linux/arch/arm64/kvm/hyp.S

1289 lines
27 KiB
ArmAsm

/*
* Copyright (C) 2012,2013 - ARM Ltd
* Author: Marc Zyngier <marc.zyngier@arm.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/linkage.h>
#include <asm/alternative.h>
#include <asm/asm-offsets.h>
#include <asm/assembler.h>
#include <asm/cpufeature.h>
#include <asm/debug-monitors.h>
#include <asm/esr.h>
#include <asm/fpsimdmacros.h>
#include <asm/kvm.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
#include <asm/memory.h>
#define CPU_GP_REG_OFFSET(x) (CPU_GP_REGS + x)
#define CPU_XREG_OFFSET(x) CPU_GP_REG_OFFSET(CPU_USER_PT_REGS + 8*x)
#define CPU_SPSR_OFFSET(x) CPU_GP_REG_OFFSET(CPU_SPSR + 8*x)
#define CPU_SYSREG_OFFSET(x) (CPU_SYSREGS + 8*x)
.text
.pushsection .hyp.text, "ax"
.align PAGE_SHIFT
.macro save_common_regs
// x2: base address for cpu context
// x3: tmp register
add x3, x2, #CPU_XREG_OFFSET(19)
stp x19, x20, [x3]
stp x21, x22, [x3, #16]
stp x23, x24, [x3, #32]
stp x25, x26, [x3, #48]
stp x27, x28, [x3, #64]
stp x29, lr, [x3, #80]
mrs x19, sp_el0
mrs x20, elr_el2 // pc before entering el2
mrs x21, spsr_el2 // pstate before entering el2
stp x19, x20, [x3, #96]
str x21, [x3, #112]
mrs x22, sp_el1
mrs x23, elr_el1
mrs x24, spsr_el1
str x22, [x2, #CPU_GP_REG_OFFSET(CPU_SP_EL1)]
str x23, [x2, #CPU_GP_REG_OFFSET(CPU_ELR_EL1)]
str x24, [x2, #CPU_SPSR_OFFSET(KVM_SPSR_EL1)]
.endm
.macro restore_common_regs
// x2: base address for cpu context
// x3: tmp register
ldr x22, [x2, #CPU_GP_REG_OFFSET(CPU_SP_EL1)]
ldr x23, [x2, #CPU_GP_REG_OFFSET(CPU_ELR_EL1)]
ldr x24, [x2, #CPU_SPSR_OFFSET(KVM_SPSR_EL1)]
msr sp_el1, x22
msr elr_el1, x23
msr spsr_el1, x24
add x3, x2, #CPU_XREG_OFFSET(31) // SP_EL0
ldp x19, x20, [x3]
ldr x21, [x3, #16]
msr sp_el0, x19
msr elr_el2, x20 // pc on return from el2
msr spsr_el2, x21 // pstate on return from el2
add x3, x2, #CPU_XREG_OFFSET(19)
ldp x19, x20, [x3]
ldp x21, x22, [x3, #16]
ldp x23, x24, [x3, #32]
ldp x25, x26, [x3, #48]
ldp x27, x28, [x3, #64]
ldp x29, lr, [x3, #80]
.endm
.macro save_host_regs
save_common_regs
.endm
.macro restore_host_regs
restore_common_regs
.endm
.macro save_fpsimd
// x2: cpu context address
// x3, x4: tmp regs
add x3, x2, #CPU_GP_REG_OFFSET(CPU_FP_REGS)
fpsimd_save x3, 4
.endm
.macro restore_fpsimd
// x2: cpu context address
// x3, x4: tmp regs
add x3, x2, #CPU_GP_REG_OFFSET(CPU_FP_REGS)
fpsimd_restore x3, 4
.endm
.macro save_guest_regs
// x0 is the vcpu address
// x1 is the return code, do not corrupt!
// x2 is the cpu context
// x3 is a tmp register
// Guest's x0-x3 are on the stack
// Compute base to save registers
add x3, x2, #CPU_XREG_OFFSET(4)
stp x4, x5, [x3]
stp x6, x7, [x3, #16]
stp x8, x9, [x3, #32]
stp x10, x11, [x3, #48]
stp x12, x13, [x3, #64]
stp x14, x15, [x3, #80]
stp x16, x17, [x3, #96]
str x18, [x3, #112]
pop x6, x7 // x2, x3
pop x4, x5 // x0, x1
add x3, x2, #CPU_XREG_OFFSET(0)
stp x4, x5, [x3]
stp x6, x7, [x3, #16]
save_common_regs
.endm
.macro restore_guest_regs
// x0 is the vcpu address.
// x2 is the cpu context
// x3 is a tmp register
// Prepare x0-x3 for later restore
add x3, x2, #CPU_XREG_OFFSET(0)
ldp x4, x5, [x3]
ldp x6, x7, [x3, #16]
push x4, x5 // Push x0-x3 on the stack
push x6, x7
// x4-x18
ldp x4, x5, [x3, #32]
ldp x6, x7, [x3, #48]
ldp x8, x9, [x3, #64]
ldp x10, x11, [x3, #80]
ldp x12, x13, [x3, #96]
ldp x14, x15, [x3, #112]
ldp x16, x17, [x3, #128]
ldr x18, [x3, #144]
// x19-x29, lr, sp*, elr*, spsr*
restore_common_regs
// Last bits of the 64bit state
pop x2, x3
pop x0, x1
// Do not touch any register after this!
.endm
/*
* Macros to perform system register save/restore.
*
* Ordering here is absolutely critical, and must be kept consistent
* in {save,restore}_sysregs, {save,restore}_guest_32bit_state,
* and in kvm_asm.h.
*
* In other words, don't touch any of these unless you know what
* you are doing.
*/
.macro save_sysregs
// x2: base address for cpu context
// x3: tmp register
add x3, x2, #CPU_SYSREG_OFFSET(MPIDR_EL1)
mrs x4, vmpidr_el2
mrs x5, csselr_el1
mrs x6, sctlr_el1
mrs x7, actlr_el1
mrs x8, cpacr_el1
mrs x9, ttbr0_el1
mrs x10, ttbr1_el1
mrs x11, tcr_el1
mrs x12, esr_el1
mrs x13, afsr0_el1
mrs x14, afsr1_el1
mrs x15, far_el1
mrs x16, mair_el1
mrs x17, vbar_el1
mrs x18, contextidr_el1
mrs x19, tpidr_el0
mrs x20, tpidrro_el0
mrs x21, tpidr_el1
mrs x22, amair_el1
mrs x23, cntkctl_el1
mrs x24, par_el1
mrs x25, mdscr_el1
stp x4, x5, [x3]
stp x6, x7, [x3, #16]
stp x8, x9, [x3, #32]
stp x10, x11, [x3, #48]
stp x12, x13, [x3, #64]
stp x14, x15, [x3, #80]
stp x16, x17, [x3, #96]
stp x18, x19, [x3, #112]
stp x20, x21, [x3, #128]
stp x22, x23, [x3, #144]
stp x24, x25, [x3, #160]
.endm
.macro save_debug
// x2: base address for cpu context
// x3: tmp register
mrs x26, id_aa64dfr0_el1
ubfx x24, x26, #12, #4 // Extract BRPs
ubfx x25, x26, #20, #4 // Extract WRPs
mov w26, #15
sub w24, w26, w24 // How many BPs to skip
sub w25, w26, w25 // How many WPs to skip
add x3, x2, #CPU_SYSREG_OFFSET(DBGBCR0_EL1)
adr x26, 1f
add x26, x26, x24, lsl #2
br x26
1:
mrs x20, dbgbcr15_el1
mrs x19, dbgbcr14_el1
mrs x18, dbgbcr13_el1
mrs x17, dbgbcr12_el1
mrs x16, dbgbcr11_el1
mrs x15, dbgbcr10_el1
mrs x14, dbgbcr9_el1
mrs x13, dbgbcr8_el1
mrs x12, dbgbcr7_el1
mrs x11, dbgbcr6_el1
mrs x10, dbgbcr5_el1
mrs x9, dbgbcr4_el1
mrs x8, dbgbcr3_el1
mrs x7, dbgbcr2_el1
mrs x6, dbgbcr1_el1
mrs x5, dbgbcr0_el1
adr x26, 1f
add x26, x26, x24, lsl #2
br x26
1:
str x20, [x3, #(15 * 8)]
str x19, [x3, #(14 * 8)]
str x18, [x3, #(13 * 8)]
str x17, [x3, #(12 * 8)]
str x16, [x3, #(11 * 8)]
str x15, [x3, #(10 * 8)]
str x14, [x3, #(9 * 8)]
str x13, [x3, #(8 * 8)]
str x12, [x3, #(7 * 8)]
str x11, [x3, #(6 * 8)]
str x10, [x3, #(5 * 8)]
str x9, [x3, #(4 * 8)]
str x8, [x3, #(3 * 8)]
str x7, [x3, #(2 * 8)]
str x6, [x3, #(1 * 8)]
str x5, [x3, #(0 * 8)]
add x3, x2, #CPU_SYSREG_OFFSET(DBGBVR0_EL1)
adr x26, 1f
add x26, x26, x24, lsl #2
br x26
1:
mrs x20, dbgbvr15_el1
mrs x19, dbgbvr14_el1
mrs x18, dbgbvr13_el1
mrs x17, dbgbvr12_el1
mrs x16, dbgbvr11_el1
mrs x15, dbgbvr10_el1
mrs x14, dbgbvr9_el1
mrs x13, dbgbvr8_el1
mrs x12, dbgbvr7_el1
mrs x11, dbgbvr6_el1
mrs x10, dbgbvr5_el1
mrs x9, dbgbvr4_el1
mrs x8, dbgbvr3_el1
mrs x7, dbgbvr2_el1
mrs x6, dbgbvr1_el1
mrs x5, dbgbvr0_el1
adr x26, 1f
add x26, x26, x24, lsl #2
br x26
1:
str x20, [x3, #(15 * 8)]
str x19, [x3, #(14 * 8)]
str x18, [x3, #(13 * 8)]
str x17, [x3, #(12 * 8)]
str x16, [x3, #(11 * 8)]
str x15, [x3, #(10 * 8)]
str x14, [x3, #(9 * 8)]
str x13, [x3, #(8 * 8)]
str x12, [x3, #(7 * 8)]
str x11, [x3, #(6 * 8)]
str x10, [x3, #(5 * 8)]
str x9, [x3, #(4 * 8)]
str x8, [x3, #(3 * 8)]
str x7, [x3, #(2 * 8)]
str x6, [x3, #(1 * 8)]
str x5, [x3, #(0 * 8)]
add x3, x2, #CPU_SYSREG_OFFSET(DBGWCR0_EL1)
adr x26, 1f
add x26, x26, x25, lsl #2
br x26
1:
mrs x20, dbgwcr15_el1
mrs x19, dbgwcr14_el1
mrs x18, dbgwcr13_el1
mrs x17, dbgwcr12_el1
mrs x16, dbgwcr11_el1
mrs x15, dbgwcr10_el1
mrs x14, dbgwcr9_el1
mrs x13, dbgwcr8_el1
mrs x12, dbgwcr7_el1
mrs x11, dbgwcr6_el1
mrs x10, dbgwcr5_el1
mrs x9, dbgwcr4_el1
mrs x8, dbgwcr3_el1
mrs x7, dbgwcr2_el1
mrs x6, dbgwcr1_el1
mrs x5, dbgwcr0_el1
adr x26, 1f
add x26, x26, x25, lsl #2
br x26
1:
str x20, [x3, #(15 * 8)]
str x19, [x3, #(14 * 8)]
str x18, [x3, #(13 * 8)]
str x17, [x3, #(12 * 8)]
str x16, [x3, #(11 * 8)]
str x15, [x3, #(10 * 8)]
str x14, [x3, #(9 * 8)]
str x13, [x3, #(8 * 8)]
str x12, [x3, #(7 * 8)]
str x11, [x3, #(6 * 8)]
str x10, [x3, #(5 * 8)]
str x9, [x3, #(4 * 8)]
str x8, [x3, #(3 * 8)]
str x7, [x3, #(2 * 8)]
str x6, [x3, #(1 * 8)]
str x5, [x3, #(0 * 8)]
add x3, x2, #CPU_SYSREG_OFFSET(DBGWVR0_EL1)
adr x26, 1f
add x26, x26, x25, lsl #2
br x26
1:
mrs x20, dbgwvr15_el1
mrs x19, dbgwvr14_el1
mrs x18, dbgwvr13_el1
mrs x17, dbgwvr12_el1
mrs x16, dbgwvr11_el1
mrs x15, dbgwvr10_el1
mrs x14, dbgwvr9_el1
mrs x13, dbgwvr8_el1
mrs x12, dbgwvr7_el1
mrs x11, dbgwvr6_el1
mrs x10, dbgwvr5_el1
mrs x9, dbgwvr4_el1
mrs x8, dbgwvr3_el1
mrs x7, dbgwvr2_el1
mrs x6, dbgwvr1_el1
mrs x5, dbgwvr0_el1
adr x26, 1f
add x26, x26, x25, lsl #2
br x26
1:
str x20, [x3, #(15 * 8)]
str x19, [x3, #(14 * 8)]
str x18, [x3, #(13 * 8)]
str x17, [x3, #(12 * 8)]
str x16, [x3, #(11 * 8)]
str x15, [x3, #(10 * 8)]
str x14, [x3, #(9 * 8)]
str x13, [x3, #(8 * 8)]
str x12, [x3, #(7 * 8)]
str x11, [x3, #(6 * 8)]
str x10, [x3, #(5 * 8)]
str x9, [x3, #(4 * 8)]
str x8, [x3, #(3 * 8)]
str x7, [x3, #(2 * 8)]
str x6, [x3, #(1 * 8)]
str x5, [x3, #(0 * 8)]
mrs x21, mdccint_el1
str x21, [x2, #CPU_SYSREG_OFFSET(MDCCINT_EL1)]
.endm
.macro restore_sysregs
// x2: base address for cpu context
// x3: tmp register
add x3, x2, #CPU_SYSREG_OFFSET(MPIDR_EL1)
ldp x4, x5, [x3]
ldp x6, x7, [x3, #16]
ldp x8, x9, [x3, #32]
ldp x10, x11, [x3, #48]
ldp x12, x13, [x3, #64]
ldp x14, x15, [x3, #80]
ldp x16, x17, [x3, #96]
ldp x18, x19, [x3, #112]
ldp x20, x21, [x3, #128]
ldp x22, x23, [x3, #144]
ldp x24, x25, [x3, #160]
msr vmpidr_el2, x4
msr csselr_el1, x5
msr sctlr_el1, x6
msr actlr_el1, x7
msr cpacr_el1, x8
msr ttbr0_el1, x9
msr ttbr1_el1, x10
msr tcr_el1, x11
msr esr_el1, x12
msr afsr0_el1, x13
msr afsr1_el1, x14
msr far_el1, x15
msr mair_el1, x16
msr vbar_el1, x17
msr contextidr_el1, x18
msr tpidr_el0, x19
msr tpidrro_el0, x20
msr tpidr_el1, x21
msr amair_el1, x22
msr cntkctl_el1, x23
msr par_el1, x24
msr mdscr_el1, x25
.endm
.macro restore_debug
// x2: base address for cpu context
// x3: tmp register
mrs x26, id_aa64dfr0_el1
ubfx x24, x26, #12, #4 // Extract BRPs
ubfx x25, x26, #20, #4 // Extract WRPs
mov w26, #15
sub w24, w26, w24 // How many BPs to skip
sub w25, w26, w25 // How many WPs to skip
add x3, x2, #CPU_SYSREG_OFFSET(DBGBCR0_EL1)
adr x26, 1f
add x26, x26, x24, lsl #2
br x26
1:
ldr x20, [x3, #(15 * 8)]
ldr x19, [x3, #(14 * 8)]
ldr x18, [x3, #(13 * 8)]
ldr x17, [x3, #(12 * 8)]
ldr x16, [x3, #(11 * 8)]
ldr x15, [x3, #(10 * 8)]
ldr x14, [x3, #(9 * 8)]
ldr x13, [x3, #(8 * 8)]
ldr x12, [x3, #(7 * 8)]
ldr x11, [x3, #(6 * 8)]
ldr x10, [x3, #(5 * 8)]
ldr x9, [x3, #(4 * 8)]
ldr x8, [x3, #(3 * 8)]
ldr x7, [x3, #(2 * 8)]
ldr x6, [x3, #(1 * 8)]
ldr x5, [x3, #(0 * 8)]
adr x26, 1f
add x26, x26, x24, lsl #2
br x26
1:
msr dbgbcr15_el1, x20
msr dbgbcr14_el1, x19
msr dbgbcr13_el1, x18
msr dbgbcr12_el1, x17
msr dbgbcr11_el1, x16
msr dbgbcr10_el1, x15
msr dbgbcr9_el1, x14
msr dbgbcr8_el1, x13
msr dbgbcr7_el1, x12
msr dbgbcr6_el1, x11
msr dbgbcr5_el1, x10
msr dbgbcr4_el1, x9
msr dbgbcr3_el1, x8
msr dbgbcr2_el1, x7
msr dbgbcr1_el1, x6
msr dbgbcr0_el1, x5
add x3, x2, #CPU_SYSREG_OFFSET(DBGBVR0_EL1)
adr x26, 1f
add x26, x26, x24, lsl #2
br x26
1:
ldr x20, [x3, #(15 * 8)]
ldr x19, [x3, #(14 * 8)]
ldr x18, [x3, #(13 * 8)]
ldr x17, [x3, #(12 * 8)]
ldr x16, [x3, #(11 * 8)]
ldr x15, [x3, #(10 * 8)]
ldr x14, [x3, #(9 * 8)]
ldr x13, [x3, #(8 * 8)]
ldr x12, [x3, #(7 * 8)]
ldr x11, [x3, #(6 * 8)]
ldr x10, [x3, #(5 * 8)]
ldr x9, [x3, #(4 * 8)]
ldr x8, [x3, #(3 * 8)]
ldr x7, [x3, #(2 * 8)]
ldr x6, [x3, #(1 * 8)]
ldr x5, [x3, #(0 * 8)]
adr x26, 1f
add x26, x26, x24, lsl #2
br x26
1:
msr dbgbvr15_el1, x20
msr dbgbvr14_el1, x19
msr dbgbvr13_el1, x18
msr dbgbvr12_el1, x17
msr dbgbvr11_el1, x16
msr dbgbvr10_el1, x15
msr dbgbvr9_el1, x14
msr dbgbvr8_el1, x13
msr dbgbvr7_el1, x12
msr dbgbvr6_el1, x11
msr dbgbvr5_el1, x10
msr dbgbvr4_el1, x9
msr dbgbvr3_el1, x8
msr dbgbvr2_el1, x7
msr dbgbvr1_el1, x6
msr dbgbvr0_el1, x5
add x3, x2, #CPU_SYSREG_OFFSET(DBGWCR0_EL1)
adr x26, 1f
add x26, x26, x25, lsl #2
br x26
1:
ldr x20, [x3, #(15 * 8)]
ldr x19, [x3, #(14 * 8)]
ldr x18, [x3, #(13 * 8)]
ldr x17, [x3, #(12 * 8)]
ldr x16, [x3, #(11 * 8)]
ldr x15, [x3, #(10 * 8)]
ldr x14, [x3, #(9 * 8)]
ldr x13, [x3, #(8 * 8)]
ldr x12, [x3, #(7 * 8)]
ldr x11, [x3, #(6 * 8)]
ldr x10, [x3, #(5 * 8)]
ldr x9, [x3, #(4 * 8)]
ldr x8, [x3, #(3 * 8)]
ldr x7, [x3, #(2 * 8)]
ldr x6, [x3, #(1 * 8)]
ldr x5, [x3, #(0 * 8)]
adr x26, 1f
add x26, x26, x25, lsl #2
br x26
1:
msr dbgwcr15_el1, x20
msr dbgwcr14_el1, x19
msr dbgwcr13_el1, x18
msr dbgwcr12_el1, x17
msr dbgwcr11_el1, x16
msr dbgwcr10_el1, x15
msr dbgwcr9_el1, x14
msr dbgwcr8_el1, x13
msr dbgwcr7_el1, x12
msr dbgwcr6_el1, x11
msr dbgwcr5_el1, x10
msr dbgwcr4_el1, x9
msr dbgwcr3_el1, x8
msr dbgwcr2_el1, x7
msr dbgwcr1_el1, x6
msr dbgwcr0_el1, x5
add x3, x2, #CPU_SYSREG_OFFSET(DBGWVR0_EL1)
adr x26, 1f
add x26, x26, x25, lsl #2
br x26
1:
ldr x20, [x3, #(15 * 8)]
ldr x19, [x3, #(14 * 8)]
ldr x18, [x3, #(13 * 8)]
ldr x17, [x3, #(12 * 8)]
ldr x16, [x3, #(11 * 8)]
ldr x15, [x3, #(10 * 8)]
ldr x14, [x3, #(9 * 8)]
ldr x13, [x3, #(8 * 8)]
ldr x12, [x3, #(7 * 8)]
ldr x11, [x3, #(6 * 8)]
ldr x10, [x3, #(5 * 8)]
ldr x9, [x3, #(4 * 8)]
ldr x8, [x3, #(3 * 8)]
ldr x7, [x3, #(2 * 8)]
ldr x6, [x3, #(1 * 8)]
ldr x5, [x3, #(0 * 8)]
adr x26, 1f
add x26, x26, x25, lsl #2
br x26
1:
msr dbgwvr15_el1, x20
msr dbgwvr14_el1, x19
msr dbgwvr13_el1, x18
msr dbgwvr12_el1, x17
msr dbgwvr11_el1, x16
msr dbgwvr10_el1, x15
msr dbgwvr9_el1, x14
msr dbgwvr8_el1, x13
msr dbgwvr7_el1, x12
msr dbgwvr6_el1, x11
msr dbgwvr5_el1, x10
msr dbgwvr4_el1, x9
msr dbgwvr3_el1, x8
msr dbgwvr2_el1, x7
msr dbgwvr1_el1, x6
msr dbgwvr0_el1, x5
ldr x21, [x2, #CPU_SYSREG_OFFSET(MDCCINT_EL1)]
msr mdccint_el1, x21
.endm
.macro skip_32bit_state tmp, target
// Skip 32bit state if not needed
mrs \tmp, hcr_el2
tbnz \tmp, #HCR_RW_SHIFT, \target
.endm
.macro skip_tee_state tmp, target
// Skip ThumbEE state if not needed
mrs \tmp, id_pfr0_el1
tbz \tmp, #12, \target
.endm
.macro skip_debug_state tmp, target
ldr \tmp, [x0, #VCPU_DEBUG_FLAGS]
tbz \tmp, #KVM_ARM64_DEBUG_DIRTY_SHIFT, \target
.endm
.macro compute_debug_state target
// Compute debug state: If any of KDE, MDE or KVM_ARM64_DEBUG_DIRTY
// is set, we do a full save/restore cycle and disable trapping.
add x25, x0, #VCPU_CONTEXT
// Check the state of MDSCR_EL1
ldr x25, [x25, #CPU_SYSREG_OFFSET(MDSCR_EL1)]
and x26, x25, #DBG_MDSCR_KDE
and x25, x25, #DBG_MDSCR_MDE
adds xzr, x25, x26
b.eq 9998f // Nothing to see there
// If any interesting bits was set, we must set the flag
mov x26, #KVM_ARM64_DEBUG_DIRTY
str x26, [x0, #VCPU_DEBUG_FLAGS]
b 9999f // Don't skip restore
9998:
// Otherwise load the flags from memory in case we recently
// trapped
skip_debug_state x25, \target
9999:
.endm
.macro save_guest_32bit_state
skip_32bit_state x3, 1f
add x3, x2, #CPU_SPSR_OFFSET(KVM_SPSR_ABT)
mrs x4, spsr_abt
mrs x5, spsr_und
mrs x6, spsr_irq
mrs x7, spsr_fiq
stp x4, x5, [x3]
stp x6, x7, [x3, #16]
add x3, x2, #CPU_SYSREG_OFFSET(DACR32_EL2)
mrs x4, dacr32_el2
mrs x5, ifsr32_el2
mrs x6, fpexc32_el2
stp x4, x5, [x3]
str x6, [x3, #16]
skip_debug_state x8, 2f
mrs x7, dbgvcr32_el2
str x7, [x3, #24]
2:
skip_tee_state x8, 1f
add x3, x2, #CPU_SYSREG_OFFSET(TEECR32_EL1)
mrs x4, teecr32_el1
mrs x5, teehbr32_el1
stp x4, x5, [x3]
1:
.endm
.macro restore_guest_32bit_state
skip_32bit_state x3, 1f
add x3, x2, #CPU_SPSR_OFFSET(KVM_SPSR_ABT)
ldp x4, x5, [x3]
ldp x6, x7, [x3, #16]
msr spsr_abt, x4
msr spsr_und, x5
msr spsr_irq, x6
msr spsr_fiq, x7
add x3, x2, #CPU_SYSREG_OFFSET(DACR32_EL2)
ldp x4, x5, [x3]
ldr x6, [x3, #16]
msr dacr32_el2, x4
msr ifsr32_el2, x5
msr fpexc32_el2, x6
skip_debug_state x8, 2f
ldr x7, [x3, #24]
msr dbgvcr32_el2, x7
2:
skip_tee_state x8, 1f
add x3, x2, #CPU_SYSREG_OFFSET(TEECR32_EL1)
ldp x4, x5, [x3]
msr teecr32_el1, x4
msr teehbr32_el1, x5
1:
.endm
.macro activate_traps
ldr x2, [x0, #VCPU_HCR_EL2]
msr hcr_el2, x2
mov x2, #CPTR_EL2_TTA
msr cptr_el2, x2
mov x2, #(1 << 15) // Trap CP15 Cr=15
msr hstr_el2, x2
mrs x2, mdcr_el2
and x2, x2, #MDCR_EL2_HPMN_MASK
orr x2, x2, #(MDCR_EL2_TPM | MDCR_EL2_TPMCR)
orr x2, x2, #(MDCR_EL2_TDRA | MDCR_EL2_TDOSA)
// Check for KVM_ARM64_DEBUG_DIRTY, and set debug to trap
// if not dirty.
ldr x3, [x0, #VCPU_DEBUG_FLAGS]
tbnz x3, #KVM_ARM64_DEBUG_DIRTY_SHIFT, 1f
orr x2, x2, #MDCR_EL2_TDA
1:
msr mdcr_el2, x2
.endm
.macro deactivate_traps
mov x2, #HCR_RW
msr hcr_el2, x2
msr cptr_el2, xzr
msr hstr_el2, xzr
mrs x2, mdcr_el2
and x2, x2, #MDCR_EL2_HPMN_MASK
msr mdcr_el2, x2
.endm
.macro activate_vm
ldr x1, [x0, #VCPU_KVM]
kern_hyp_va x1
ldr x2, [x1, #KVM_VTTBR]
msr vttbr_el2, x2
.endm
.macro deactivate_vm
msr vttbr_el2, xzr
.endm
/*
* Call into the vgic backend for state saving
*/
.macro save_vgic_state
alternative_insn "bl __save_vgic_v2_state", "bl __save_vgic_v3_state", ARM64_HAS_SYSREG_GIC_CPUIF
mrs x24, hcr_el2
mov x25, #HCR_INT_OVERRIDE
neg x25, x25
and x24, x24, x25
msr hcr_el2, x24
.endm
/*
* Call into the vgic backend for state restoring
*/
.macro restore_vgic_state
mrs x24, hcr_el2
ldr x25, [x0, #VCPU_IRQ_LINES]
orr x24, x24, #HCR_INT_OVERRIDE
orr x24, x24, x25
msr hcr_el2, x24
alternative_insn "bl __restore_vgic_v2_state", "bl __restore_vgic_v3_state", ARM64_HAS_SYSREG_GIC_CPUIF
.endm
.macro save_timer_state
// x0: vcpu pointer
ldr x2, [x0, #VCPU_KVM]
kern_hyp_va x2
ldr w3, [x2, #KVM_TIMER_ENABLED]
cbz w3, 1f
mrs x3, cntv_ctl_el0
and x3, x3, #3
str w3, [x0, #VCPU_TIMER_CNTV_CTL]
bic x3, x3, #1 // Clear Enable
msr cntv_ctl_el0, x3
isb
mrs x3, cntv_cval_el0
str x3, [x0, #VCPU_TIMER_CNTV_CVAL]
1:
// Allow physical timer/counter access for the host
mrs x2, cnthctl_el2
orr x2, x2, #3
msr cnthctl_el2, x2
// Clear cntvoff for the host
msr cntvoff_el2, xzr
.endm
.macro restore_timer_state
// x0: vcpu pointer
// Disallow physical timer access for the guest
// Physical counter access is allowed
mrs x2, cnthctl_el2
orr x2, x2, #1
bic x2, x2, #2
msr cnthctl_el2, x2
ldr x2, [x0, #VCPU_KVM]
kern_hyp_va x2
ldr w3, [x2, #KVM_TIMER_ENABLED]
cbz w3, 1f
ldr x3, [x2, #KVM_TIMER_CNTVOFF]
msr cntvoff_el2, x3
ldr x2, [x0, #VCPU_TIMER_CNTV_CVAL]
msr cntv_cval_el0, x2
isb
ldr w2, [x0, #VCPU_TIMER_CNTV_CTL]
and x2, x2, #3
msr cntv_ctl_el0, x2
1:
.endm
__save_sysregs:
save_sysregs
ret
__restore_sysregs:
restore_sysregs
ret
__save_debug:
save_debug
ret
__restore_debug:
restore_debug
ret
__save_fpsimd:
save_fpsimd
ret
__restore_fpsimd:
restore_fpsimd
ret
/*
* u64 __kvm_vcpu_run(struct kvm_vcpu *vcpu);
*
* This is the world switch. The first half of the function
* deals with entering the guest, and anything from __kvm_vcpu_return
* to the end of the function deals with reentering the host.
* On the enter path, only x0 (vcpu pointer) must be preserved until
* the last moment. On the exit path, x0 (vcpu pointer) and x1 (exception
* code) must both be preserved until the epilogue.
* In both cases, x2 points to the CPU context we're saving/restoring from/to.
*/
ENTRY(__kvm_vcpu_run)
kern_hyp_va x0
msr tpidr_el2, x0 // Save the vcpu register
// Host context
ldr x2, [x0, #VCPU_HOST_CONTEXT]
kern_hyp_va x2
save_host_regs
bl __save_fpsimd
bl __save_sysregs
compute_debug_state 1f
bl __save_debug
1:
activate_traps
activate_vm
restore_vgic_state
restore_timer_state
// Guest context
add x2, x0, #VCPU_CONTEXT
bl __restore_sysregs
bl __restore_fpsimd
skip_debug_state x3, 1f
bl __restore_debug
1:
restore_guest_32bit_state
restore_guest_regs
// That's it, no more messing around.
eret
__kvm_vcpu_return:
// Assume x0 is the vcpu pointer, x1 the return code
// Guest's x0-x3 are on the stack
// Guest context
add x2, x0, #VCPU_CONTEXT
save_guest_regs
bl __save_fpsimd
bl __save_sysregs
skip_debug_state x3, 1f
bl __save_debug
1:
save_guest_32bit_state
save_timer_state
save_vgic_state
deactivate_traps
deactivate_vm
// Host context
ldr x2, [x0, #VCPU_HOST_CONTEXT]
kern_hyp_va x2
bl __restore_sysregs
bl __restore_fpsimd
skip_debug_state x3, 1f
// Clear the dirty flag for the next run, as all the state has
// already been saved. Note that we nuke the whole 64bit word.
// If we ever add more flags, we'll have to be more careful...
str xzr, [x0, #VCPU_DEBUG_FLAGS]
bl __restore_debug
1:
restore_host_regs
mov x0, x1
ret
END(__kvm_vcpu_run)
// void __kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa);
ENTRY(__kvm_tlb_flush_vmid_ipa)
dsb ishst
kern_hyp_va x0
ldr x2, [x0, #KVM_VTTBR]
msr vttbr_el2, x2
isb
/*
* We could do so much better if we had the VA as well.
* Instead, we invalidate Stage-2 for this IPA, and the
* whole of Stage-1. Weep...
*/
lsr x1, x1, #12
tlbi ipas2e1is, x1
/*
* We have to ensure completion of the invalidation at Stage-2,
* since a table walk on another CPU could refill a TLB with a
* complete (S1 + S2) walk based on the old Stage-2 mapping if
* the Stage-1 invalidation happened first.
*/
dsb ish
tlbi vmalle1is
dsb ish
isb
msr vttbr_el2, xzr
ret
ENDPROC(__kvm_tlb_flush_vmid_ipa)
/**
* void __kvm_tlb_flush_vmid(struct kvm *kvm) - Flush per-VMID TLBs
* @struct kvm *kvm - pointer to kvm structure
*
* Invalidates all Stage 1 and 2 TLB entries for current VMID.
*/
ENTRY(__kvm_tlb_flush_vmid)
dsb ishst
kern_hyp_va x0
ldr x2, [x0, #KVM_VTTBR]
msr vttbr_el2, x2
isb
tlbi vmalls12e1is
dsb ish
isb
msr vttbr_el2, xzr
ret
ENDPROC(__kvm_tlb_flush_vmid)
ENTRY(__kvm_flush_vm_context)
dsb ishst
tlbi alle1is
ic ialluis
dsb ish
ret
ENDPROC(__kvm_flush_vm_context)
__kvm_hyp_panic:
// Guess the context by looking at VTTBR:
// If zero, then we're already a host.
// Otherwise restore a minimal host context before panicing.
mrs x0, vttbr_el2
cbz x0, 1f
mrs x0, tpidr_el2
deactivate_traps
deactivate_vm
ldr x2, [x0, #VCPU_HOST_CONTEXT]
kern_hyp_va x2
bl __restore_sysregs
1: adr x0, __hyp_panic_str
adr x1, 2f
ldp x2, x3, [x1]
sub x0, x0, x2
add x0, x0, x3
mrs x1, spsr_el2
mrs x2, elr_el2
mrs x3, esr_el2
mrs x4, far_el2
mrs x5, hpfar_el2
mrs x6, par_el1
mrs x7, tpidr_el2
mov lr, #(PSR_F_BIT | PSR_I_BIT | PSR_A_BIT | PSR_D_BIT |\
PSR_MODE_EL1h)
msr spsr_el2, lr
ldr lr, =panic
msr elr_el2, lr
eret
.align 3
2: .quad HYP_PAGE_OFFSET
.quad PAGE_OFFSET
ENDPROC(__kvm_hyp_panic)
__hyp_panic_str:
.ascii "HYP panic:\nPS:%08x PC:%p ESR:%p\nFAR:%p HPFAR:%p PAR:%p\nVCPU:%p\n\0"
.align 2
/*
* u64 kvm_call_hyp(void *hypfn, ...);
*
* This is not really a variadic function in the classic C-way and care must
* be taken when calling this to ensure parameters are passed in registers
* only, since the stack will change between the caller and the callee.
*
* Call the function with the first argument containing a pointer to the
* function you wish to call in Hyp mode, and subsequent arguments will be
* passed as x0, x1, and x2 (a maximum of 3 arguments in addition to the
* function pointer can be passed). The function being called must be mapped
* in Hyp mode (see init_hyp_mode in arch/arm/kvm/arm.c). Return values are
* passed in r0 and r1.
*
* A function pointer with a value of 0 has a special meaning, and is
* used to implement __hyp_get_vectors in the same way as in
* arch/arm64/kernel/hyp_stub.S.
*/
ENTRY(kvm_call_hyp)
hvc #0
ret
ENDPROC(kvm_call_hyp)
.macro invalid_vector label, target
.align 2
\label:
b \target
ENDPROC(\label)
.endm
/* None of these should ever happen */
invalid_vector el2t_sync_invalid, __kvm_hyp_panic
invalid_vector el2t_irq_invalid, __kvm_hyp_panic
invalid_vector el2t_fiq_invalid, __kvm_hyp_panic
invalid_vector el2t_error_invalid, __kvm_hyp_panic
invalid_vector el2h_sync_invalid, __kvm_hyp_panic
invalid_vector el2h_irq_invalid, __kvm_hyp_panic
invalid_vector el2h_fiq_invalid, __kvm_hyp_panic
invalid_vector el2h_error_invalid, __kvm_hyp_panic
invalid_vector el1_sync_invalid, __kvm_hyp_panic
invalid_vector el1_irq_invalid, __kvm_hyp_panic
invalid_vector el1_fiq_invalid, __kvm_hyp_panic
invalid_vector el1_error_invalid, __kvm_hyp_panic
el1_sync: // Guest trapped into EL2
push x0, x1
push x2, x3
mrs x1, esr_el2
lsr x2, x1, #ESR_ELx_EC_SHIFT
cmp x2, #ESR_ELx_EC_HVC64
b.ne el1_trap
mrs x3, vttbr_el2 // If vttbr is valid, the 64bit guest
cbnz x3, el1_trap // called HVC
/* Here, we're pretty sure the host called HVC. */
pop x2, x3
pop x0, x1
/* Check for __hyp_get_vectors */
cbnz x0, 1f
mrs x0, vbar_el2
b 2f
1: push lr, xzr
/*
* Compute the function address in EL2, and shuffle the parameters.
*/
kern_hyp_va x0
mov lr, x0
mov x0, x1
mov x1, x2
mov x2, x3
blr lr
pop lr, xzr
2: eret
el1_trap:
/*
* x1: ESR
* x2: ESR_EC
*/
cmp x2, #ESR_ELx_EC_DABT_LOW
mov x0, #ESR_ELx_EC_IABT_LOW
ccmp x2, x0, #4, ne
b.ne 1f // Not an abort we care about
/* This is an abort. Check for permission fault */
and x2, x1, #ESR_ELx_FSC_TYPE
cmp x2, #FSC_PERM
b.ne 1f // Not a permission fault
/*
* Check for Stage-1 page table walk, which is guaranteed
* to give a valid HPFAR_EL2.
*/
tbnz x1, #7, 1f // S1PTW is set
/* Preserve PAR_EL1 */
mrs x3, par_el1
push x3, xzr
/*
* Permission fault, HPFAR_EL2 is invalid.
* Resolve the IPA the hard way using the guest VA.
* Stage-1 translation already validated the memory access rights.
* As such, we can use the EL1 translation regime, and don't have
* to distinguish between EL0 and EL1 access.
*/
mrs x2, far_el2
at s1e1r, x2
isb
/* Read result */
mrs x3, par_el1
pop x0, xzr // Restore PAR_EL1 from the stack
msr par_el1, x0
tbnz x3, #0, 3f // Bail out if we failed the translation
ubfx x3, x3, #12, #36 // Extract IPA
lsl x3, x3, #4 // and present it like HPFAR
b 2f
1: mrs x3, hpfar_el2
mrs x2, far_el2
2: mrs x0, tpidr_el2
str w1, [x0, #VCPU_ESR_EL2]
str x2, [x0, #VCPU_FAR_EL2]
str x3, [x0, #VCPU_HPFAR_EL2]
mov x1, #ARM_EXCEPTION_TRAP
b __kvm_vcpu_return
/*
* Translation failed. Just return to the guest and
* let it fault again. Another CPU is probably playing
* behind our back.
*/
3: pop x2, x3
pop x0, x1
eret
el1_irq:
push x0, x1
push x2, x3
mrs x0, tpidr_el2
mov x1, #ARM_EXCEPTION_IRQ
b __kvm_vcpu_return
.ltorg
.align 11
ENTRY(__kvm_hyp_vector)
ventry el2t_sync_invalid // Synchronous EL2t
ventry el2t_irq_invalid // IRQ EL2t
ventry el2t_fiq_invalid // FIQ EL2t
ventry el2t_error_invalid // Error EL2t
ventry el2h_sync_invalid // Synchronous EL2h
ventry el2h_irq_invalid // IRQ EL2h
ventry el2h_fiq_invalid // FIQ EL2h
ventry el2h_error_invalid // Error EL2h
ventry el1_sync // Synchronous 64-bit EL1
ventry el1_irq // IRQ 64-bit EL1
ventry el1_fiq_invalid // FIQ 64-bit EL1
ventry el1_error_invalid // Error 64-bit EL1
ventry el1_sync // Synchronous 32-bit EL1
ventry el1_irq // IRQ 32-bit EL1
ventry el1_fiq_invalid // FIQ 32-bit EL1
ventry el1_error_invalid // Error 32-bit EL1
ENDPROC(__kvm_hyp_vector)
.popsection