
|
mask |= 1 << control->ac_bit;
|
|
__ccu_write(ccu, offset, mask);
|
|
|
|
/* Wait for indication that operation is complete. */
|
|
ret = __ccu_wait_bit(ccu, offset, go_bit, false);
|
|
if (!ret)
|
|
pr_err("%s: ccu %s policy engine never started\n",
|
|
__func__, ccu->name);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static bool __ccu_policy_engine_stop(struct ccu_data *ccu)
|
|
{
|
|
struct bcm_lvm_en *enable = &ccu->policy.enable;
|
|
u32 offset;
|
|
u32 enable_bit;
|
|
bool ret;
|
|
|
|
/* If we don't need to control policy for this CCU, we're done. */
|
|
if (!policy_lvm_en_exists(enable))
|
|
return true;
|
|
|
|
/* Ensure we're not busy before we start */
|
|
offset = enable->offset;
|
|
enable_bit = enable->bit;
|
|
ret = __ccu_wait_bit(ccu, offset, enable_bit, false);
|
|
if (!ret) {
|
|
pr_err("%s: ccu %s policy engine already stopped\n",
|
|
__func__, ccu->name);
|
|
return false;
|
|
}
|
|
|
|
/* Now set the bit to stop the engine (NO read-modify-write) */
|
|
__ccu_write(ccu, offset, (u32)1 << enable_bit);
|
|
|
|
/* Wait for indication that it has stopped. */
|
|
ret = __ccu_wait_bit(ccu, offset, enable_bit, false);
|
|
if (!ret)
|
|
pr_err("%s: ccu %s policy engine never stopped\n",
|
|
__func__, ccu->name);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* A CCU has four operating conditions ("policies"), and some clocks
|
|
* can be disabled or enabled based on which policy is currently in
|
|
* effect. Such clocks have a bit in a "policy mask" register for
|
|
* each policy indicating whether the clock is enabled for that
|
|
* policy or not. The bit position for a clock is the same for all
|
|
* four registers, and the 32-bit registers are at consecutive
|
|
* addresses.
|
|
*/
|
|
static bool policy_init(struct ccu_data *ccu, struct bcm_clk_policy *policy)
|
|
{
|
|
u32 offset;
|
|
u32 mask;
|
|
int i;
|
|
bool ret;
|
|
|
|
if (!policy_exists(policy))
|
|
return true;
|
|
|
|
/*
|
|
* We need to stop the CCU policy engine to allow update
|
|
* of our policy bits.
|
|
*/
|
|
if (!__ccu_policy_engine_stop(ccu)) {
|
|
pr_err("%s: unable to stop CCU %s policy engine\n",
|
|
__func__, ccu->name);
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* For now, if a clock defines its policy bit we just mark
|
|
* it "enabled" for all four policies.
|
|
*/
|
|
offset = policy->offset;
|
|
mask = (u32)1 << policy->bit;
|
|
for (i = 0; i < CCU_POLICY_COUNT; i++) {
|
|
u32 reg_val;
|
|
|
|
reg_val = __ccu_read(ccu, offset);
|
|
reg_val |= mask;
|
|
__ccu_write(ccu, offset, reg_val);
|
|
offset += sizeof(u32);
|
|
}
|
|
|
|
/* We're done updating; fire up the policy engine again. */
|
|
ret = __ccu_policy_engine_start(ccu, true);
|
|
if (!ret)
|
|
pr_err("%s: unable to restart CCU %s policy engine\n",
|
|
__func__, ccu->name);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Gate operations */
|
|
|
|
/* Determine whether a clock is gated. CCU lock must be held. */
|
|
static bool
|
|
__is_clk_gate_enabled(struct ccu_data *ccu, struct bcm_clk_gate *gate)
|
|
{
|
|
u32 bit_mask;
|
|
u32 reg_val;
|
|
|
|
/* If there is no gate we can assume it's enabled. */
|
|
if (!gate_exists(gate))
|
|
return true;
|
|
|
|
bit_mask = 1 << gate->status_bit;
|
|
reg_val = __ccu_read(ccu, gate->offset);
|
|
|
|
return (reg_val & bit_mask) != 0;
|
|
}
|
|
|
|
/* Determine whether a clock is gated. */
|
|
static bool
|
|
is_clk_gate_enabled(struct ccu_data *ccu, struct bcm_clk_gate *gate)
|
|
{
|
|
long flags;
|
|
bool ret;
|
|
|
|
/* Avoid taking the lock if we can */
|
|
if (!gate_exists(gate))
|
|
return true;
|
|
|
|
flags = ccu_lock(ccu);
|
|
ret = __is_clk_gate_enabled(ccu, gate);
|
|
ccu_unlock(ccu, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Commit our desired gate state to the hardware.
|
|
* Returns true if successful, false otherwise.
|
|
*/
|
|
static bool
|
|
__gate_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate)
|
|
{
|
|
u32 reg_val;
|
|
u32 mask;
|
|
bool enabled = false;
|
|
|
|
BUG_ON(!gate_exists(gate));
|
|
if (!gate_is_sw_controllable(gate))
|
|
return true; /* Nothing we can change */
|
|
|
|
reg_val = __ccu_read(ccu, gate->offset);
|
|
|
|
/* For a hardware/software gate, set which is in control */
|
|
if (gate_is_hw_controllable(gate)) {
|
|
mask = (u32)1 << gate->hw_sw_sel_bit;
|
|
if (gate_is_sw_managed(gate))
|
|
reg_val |= mask;
|
|
else
|
|
reg_val &= ~mask;
|
|
}
|
|
|
|
/*
|
|
* If software is in control, enable or disable the gate.
|
|
* If hardware is, clear the enabled bit for good measure.
|
|
* If a software controlled gate can't be disabled, we're
|
|
* required to write a 0 into the enable bit (but the gate
|
|
* will be enabled).
|
|
*/
|
|
mask = (u32)1 << gate->en_bit;
|
|
if (gate_is_sw_managed(gate) && (enabled = gate_is_enabled(gate)) &&
|
|
!gate_is_no_disable(gate))
|
|
reg_val |= mask;
|
|
else
|
|
reg_val &= ~mask;
|
|
|
|
__ccu_write(ccu, gate->offset, reg_val);
|
|
|
|
/* For a hardware controlled gate, we're done */
|
|
if (!gate_is_sw_managed(gate))
|
|
return true;
|
|
|
|
/* Otherwise wait for the gate to be in desired state */
|
|
return __ccu_wait_bit(ccu, gate->offset, gate->status_bit, enabled);
|
|
}
|
|
|
|
/*
|
|
* Initialize a gate. Our desired state (hardware/software select,
|
|
* and if software, its enable state) is committed to hardware
|
|
* without the usual checks to see if it's already set up that way.
|
|
* Returns true if successful, false otherwise.
|
|
*/
|
|
static bool gate_init(struct ccu_data *ccu, struct bcm_clk_gate *gate)
|
|
{
|
|
if (!gate_exists(gate))
|
|
return true;
|
|
return __gate_commit(ccu, gate);
|
|
}
|
|
|
|
/*
|
|
* Set a gate to enabled or disabled state. Does nothing if the
|
|
* gate is not currently under software control, or if it is already
|
|
* in the requested state. Returns true if successful, false
|
|
* otherwise. CCU lock must be held.
|
|
*/
|
|
static bool
|
|
__clk_gate(struct ccu_data *ccu, struct bcm_clk_gate *gate, bool enable)
|
|
{
|
|
bool ret;
|
|
|
|
if (!gate_exists(gate) || !gate_is_sw_managed(gate))
|
|
return true; /* Nothing to do */
|
|
|
|
if (!enable && gate_is_no_disable(gate)) {
|
|
pr_warn("%s: invalid gate disable request (ignoring)\n",
|
|
__func__);
|
|
return true;
|
|
}
|
|
|
|
if (enable == gate_is_enabled(gate))
|
|
return true; /* No change */
|
|
|
|
gate_flip_enabled(gate);
|
|
ret = __gate_commit(ccu, gate);
|
|
if (!ret)
|
|
gate_flip_enabled(gate); /* Revert the change */
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Enable or disable a gate. Returns 0 if successful, -EIO otherwise */
|
|
static int clk_gate(struct ccu_data *ccu, const char *name,
|
|
struct bcm_clk_gate *gate, bool enable)
|
|
{
|
|
unsigned long flags;
|
|
bool success;
|
|
|
|
/*
|
|
* Avoid taking the lock if we can. We quietly ignore
|
|
* requests to change state that don't make sense.
|
|
*/
|
|
if (!gate_exists(gate) || !gate_is_sw_managed(gate))
|
|
return 0;
|
|
if (!enable && gate_is_no_disable(gate))
|
|
return 0;
|
|
|
|
flags = ccu_lock(ccu);
|
|
__ccu_write_enable(ccu);
|
|
|
|
success = __clk_gate(ccu, gate, enable);
|
|
|
|
__ccu_write_disable(ccu);
|
|
ccu_unlock(ccu, flags);
|
|
|
|
if (success)
|
|
return 0;
|
|
|
|
pr_err("%s: failed to %s gate for %s\n", __func__,
|
|
enable ? "enable" : "disable", name);
|
|
|
|
return -EIO;
|
|
}
|
|
|
|
/* Hysteresis operations */
|
|
|
|
/*
|
|
* If a clock gate requires a turn-off delay it will have
|
|
* "hysteresis" register bits defined. The first, if set, enables
|
|
* the delay; and if enabled, the second bit determines whether the
|
|
* delay is "low" or "high" (1 means high). For now, if it's
|
|
* defined for a clock, we set it.
|
|
*/
|
|
static bool hyst_init(struct ccu_data *ccu, struct bcm_clk_hyst *hyst)
|
|
{
|
|
u32 offset;
|
|
u32 reg_val;
|
|
u32 mask;
|
|
|
|
if (!hyst_exists(hyst))
|
|
return true;
|
|
|
|
offset = hyst->offset;
|
|
mask = (u32)1 << hyst->en_bit;
|
|
mask |= (u32)1 << hyst->val_bit;
|
|
|
|
reg_val = __ccu_read(ccu, offset);
|
|
reg_val |= mask;
|
|
__ccu_write(ccu, offset, reg_val);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Trigger operations */
|
|
|
|
/*
|
|
* Caller must ensure CCU lock is held and access is enabled.
|
|
* Returns true if successful, false otherwise.
|
|
*/
|
|
static bool __clk_trigger(struct ccu_data *ccu, struct bcm_clk_trig *trig)
|
|
{
|
|
/* Trigger the clock and wait for it to finish */
|
|
__ccu_write(ccu, trig->offset, 1 << trig->bit);
|
|
|
|
return __ccu_wait_bit(ccu, trig->offset, trig->bit, false);
|
|
}
|
|
|
|
/* Divider operations */
|
|
|
|
/* Read a divider value and return the scaled divisor it represents. */
|
|
static u64 divider_read_scaled(struct ccu_data *ccu, struct bcm_clk_div *div)
|
|
{
|
|
unsigned long flags;
|
|
u32 reg_val;
|
|
u32 reg_div;
|
|
|
|
if (divider_is_fixed(div))
|
|
return (u64)div->u.fixed;
|
|
|
|
flags = ccu_lock(ccu);
|
|
reg_val = __ccu_read(ccu, div->u.s.offset);
|
|
ccu_unlock(ccu, flags);
|
|
|
|
/* Extract the full divider field from the register value */
|
|
reg_div = bitfield_extract(reg_val, div->u.s.shift, div->u.s.width);
|
|
|
|
/* Return the scaled divisor value it represents */
|
|
return scaled_div_value(div, reg_div);
|
|
}
|
|
|
|
/*
|
|
* Convert a divider's scaled divisor value into its recorded form
|
|
* and commit it into the hardware divider register.
|
|
*
|
|
* Returns 0 on success. Returns -EINVAL for invalid arguments.
|
|
* Returns -ENXIO if gating failed, and -EIO if a trigger failed.
|
|
*/
|
|
static int __div_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate,
|
|
struct bcm_clk_div *div, struct bcm_clk_trig *trig)
|
|
{
|
|
bool enabled;
|
|
u32 reg_div;
|
|
u32 reg_val;
|
|
int ret = 0;
|
|
|
|
BUG_ON(divider_is_fixed(div));
|
|
|
|
/*
|
|
* If we're just initializing the divider, and no initial
|
|
* state was defined in the device tree, we just find out
|
|
* what its current value is rather than updating it.
|
|
*/
|
|
if (div->u.s.scaled_div == BAD_SCALED_DIV_VALUE) {
|
|
reg_val = __ccu_read(ccu, div->u.s.offset);
|
|
reg_div = bitfield_extract(reg_val, div->u.s.shift,
|
|
div->u.s.width);
|
|
div->u.s.scaled_div = scaled_div_value(div, reg_div);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Convert the scaled divisor to the value we need to record */
|
|
reg_div = divider(div, div->u.s.scaled_div);
|
|
|
|
/* Clock needs to be enabled before changing the rate */
|
|
enabled = __is_clk_gate_enabled(ccu, gate);
|
|
if (!enabled && !__clk_gate(ccu, gate, true)) {
|
|
ret = -ENXIO;
|
|
goto out;
|
|
}
|
|
|
|
/* Replace the divider value and record the result */
|
|
reg_val = __ccu_read(ccu, div->u.s.offset);
|
|
reg_val = bitfield_replace(reg_val, div->u.s.shift, div->u.s.width,
|
|
reg_div);
|
|
__ccu_write(ccu, div->u.s.offset, reg_val);
|
|
|
|
/* If the trigger fails we still want to disable the gate */
|
|
if (!__clk_trigger(ccu, trig))
|
|
ret = -EIO;
|
|
|
|
/* Disable the clock again if it was disabled to begin with */
|
|
if (!enabled && !__clk_gate(ccu, gate, false))
|
|
ret = ret ? ret : -ENXIO; /* return first error */
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Initialize a divider by committing our desired state to hardware
|
|
* without the usual checks to see if it's already set up that way.
|
|
* Returns true if successful, false otherwise.
|
|
*/
|
|
static bool div_init(struct ccu_data *ccu, struct bcm_clk_gate *gate,
|
|
struct bcm_clk_div *div, struct bcm_clk_trig *trig)
|
|
{
|
|
if (!divider_exists(div) || divider_is_fixed(div))
|
|
return true;
|
|
return !__div_commit(ccu, gate, div, trig);
|
|
}
|
|
|
|
static int divider_write(struct ccu_data *ccu, struct bcm_clk_gate *gate,
|
|
struct bcm_clk_div *div, struct bcm_clk_trig *trig,
|
|
u64 scaled_div)
|
|
{
|
|
unsigned long flags;
|
|
u64 previous;
|
|
int ret;
|
|
|
|
BUG_ON(divider_is_fixed(div));
|
|
|
|
previous = div->u.s.scaled_div;
|
|
if (previous == scaled_div)
|
|
return 0; /* No change */
|
|
|
|
div->u.s.scaled_div = scaled_div;
|
|
|
|
flags = ccu_lock(ccu);
|
|
__ccu_write_enable(ccu);
|
|
|
|
ret = __div_commit(ccu, gate, div, trig);
|
|
|
|
__ccu_write_disable(ccu);
|
|
ccu_unlock(ccu, flags);
|
|
|
|
if (ret)
|
|
div->u.s.scaled_div = previous; /* Revert the change */
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
/* Common clock rate helpers */
|
|
|
|
/*
|
|
* Implement the common clock framework recalc_rate method, taking
|
|
* into account a divider and an optional pre-divider. The
|
|
* pre-divider register pointer may be NULL.
|
|
*/
|
|
static unsigned long clk_recalc_rate(struct ccu_data *ccu,
|
|
struct bcm_clk_div *div, struct bcm_clk_div *pre_div,
|
|
unsigned long parent_rate)
|
|
{
|
|
u64 scaled_parent_rate;
|
|
u64 scaled_div;
|
|
u64 result;
|
|
|
|
if (!divider_exists(div))
|
|
return parent_rate;
|
|
|
|
if (parent_rate > (unsigned long)LONG_MAX)
|
|
return 0; /* actually this would be a caller bug */
|
|
|
|
/*
|
|
* If there is a pre-divider, divide the scaled parent rate
|
|
* by the pre-divider value first. In this case--to improve
|
|
* accuracy--scale the parent rate by *both* the pre-divider
|
|
* value and the divider before actually computing the
|
|
* result of the pre-divider.
|
|
*
|
|
* If there's only one divider, just scale the parent rate.
|
|
*/
|
|
if (pre_div && divider_exists(pre_div)) {
|
|
u64 scaled_rate;
|
|
|
|
scaled_rate = scale_rate(pre_div, parent_rate);
|
|
scaled_rate = scale_rate(div, scaled_rate);
|
|
scaled_div = divider_read_scaled(ccu, pre_div);
|
|
scaled_parent_rate = do_div_round_closest(scaled_rate,
|
|
scaled_div);
|
|
} else {
|
|
scaled_parent_rate = scale_rate(div, parent_rate);
|
|
}
|
|
|
|
/*
|
|
* Get the scaled divisor value, and divide the scaled
|
|
* parent rate by that to determine this clock's resulting
|
|
* rate.
|
|
*/
|
|
scaled_div = divider_read_scaled(ccu, div);
|
|
result = do_div_round_closest(scaled_parent_rate, scaled_div);
|
|
|
|
return (unsigned long)result;
|
|
}
|
|
|
|
/*
|
|
* Compute the output rate produced when a given parent rate is fed
|
|
* into two dividers. The pre-divider can be NULL, and even if it's
|
|
* non-null it may be nonexistent. It's also OK for the divider to
|
|
* be nonexistent, and in that case the pre-divider is also ignored.
|
|
*
|
|
* If scaled_div is non-null, it is used to return the scaled divisor
|
|
* value used by the (downstream) divider to produce that rate.
|
|
*/
|
|
static long round_rate(struct ccu_data *ccu, struct bcm_clk_div *div,
|
|
struct bcm_clk_div *pre_div,
|
|
unsigned long rate, unsigned long parent_rate,
|
|
u64 *scaled_div)
|
|
{
|
|
u64 scaled_parent_rate;
|
|
u64 min_scaled_div;
|
|
u64 max_scaled_div;
|
|
u64 best_scaled_div;
|
|
u64 result;
|
|
|
|
BUG_ON(!divider_exists(div));
|
|
BUG_ON(!rate);
|
|
BUG_ON(parent_rate > (u64)LONG_MAX);
|
|
|
|
/*
|
|
* If there is a pre-divider, divide the scaled parent rate
|
|
* by the pre-divider value first. In this case--to improve
|
|
* accuracy--scale the parent rate by *both* the pre-divider
|
|
* value and the divider before actually computing the
|
|
* result of the pre-divider.
|
|
*
|
|
* If there's only one divider, just scale the parent rate.
|
|
*
|
|
* For simplicity we treat the pre-divider as fixed (for now).
|
|
*/
|
|
if (divider_exists(pre_div)) {
|
|
u64 scaled_rate;
|
|
u64 scaled_pre_div;
|
|
|
|
scaled_rate = scale_rate(pre_div, parent_rate);
|
|
scaled_rate = scale_rate(div, scaled_rate);
|
|
scaled_pre_div = divider_read_scaled(ccu, pre_div);
|
|
scaled_parent_rate = do_div_round_closest(scaled_rate,
|
|
scaled_pre_div);
|
|
} else {
|
|
scaled_parent_rate = scale_rate(div, parent_rate);
|
|
}
|
|
|
|
/*
|
|
* Compute the best possible divider and ensure it is in
|
|
* range. A fixed divider can't be changed, so just report
|
|
* the best we can do.
|
|
*/
|
|
if (!divider_is_fixed(div)) {
|
|
best_scaled_div = do_div_round_closest(scaled_parent_rate,
|
|
rate);
|
|
min_scaled_div = scaled_div_min(div);
|
|
max_scaled_div = scaled_div_max(div);
|
|
if (best_scaled_div > max_scaled_div)
|
|
best_scaled_div = max_scaled_div;
|
|
else if (best_scaled_div < min_scaled_div)
|
|
best_scaled_div = min_scaled_div;
|
|
} else {
|
|
best_scaled_div = divider_read_scaled(ccu, div);
|
|
}
|
|
|
|
/* OK, figure out the resulting rate */
|
|
result = do_div_round_closest(scaled_parent_rate, best_scaled_div);
|
|
|
|
if (scaled_div)
|
|
*scaled_div = best_scaled_div;
|
|
|
|
return (long)result;
|
|
}
|
|
|
|
/* Common clock parent helpers */
|
|
|
|
/*
|
|
* For a given parent selector (register field) value, find the
|
|
* index into a selector's parent_sel array that contains it.
|
|
* Returns the index, or BAD_CLK_INDEX if it's not found.
|
|
*/
|
|
static u8 parent_index(struct bcm_clk_sel *sel, u8 parent_sel)
|
|
{
|
|
u8 i;
|
|
|
|
BUG_ON(sel->parent_count > (u32)U8_MAX);
|
|
for (i = 0; i < sel->parent_count; i++)
|
|
if (sel->parent_sel[i] == parent_sel)
|
|
return i;
|
|
return BAD_CLK_INDEX;
|
|
}
|
|
|
|
/*
|
|
* Fetch the current value of the selector, and translate that into
|
|
* its corresponding index in the parent array we registered with
|
|
* the clock framework.
|
|
*
|
|
* Returns parent array index that corresponds with the value found,
|
|
* or BAD_CLK_INDEX if the found value is out of range.
|
|
*/
|
|
static u8 selector_read_index(struct ccu_data *ccu, struct bcm_clk_sel *sel)
|
|
{
|
|
unsigned long flags;
|
|
u32 reg_val;
|
|
u32 parent_sel;
|
|
u8 index;
|
|
|
|
/* If there's no selector, there's only one parent */
|
|
if (!selector_exists(sel))
|
|
return 0;
|
|
|
|
/* Get the value in the selector register */
|
|
flags = ccu_lock(ccu);
|
|
reg_val = __ccu_read(ccu, sel->offset);
|
|
ccu_unlock(ccu, flags);
|
|
|
|
parent_sel = bitfield_extract(reg_val, sel->shift, sel->width);
|
|
|
|
/* Look up that selector's parent array index and return it */
|
|
index = parent_index(sel, parent_sel);
|
|
if (index == BAD_CLK_INDEX)
|
|
pr_err("%s: out-of-range parent selector %u (%s 0x%04x)\n",
|
|
__func__, parent_sel, ccu->name, sel->offset);
|
|
|
|
return index;
|
|
}
|
|
|
|
/*
|
|
* Commit our desired selector value to the hardware.
|
|
*
|
|
* Returns 0 on success. Returns -EINVAL for invalid arguments.
|
|
* Returns -ENXIO if gating failed, and -EIO if a trigger failed.
|
|
*/
|
|
static int
|
|
__sel_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate,
|
|
struct bcm_clk_sel *sel, struct bcm_clk_trig *trig)
|
|
{
|
|
u32 parent_sel;
|
|
u32 reg_val;
|
|
bool enabled;
|
|
int ret = 0;
|
|
|
|
BUG_ON(!selector_exists(sel));
|
|
|
|
/*
|
|
* If we're just initializing the selector, and no initial
|
|
* state was defined in the device tree, we just find out
|
|
* what its current value is rather than updating it.
|
|
*/
|
|
if (sel->clk_index == BAD_CLK_INDEX) {
|
|
u8 index;
|
|
|
|
reg_val = __ccu_read(ccu, sel->offset);
|
|
parent_sel = bitfield_extract(reg_val, sel->shift, sel->width);
|
|
index = parent_index(sel, parent_sel);
|
|
if (index == BAD_CLK_INDEX)
|
|
return -EINVAL;
|
|
sel->clk_index = index;
|
|
|
|
return 0;
|
|
}
|
|
|
|
BUG_ON((u32)sel->clk_index >= sel->parent_count);
|
|
parent_sel = sel->parent_sel[sel->clk_index];
|
|
|
|
/* Clock needs to be enabled before changing the parent */
|
|
enabled = __is_clk_gate_enabled(ccu, gate);
|
|
if (!enabled && !__clk_gate(ccu, gate, true))
|
|
return -ENXIO;
|
|
|
|
/* Replace the selector value and record the result */
|
|
reg_val = __ccu_read(ccu, sel->offset);
|
|
reg_val = bitfield_replace(reg_val, sel->shift, sel->width, parent_sel);
|
|
__ccu_write(ccu, sel->offset, reg_val);
|
|
|
|
/* If the trigger fails we still want to disable the gate */
|
|
if (!__clk_trigger(ccu, trig))
|
|
ret = -EIO;
|
|
|
|
/* Disable the clock again if it was disabled to begin with */
|
|
if (!enabled && !__clk_gate(ccu, gate, false))
|
|
ret = ret ? ret : -ENXIO; /* return first error */
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Initialize a selector by committing our desired state to hardware
|
|
* without the usual checks to see if it's already set up that way.
|
|
* Returns true if successful, false otherwise.
|
|
*/
|
|
static bool sel_init(struct ccu_data *ccu, struct bcm_clk_gate *gate,
|
|
struct bcm_clk_sel *sel, struct bcm_clk_trig *trig)
|
|
{
|
|
if (!selector_exists(sel))
|
|
return true;
|
|
return !__sel_commit(ccu, gate, sel, trig);
|
|
}
|
|
|
|
/*
|
|
* Write a new value into a selector register to switch to a
|
|
* different parent clock. Returns 0 on success, or an error code
|
|
* (from __sel_commit()) otherwise.
|
|
*/
|
|
static int selector_write(struct ccu_data *ccu, struct bcm_clk_gate *gate,
|
|
struct bcm_clk_sel *sel, struct bcm_clk_trig *trig,
|
|
u8 index)
|
|
{
|
|
unsigned long flags;
|
|
u8 previous;
|
|
int ret;
|
|
|
|
previous = sel->clk_index;
|
|
if (previous == index)
|
|
return 0; /* No change */
|
|
|
|
sel->clk_index = index;
|
|
|
|
flags = ccu_lock(ccu);
|
|
__ccu_write_enable(ccu);
|
|
|
|
ret = __sel_commit(ccu, gate, sel, trig);
|
|
|
|
__ccu_write_disable(ccu);
|
|
ccu_unlock(ccu, flags);
|
|
|
|
if (ret)
|
|
sel->clk_index = previous; /* Revert the change */
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Clock operations */
|
|
|
|
static int kona_peri_clk_enable(struct clk_hw *hw)
|
|
{
|
|
struct kona_clk *bcm_clk = to_kona_clk(hw);
|
|
struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
|
|
|
|
return clk_gate(bcm_clk->ccu, bcm_clk->init_data.name, gate, true);
|
|
}
|
|
|
|
static void kona_peri_clk_disable(struct clk_hw *hw)
|
|
{
|
|
struct kona_clk *bcm_clk = to_kona_clk(hw);
|
|
struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
|
|
|
|
(void)clk_gate(bcm_clk->ccu, bcm_clk->init_data.name, gate, false);
|
|
}
|
|
|
|
static int kona_peri_clk_is_enabled(struct clk_hw *hw)
|
|
{
|
|
struct kona_clk *bcm_clk = to_kona_clk(hw);
|
|
struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
|
|
|
|
return is_clk_gate_enabled(bcm_clk->ccu, gate) ? 1 : 0;
|
|
}
|
|
|
|
static unsigned long kona_peri_clk_recalc_rate(struct clk_hw *hw,
|
|
unsigned long parent_rate)
|
|
{
|
|
struct kona_clk *bcm_clk = to_kona_clk(hw);
|
|
struct peri_clk_data *data = bcm_clk->u.peri;
|
|
|
|
return clk_recalc_rate(bcm_clk->ccu, &data->div, &data->pre_div,
|
|
parent_rate);
|
|
}
|
|
|
|
static long kona_peri_clk_round_rate(struct clk_hw *hw, unsigned long rate,
|
|
unsigned long *parent_rate)
|
|
{
|
|
struct kona_clk *bcm_clk = to_kona_clk(hw);
|
|
struct bcm_clk_div *div = &bcm_clk->u.peri->div;
|
|
|
|
if (!divider_exists(div))
|
|
return __clk_get_rate(hw->clk);
|
|
|
|
/* Quietly avoid a zero rate */
|
|
return round_rate(bcm_clk->ccu, div, &bcm_clk->u.peri->pre_div,
|
|
rate ? rate : 1, *parent_rate, NULL);
|
|
}
|
|
|
|
static int kona_peri_clk_set_parent(struct clk_hw *hw, u8 index)
|
|
{
|
|
struct kona_clk *bcm_clk = to_kona_clk(hw);
|
|
struct peri_clk_data *data = bcm_clk->u.peri;
|
|
struct bcm_clk_sel *sel = &data->sel;
|
|
struct bcm_clk_trig *trig;
|
|
int ret;
|
|
|
|
BUG_ON(index >= sel->parent_count);
|
|
|
|
/* If there's only one parent we don't require a selector */
|
|
if (!selector_exists(sel))
|
|
return 0;
|
|
|
|
/*
|
|
* The regular trigger is used by default, but if there's a
|
|
* pre-trigger we want to use that instead.
|
|
*/
|
|
trig = trigger_exists(&data->pre_trig) ? &data->pre_trig
|
|
: &data->trig;
|
|
|
|
ret = selector_write(bcm_clk->ccu, &data->gate, sel, trig, index);
|
|
if (ret == -ENXIO) {
|
|
pr_err("%s: gating failure for %s\n", __func__,
|
|
bcm_clk->init_data.name);
|
|
ret = -EIO; /* Don't proliferate weird errors */
|
|
} else if (ret == -EIO) {
|
|
pr_err("%s: %strigger failed for %s\n", __func__,
|
|
trig == &data->pre_trig ? "pre-" : "",
|
|
bcm_clk->init_data.name);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static u8 kona_peri_clk_get_parent(struct clk_hw *hw)
|
|
{
|
|
struct kona_clk *bcm_clk = to_kona_clk(hw);
|
|
struct peri_clk_data *data = bcm_clk->u.peri;
|
|
u8 index;
|
|
|
|
index = selector_read_index(bcm_clk->ccu, &data->sel);
|
|
|
|
/* Not all callers would handle an out-of-range value gracefully */
|
|
return index == BAD_CLK_INDEX ? 0 : index;
|
|
}
|
|
|
|
static int kona_peri_clk_set_rate(struct clk_hw *hw, unsigned long rate,
|
|
unsigned long parent_rate)
|
|
{
|
|
struct kona_clk *bcm_clk = to_kona_clk(hw);
|
|
struct peri_clk_data *data = bcm_clk->u.peri;
|
|
struct bcm_clk_div *div = &data->div;
|
|
u64 scaled_div = 0;
|
|
int ret;
|
|
|
|
if (parent_rate > (unsigned long)LONG_MAX)
|
|
return -EINVAL;
|
|
|
|
if (rate == __clk_get_rate(hw->clk))
|
|
return 0;
|
|
|
|
if (!divider_exists(div))
|
|
return rate == parent_rate ? 0 : -EINVAL;
|
|
|
|
/*
|
|
* A fixed divider can't be changed. (Nor can a fixed
|
|
* pre-divider be, but for now we never actually try to
|
|
* change that.) Tolerate a request for a no-op change.
|
|
*/
|
|
if (divider_is_fixed(&data->div))
|
|
return rate == parent_rate ? 0 : -EINVAL;
|
|
|
|
/*
|
|
* Get the scaled divisor value needed to achieve a clock
|
|
* rate as close as possible to what was requested, given
|
|
* the parent clock rate supplied.
|
|
*/
|
|
(void)round_rate(bcm_clk->ccu, div, &data->pre_div,
|
|
rate ? rate : 1, parent_rate, &scaled_div);
|
|
|
|
/*
|
|
* We aren't updating any pre-divider at this point, so
|
|
* we'll use the regular trigger.
|
|
*/
|
|
ret = divider_write(bcm_clk->ccu, &data->gate, &data->div,
|
|
&data->trig, scaled_div);
|
|
if (ret == -ENXIO) {
|
|
pr_err("%s: gating failure for %s\n", __func__,
|
|
bcm_clk->init_data.name);
|
|
ret = -EIO; /* Don't proliferate weird errors */
|
|
} else if (ret == -EIO) {
|
|
pr_err("%s: trigger failed for %s\n", __func__,
|
|
bcm_clk->init_data.name);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
struct clk_ops kona_peri_clk_ops = {
|
|
.enable = kona_peri_clk_enable,
|
|
.disable = kona_peri_clk_disable,
|
|
.is_enabled = kona_peri_clk_is_enabled,
|
|
.recalc_rate = kona_peri_clk_recalc_rate,
|
|
.round_rate = kona_peri_clk_round_rate,
|
|
.set_parent = kona_peri_clk_set_parent,
|
|
.get_parent = kona_peri_clk_get_parent,
|
|
.set_rate = kona_peri_clk_set_rate,
|
|
};
|
|
|
|
/* Put a peripheral clock into its initial state */
|
|
static bool __peri_clk_init(struct kona_clk *bcm_clk)
|
|
{
|
|
struct ccu_data *ccu = bcm_clk->ccu;
|
|
struct peri_clk_data *peri = bcm_clk->u.peri;
|
|
const char *name = bcm_clk->init_data.name;
|
|
struct bcm_clk_trig *trig;
|
|
|
|
BUG_ON(bcm_clk->type != bcm_clk_peri);
|
|
|
|
if (!policy_init(ccu, &peri->policy)) {
|
|
pr_err("%s: error initializing policy for %s\n",
|
|
__func__, name);
|
|
return false;
|
|
}
|
|
if (!gate_init(ccu, &peri->gate)) {
|
|
pr_err("%s: error initializing gate for %s\n", __func__, name);
|
|
return false;
|
|
}
|
|
if (!hyst_init(ccu, &peri->hyst)) {
|
|
pr_err("%s: error initializing hyst for %s\n", __func__, name);
|
|
return false;
|
|
}
|
|
if (!div_init(ccu, &peri->gate, &peri->div, &peri->trig)) {
|
|
pr_err("%s: error initializing divider for %s\n", __func__,
|
|
name);
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* For the pre-divider and selector, the pre-trigger is used
|
|
* if it's present, otherwise we just use the regular trigger.
|
|
*/
|
|
trig = trigger_exists(&peri->pre_trig) ? &peri->pre_trig
|
|
: &peri->trig;
|
|
|
|
if (!div_init(ccu, &peri->gate, &peri->pre_div, trig)) {
|
|
pr_err("%s: error initializing pre-divider for %s\n", __func__,
|
|
name);
|
|
return false;
|
|
}
|
|
|
|
if (!sel_init(ccu, &peri->gate, &peri->sel, trig)) {
|
|
pr_err("%s: error initializing selector for %s\n", __func__,
|
|
name);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool __kona_clk_init(struct kona_clk *bcm_clk)
|
|
{
|
|
switch (bcm_clk->type) {
|
|
case bcm_clk_peri:
|
|
return __peri_clk_init(bcm_clk);
|
|
default:
|
|
BUG();
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Set a CCU and all its clocks into their desired initial state */
|
|
bool __init kona_ccu_init(struct ccu_data *ccu)
|
|
{
|
|
unsigned long flags;
|
|
unsigned int which;
|
|
struct clk **clks = ccu->clk_data.clks;
|
|
bool success = true;
|
|
|
|
flags = ccu_lock(ccu);
|
|
__ccu_write_enable(ccu);
|
|
|
|
for (which = 0; which < ccu->clk_data.clk_num; which++) {
|
|
struct kona_clk *bcm_clk;
|
|
|
|
if (!clks[which])
|
|
continue;
|
|
bcm_clk = to_kona_clk(__clk_get_hw(clks[which]));
|
|
success &= __kona_clk_init(bcm_clk);
|
|
}
|
|
|
|
__ccu_write_disable(ccu);
|
|
ccu_unlock(ccu, flags);
|
|
return success;
|
|
}
|