mirror of https://gitee.com/openkylin/linux.git
1241 lines
33 KiB
C
1241 lines
33 KiB
C
/*
|
|
* Support PCI/PCIe on PowerNV platforms
|
|
*
|
|
* Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
#undef DEBUG
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/string.h>
|
|
#include <linux/init.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/io.h>
|
|
#include <linux/msi.h>
|
|
|
|
#include <asm/sections.h>
|
|
#include <asm/io.h>
|
|
#include <asm/prom.h>
|
|
#include <asm/pci-bridge.h>
|
|
#include <asm/machdep.h>
|
|
#include <asm/msi_bitmap.h>
|
|
#include <asm/ppc-pci.h>
|
|
#include <asm/opal.h>
|
|
#include <asm/iommu.h>
|
|
#include <asm/tce.h>
|
|
#include <asm/xics.h>
|
|
|
|
#include "powernv.h"
|
|
#include "pci.h"
|
|
|
|
#define define_pe_printk_level(func, kern_level) \
|
|
static int func(const struct pnv_ioda_pe *pe, const char *fmt, ...) \
|
|
{ \
|
|
struct va_format vaf; \
|
|
va_list args; \
|
|
char pfix[32]; \
|
|
int r; \
|
|
\
|
|
va_start(args, fmt); \
|
|
\
|
|
vaf.fmt = fmt; \
|
|
vaf.va = &args; \
|
|
\
|
|
if (pe->pdev) \
|
|
strlcpy(pfix, dev_name(&pe->pdev->dev), \
|
|
sizeof(pfix)); \
|
|
else \
|
|
sprintf(pfix, "%04x:%02x ", \
|
|
pci_domain_nr(pe->pbus), \
|
|
pe->pbus->number); \
|
|
r = printk(kern_level "pci %s: [PE# %.3d] %pV", \
|
|
pfix, pe->pe_number, &vaf); \
|
|
\
|
|
va_end(args); \
|
|
\
|
|
return r; \
|
|
} \
|
|
|
|
define_pe_printk_level(pe_err, KERN_ERR);
|
|
define_pe_printk_level(pe_warn, KERN_WARNING);
|
|
define_pe_printk_level(pe_info, KERN_INFO);
|
|
|
|
static int pnv_ioda_alloc_pe(struct pnv_phb *phb)
|
|
{
|
|
unsigned long pe;
|
|
|
|
do {
|
|
pe = find_next_zero_bit(phb->ioda.pe_alloc,
|
|
phb->ioda.total_pe, 0);
|
|
if (pe >= phb->ioda.total_pe)
|
|
return IODA_INVALID_PE;
|
|
} while(test_and_set_bit(pe, phb->ioda.pe_alloc));
|
|
|
|
phb->ioda.pe_array[pe].phb = phb;
|
|
phb->ioda.pe_array[pe].pe_number = pe;
|
|
return pe;
|
|
}
|
|
|
|
static void pnv_ioda_free_pe(struct pnv_phb *phb, int pe)
|
|
{
|
|
WARN_ON(phb->ioda.pe_array[pe].pdev);
|
|
|
|
memset(&phb->ioda.pe_array[pe], 0, sizeof(struct pnv_ioda_pe));
|
|
clear_bit(pe, phb->ioda.pe_alloc);
|
|
}
|
|
|
|
/* Currently those 2 are only used when MSIs are enabled, this will change
|
|
* but in the meantime, we need to protect them to avoid warnings
|
|
*/
|
|
#ifdef CONFIG_PCI_MSI
|
|
static struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
|
|
{
|
|
struct pci_controller *hose = pci_bus_to_host(dev->bus);
|
|
struct pnv_phb *phb = hose->private_data;
|
|
struct pci_dn *pdn = pci_get_pdn(dev);
|
|
|
|
if (!pdn)
|
|
return NULL;
|
|
if (pdn->pe_number == IODA_INVALID_PE)
|
|
return NULL;
|
|
return &phb->ioda.pe_array[pdn->pe_number];
|
|
}
|
|
#endif /* CONFIG_PCI_MSI */
|
|
|
|
static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
|
|
{
|
|
struct pci_dev *parent;
|
|
uint8_t bcomp, dcomp, fcomp;
|
|
long rc, rid_end, rid;
|
|
|
|
/* Bus validation ? */
|
|
if (pe->pbus) {
|
|
int count;
|
|
|
|
dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
|
|
fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
|
|
parent = pe->pbus->self;
|
|
if (pe->flags & PNV_IODA_PE_BUS_ALL)
|
|
count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
|
|
else
|
|
count = 1;
|
|
|
|
switch(count) {
|
|
case 1: bcomp = OpalPciBusAll; break;
|
|
case 2: bcomp = OpalPciBus7Bits; break;
|
|
case 4: bcomp = OpalPciBus6Bits; break;
|
|
case 8: bcomp = OpalPciBus5Bits; break;
|
|
case 16: bcomp = OpalPciBus4Bits; break;
|
|
case 32: bcomp = OpalPciBus3Bits; break;
|
|
default:
|
|
pr_err("%s: Number of subordinate busses %d"
|
|
" unsupported\n",
|
|
pci_name(pe->pbus->self), count);
|
|
/* Do an exact match only */
|
|
bcomp = OpalPciBusAll;
|
|
}
|
|
rid_end = pe->rid + (count << 8);
|
|
} else {
|
|
parent = pe->pdev->bus->self;
|
|
bcomp = OpalPciBusAll;
|
|
dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
|
|
fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
|
|
rid_end = pe->rid + 1;
|
|
}
|
|
|
|
/* Associate PE in PELT */
|
|
rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
|
|
bcomp, dcomp, fcomp, OPAL_MAP_PE);
|
|
if (rc) {
|
|
pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
|
|
return -ENXIO;
|
|
}
|
|
opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
|
|
OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
|
|
|
|
/* Add to all parents PELT-V */
|
|
while (parent) {
|
|
struct pci_dn *pdn = pci_get_pdn(parent);
|
|
if (pdn && pdn->pe_number != IODA_INVALID_PE) {
|
|
rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
|
|
pe->pe_number, OPAL_ADD_PE_TO_DOMAIN);
|
|
/* XXX What to do in case of error ? */
|
|
}
|
|
parent = parent->bus->self;
|
|
}
|
|
/* Setup reverse map */
|
|
for (rid = pe->rid; rid < rid_end; rid++)
|
|
phb->ioda.pe_rmap[rid] = pe->pe_number;
|
|
|
|
/* Setup one MVTs on IODA1 */
|
|
if (phb->type == PNV_PHB_IODA1) {
|
|
pe->mve_number = pe->pe_number;
|
|
rc = opal_pci_set_mve(phb->opal_id, pe->mve_number,
|
|
pe->pe_number);
|
|
if (rc) {
|
|
pe_err(pe, "OPAL error %ld setting up MVE %d\n",
|
|
rc, pe->mve_number);
|
|
pe->mve_number = -1;
|
|
} else {
|
|
rc = opal_pci_set_mve_enable(phb->opal_id,
|
|
pe->mve_number, OPAL_ENABLE_MVE);
|
|
if (rc) {
|
|
pe_err(pe, "OPAL error %ld enabling MVE %d\n",
|
|
rc, pe->mve_number);
|
|
pe->mve_number = -1;
|
|
}
|
|
}
|
|
} else if (phb->type == PNV_PHB_IODA2)
|
|
pe->mve_number = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void pnv_ioda_link_pe_by_weight(struct pnv_phb *phb,
|
|
struct pnv_ioda_pe *pe)
|
|
{
|
|
struct pnv_ioda_pe *lpe;
|
|
|
|
list_for_each_entry(lpe, &phb->ioda.pe_dma_list, dma_link) {
|
|
if (lpe->dma_weight < pe->dma_weight) {
|
|
list_add_tail(&pe->dma_link, &lpe->dma_link);
|
|
return;
|
|
}
|
|
}
|
|
list_add_tail(&pe->dma_link, &phb->ioda.pe_dma_list);
|
|
}
|
|
|
|
static unsigned int pnv_ioda_dma_weight(struct pci_dev *dev)
|
|
{
|
|
/* This is quite simplistic. The "base" weight of a device
|
|
* is 10. 0 means no DMA is to be accounted for it.
|
|
*/
|
|
|
|
/* If it's a bridge, no DMA */
|
|
if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
|
|
return 0;
|
|
|
|
/* Reduce the weight of slow USB controllers */
|
|
if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
|
|
dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
|
|
dev->class == PCI_CLASS_SERIAL_USB_EHCI)
|
|
return 3;
|
|
|
|
/* Increase the weight of RAID (includes Obsidian) */
|
|
if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
|
|
return 15;
|
|
|
|
/* Default */
|
|
return 10;
|
|
}
|
|
|
|
#if 0
|
|
static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
|
|
{
|
|
struct pci_controller *hose = pci_bus_to_host(dev->bus);
|
|
struct pnv_phb *phb = hose->private_data;
|
|
struct pci_dn *pdn = pci_get_pdn(dev);
|
|
struct pnv_ioda_pe *pe;
|
|
int pe_num;
|
|
|
|
if (!pdn) {
|
|
pr_err("%s: Device tree node not associated properly\n",
|
|
pci_name(dev));
|
|
return NULL;
|
|
}
|
|
if (pdn->pe_number != IODA_INVALID_PE)
|
|
return NULL;
|
|
|
|
/* PE#0 has been pre-set */
|
|
if (dev->bus->number == 0)
|
|
pe_num = 0;
|
|
else
|
|
pe_num = pnv_ioda_alloc_pe(phb);
|
|
if (pe_num == IODA_INVALID_PE) {
|
|
pr_warning("%s: Not enough PE# available, disabling device\n",
|
|
pci_name(dev));
|
|
return NULL;
|
|
}
|
|
|
|
/* NOTE: We get only one ref to the pci_dev for the pdn, not for the
|
|
* pointer in the PE data structure, both should be destroyed at the
|
|
* same time. However, this needs to be looked at more closely again
|
|
* once we actually start removing things (Hotplug, SR-IOV, ...)
|
|
*
|
|
* At some point we want to remove the PDN completely anyways
|
|
*/
|
|
pe = &phb->ioda.pe_array[pe_num];
|
|
pci_dev_get(dev);
|
|
pdn->pcidev = dev;
|
|
pdn->pe_number = pe_num;
|
|
pe->pdev = dev;
|
|
pe->pbus = NULL;
|
|
pe->tce32_seg = -1;
|
|
pe->mve_number = -1;
|
|
pe->rid = dev->bus->number << 8 | pdn->devfn;
|
|
|
|
pe_info(pe, "Associated device to PE\n");
|
|
|
|
if (pnv_ioda_configure_pe(phb, pe)) {
|
|
/* XXX What do we do here ? */
|
|
if (pe_num)
|
|
pnv_ioda_free_pe(phb, pe_num);
|
|
pdn->pe_number = IODA_INVALID_PE;
|
|
pe->pdev = NULL;
|
|
pci_dev_put(dev);
|
|
return NULL;
|
|
}
|
|
|
|
/* Assign a DMA weight to the device */
|
|
pe->dma_weight = pnv_ioda_dma_weight(dev);
|
|
if (pe->dma_weight != 0) {
|
|
phb->ioda.dma_weight += pe->dma_weight;
|
|
phb->ioda.dma_pe_count++;
|
|
}
|
|
|
|
/* Link the PE */
|
|
pnv_ioda_link_pe_by_weight(phb, pe);
|
|
|
|
return pe;
|
|
}
|
|
#endif /* Useful for SRIOV case */
|
|
|
|
static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
|
|
{
|
|
struct pci_dev *dev;
|
|
|
|
list_for_each_entry(dev, &bus->devices, bus_list) {
|
|
struct pci_dn *pdn = pci_get_pdn(dev);
|
|
|
|
if (pdn == NULL) {
|
|
pr_warn("%s: No device node associated with device !\n",
|
|
pci_name(dev));
|
|
continue;
|
|
}
|
|
pci_dev_get(dev);
|
|
pdn->pcidev = dev;
|
|
pdn->pe_number = pe->pe_number;
|
|
pe->dma_weight += pnv_ioda_dma_weight(dev);
|
|
if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
|
|
pnv_ioda_setup_same_PE(dev->subordinate, pe);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* There're 2 types of PCI bus sensitive PEs: One that is compromised of
|
|
* single PCI bus. Another one that contains the primary PCI bus and its
|
|
* subordinate PCI devices and buses. The second type of PE is normally
|
|
* orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
|
|
*/
|
|
static void pnv_ioda_setup_bus_PE(struct pci_bus *bus, int all)
|
|
{
|
|
struct pci_controller *hose = pci_bus_to_host(bus);
|
|
struct pnv_phb *phb = hose->private_data;
|
|
struct pnv_ioda_pe *pe;
|
|
int pe_num;
|
|
|
|
pe_num = pnv_ioda_alloc_pe(phb);
|
|
if (pe_num == IODA_INVALID_PE) {
|
|
pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
|
|
__func__, pci_domain_nr(bus), bus->number);
|
|
return;
|
|
}
|
|
|
|
pe = &phb->ioda.pe_array[pe_num];
|
|
pe->flags = (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
|
|
pe->pbus = bus;
|
|
pe->pdev = NULL;
|
|
pe->tce32_seg = -1;
|
|
pe->mve_number = -1;
|
|
pe->rid = bus->busn_res.start << 8;
|
|
pe->dma_weight = 0;
|
|
|
|
if (all)
|
|
pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n",
|
|
bus->busn_res.start, bus->busn_res.end, pe_num);
|
|
else
|
|
pe_info(pe, "Secondary bus %d associated with PE#%d\n",
|
|
bus->busn_res.start, pe_num);
|
|
|
|
if (pnv_ioda_configure_pe(phb, pe)) {
|
|
/* XXX What do we do here ? */
|
|
if (pe_num)
|
|
pnv_ioda_free_pe(phb, pe_num);
|
|
pe->pbus = NULL;
|
|
return;
|
|
}
|
|
|
|
/* Associate it with all child devices */
|
|
pnv_ioda_setup_same_PE(bus, pe);
|
|
|
|
/* Put PE to the list */
|
|
list_add_tail(&pe->list, &phb->ioda.pe_list);
|
|
|
|
/* Account for one DMA PE if at least one DMA capable device exist
|
|
* below the bridge
|
|
*/
|
|
if (pe->dma_weight != 0) {
|
|
phb->ioda.dma_weight += pe->dma_weight;
|
|
phb->ioda.dma_pe_count++;
|
|
}
|
|
|
|
/* Link the PE */
|
|
pnv_ioda_link_pe_by_weight(phb, pe);
|
|
}
|
|
|
|
static void pnv_ioda_setup_PEs(struct pci_bus *bus)
|
|
{
|
|
struct pci_dev *dev;
|
|
|
|
pnv_ioda_setup_bus_PE(bus, 0);
|
|
|
|
list_for_each_entry(dev, &bus->devices, bus_list) {
|
|
if (dev->subordinate) {
|
|
if (pci_pcie_type(dev) == PCI_EXP_TYPE_PCI_BRIDGE)
|
|
pnv_ioda_setup_bus_PE(dev->subordinate, 1);
|
|
else
|
|
pnv_ioda_setup_PEs(dev->subordinate);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Configure PEs so that the downstream PCI buses and devices
|
|
* could have their associated PE#. Unfortunately, we didn't
|
|
* figure out the way to identify the PLX bridge yet. So we
|
|
* simply put the PCI bus and the subordinate behind the root
|
|
* port to PE# here. The game rule here is expected to be changed
|
|
* as soon as we can detected PLX bridge correctly.
|
|
*/
|
|
static void pnv_pci_ioda_setup_PEs(void)
|
|
{
|
|
struct pci_controller *hose, *tmp;
|
|
|
|
list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
|
|
pnv_ioda_setup_PEs(hose->bus);
|
|
}
|
|
}
|
|
|
|
static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
|
|
{
|
|
struct pci_dn *pdn = pci_get_pdn(pdev);
|
|
struct pnv_ioda_pe *pe;
|
|
|
|
/*
|
|
* The function can be called while the PE#
|
|
* hasn't been assigned. Do nothing for the
|
|
* case.
|
|
*/
|
|
if (!pdn || pdn->pe_number == IODA_INVALID_PE)
|
|
return;
|
|
|
|
pe = &phb->ioda.pe_array[pdn->pe_number];
|
|
set_iommu_table_base(&pdev->dev, &pe->tce32_table);
|
|
}
|
|
|
|
static void pnv_pci_ioda1_tce_invalidate(struct iommu_table *tbl,
|
|
u64 *startp, u64 *endp)
|
|
{
|
|
u64 __iomem *invalidate = (u64 __iomem *)tbl->it_index;
|
|
unsigned long start, end, inc;
|
|
|
|
start = __pa(startp);
|
|
end = __pa(endp);
|
|
|
|
/* BML uses this case for p6/p7/galaxy2: Shift addr and put in node */
|
|
if (tbl->it_busno) {
|
|
start <<= 12;
|
|
end <<= 12;
|
|
inc = 128 << 12;
|
|
start |= tbl->it_busno;
|
|
end |= tbl->it_busno;
|
|
} else if (tbl->it_type & TCE_PCI_SWINV_PAIR) {
|
|
/* p7ioc-style invalidation, 2 TCEs per write */
|
|
start |= (1ull << 63);
|
|
end |= (1ull << 63);
|
|
inc = 16;
|
|
} else {
|
|
/* Default (older HW) */
|
|
inc = 128;
|
|
}
|
|
|
|
end |= inc - 1; /* round up end to be different than start */
|
|
|
|
mb(); /* Ensure above stores are visible */
|
|
while (start <= end) {
|
|
__raw_writeq(start, invalidate);
|
|
start += inc;
|
|
}
|
|
|
|
/*
|
|
* The iommu layer will do another mb() for us on build()
|
|
* and we don't care on free()
|
|
*/
|
|
}
|
|
|
|
static void pnv_pci_ioda2_tce_invalidate(struct pnv_ioda_pe *pe,
|
|
struct iommu_table *tbl,
|
|
u64 *startp, u64 *endp)
|
|
{
|
|
unsigned long start, end, inc;
|
|
u64 __iomem *invalidate = (u64 __iomem *)tbl->it_index;
|
|
|
|
/* We'll invalidate DMA address in PE scope */
|
|
start = 0x2ul << 60;
|
|
start |= (pe->pe_number & 0xFF);
|
|
end = start;
|
|
|
|
/* Figure out the start, end and step */
|
|
inc = tbl->it_offset + (((u64)startp - tbl->it_base) / sizeof(u64));
|
|
start |= (inc << 12);
|
|
inc = tbl->it_offset + (((u64)endp - tbl->it_base) / sizeof(u64));
|
|
end |= (inc << 12);
|
|
inc = (0x1ul << 12);
|
|
mb();
|
|
|
|
while (start <= end) {
|
|
__raw_writeq(start, invalidate);
|
|
start += inc;
|
|
}
|
|
}
|
|
|
|
void pnv_pci_ioda_tce_invalidate(struct iommu_table *tbl,
|
|
u64 *startp, u64 *endp)
|
|
{
|
|
struct pnv_ioda_pe *pe = container_of(tbl, struct pnv_ioda_pe,
|
|
tce32_table);
|
|
struct pnv_phb *phb = pe->phb;
|
|
|
|
if (phb->type == PNV_PHB_IODA1)
|
|
pnv_pci_ioda1_tce_invalidate(tbl, startp, endp);
|
|
else
|
|
pnv_pci_ioda2_tce_invalidate(pe, tbl, startp, endp);
|
|
}
|
|
|
|
static void pnv_pci_ioda_setup_dma_pe(struct pnv_phb *phb,
|
|
struct pnv_ioda_pe *pe, unsigned int base,
|
|
unsigned int segs)
|
|
{
|
|
|
|
struct page *tce_mem = NULL;
|
|
const __be64 *swinvp;
|
|
struct iommu_table *tbl;
|
|
unsigned int i;
|
|
int64_t rc;
|
|
void *addr;
|
|
|
|
/* 256M DMA window, 4K TCE pages, 8 bytes TCE */
|
|
#define TCE32_TABLE_SIZE ((0x10000000 / 0x1000) * 8)
|
|
|
|
/* XXX FIXME: Handle 64-bit only DMA devices */
|
|
/* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
|
|
/* XXX FIXME: Allocate multi-level tables on PHB3 */
|
|
|
|
/* We shouldn't already have a 32-bit DMA associated */
|
|
if (WARN_ON(pe->tce32_seg >= 0))
|
|
return;
|
|
|
|
/* Grab a 32-bit TCE table */
|
|
pe->tce32_seg = base;
|
|
pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
|
|
(base << 28), ((base + segs) << 28) - 1);
|
|
|
|
/* XXX Currently, we allocate one big contiguous table for the
|
|
* TCEs. We only really need one chunk per 256M of TCE space
|
|
* (ie per segment) but that's an optimization for later, it
|
|
* requires some added smarts with our get/put_tce implementation
|
|
*/
|
|
tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
|
|
get_order(TCE32_TABLE_SIZE * segs));
|
|
if (!tce_mem) {
|
|
pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
|
|
goto fail;
|
|
}
|
|
addr = page_address(tce_mem);
|
|
memset(addr, 0, TCE32_TABLE_SIZE * segs);
|
|
|
|
/* Configure HW */
|
|
for (i = 0; i < segs; i++) {
|
|
rc = opal_pci_map_pe_dma_window(phb->opal_id,
|
|
pe->pe_number,
|
|
base + i, 1,
|
|
__pa(addr) + TCE32_TABLE_SIZE * i,
|
|
TCE32_TABLE_SIZE, 0x1000);
|
|
if (rc) {
|
|
pe_err(pe, " Failed to configure 32-bit TCE table,"
|
|
" err %ld\n", rc);
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
/* Setup linux iommu table */
|
|
tbl = &pe->tce32_table;
|
|
pnv_pci_setup_iommu_table(tbl, addr, TCE32_TABLE_SIZE * segs,
|
|
base << 28);
|
|
|
|
/* OPAL variant of P7IOC SW invalidated TCEs */
|
|
swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
|
|
if (swinvp) {
|
|
/* We need a couple more fields -- an address and a data
|
|
* to or. Since the bus is only printed out on table free
|
|
* errors, and on the first pass the data will be a relative
|
|
* bus number, print that out instead.
|
|
*/
|
|
tbl->it_busno = 0;
|
|
tbl->it_index = (unsigned long)ioremap(be64_to_cpup(swinvp), 8);
|
|
tbl->it_type = TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE |
|
|
TCE_PCI_SWINV_PAIR;
|
|
}
|
|
iommu_init_table(tbl, phb->hose->node);
|
|
|
|
return;
|
|
fail:
|
|
/* XXX Failure: Try to fallback to 64-bit only ? */
|
|
if (pe->tce32_seg >= 0)
|
|
pe->tce32_seg = -1;
|
|
if (tce_mem)
|
|
__free_pages(tce_mem, get_order(TCE32_TABLE_SIZE * segs));
|
|
}
|
|
|
|
static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
|
|
struct pnv_ioda_pe *pe)
|
|
{
|
|
struct page *tce_mem = NULL;
|
|
void *addr;
|
|
const __be64 *swinvp;
|
|
struct iommu_table *tbl;
|
|
unsigned int tce_table_size, end;
|
|
int64_t rc;
|
|
|
|
/* We shouldn't already have a 32-bit DMA associated */
|
|
if (WARN_ON(pe->tce32_seg >= 0))
|
|
return;
|
|
|
|
/* The PE will reserve all possible 32-bits space */
|
|
pe->tce32_seg = 0;
|
|
end = (1 << ilog2(phb->ioda.m32_pci_base));
|
|
tce_table_size = (end / 0x1000) * 8;
|
|
pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
|
|
end);
|
|
|
|
/* Allocate TCE table */
|
|
tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
|
|
get_order(tce_table_size));
|
|
if (!tce_mem) {
|
|
pe_err(pe, "Failed to allocate a 32-bit TCE memory\n");
|
|
goto fail;
|
|
}
|
|
addr = page_address(tce_mem);
|
|
memset(addr, 0, tce_table_size);
|
|
|
|
/*
|
|
* Map TCE table through TVT. The TVE index is the PE number
|
|
* shifted by 1 bit for 32-bits DMA space.
|
|
*/
|
|
rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
|
|
pe->pe_number << 1, 1, __pa(addr),
|
|
tce_table_size, 0x1000);
|
|
if (rc) {
|
|
pe_err(pe, "Failed to configure 32-bit TCE table,"
|
|
" err %ld\n", rc);
|
|
goto fail;
|
|
}
|
|
|
|
/* Setup linux iommu table */
|
|
tbl = &pe->tce32_table;
|
|
pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, 0);
|
|
|
|
/* OPAL variant of PHB3 invalidated TCEs */
|
|
swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
|
|
if (swinvp) {
|
|
/* We need a couple more fields -- an address and a data
|
|
* to or. Since the bus is only printed out on table free
|
|
* errors, and on the first pass the data will be a relative
|
|
* bus number, print that out instead.
|
|
*/
|
|
tbl->it_busno = 0;
|
|
tbl->it_index = (unsigned long)ioremap(be64_to_cpup(swinvp), 8);
|
|
tbl->it_type = TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE;
|
|
}
|
|
iommu_init_table(tbl, phb->hose->node);
|
|
|
|
return;
|
|
fail:
|
|
if (pe->tce32_seg >= 0)
|
|
pe->tce32_seg = -1;
|
|
if (tce_mem)
|
|
__free_pages(tce_mem, get_order(tce_table_size));
|
|
}
|
|
|
|
static void pnv_ioda_setup_dma(struct pnv_phb *phb)
|
|
{
|
|
struct pci_controller *hose = phb->hose;
|
|
unsigned int residual, remaining, segs, tw, base;
|
|
struct pnv_ioda_pe *pe;
|
|
|
|
/* If we have more PE# than segments available, hand out one
|
|
* per PE until we run out and let the rest fail. If not,
|
|
* then we assign at least one segment per PE, plus more based
|
|
* on the amount of devices under that PE
|
|
*/
|
|
if (phb->ioda.dma_pe_count > phb->ioda.tce32_count)
|
|
residual = 0;
|
|
else
|
|
residual = phb->ioda.tce32_count -
|
|
phb->ioda.dma_pe_count;
|
|
|
|
pr_info("PCI: Domain %04x has %ld available 32-bit DMA segments\n",
|
|
hose->global_number, phb->ioda.tce32_count);
|
|
pr_info("PCI: %d PE# for a total weight of %d\n",
|
|
phb->ioda.dma_pe_count, phb->ioda.dma_weight);
|
|
|
|
/* Walk our PE list and configure their DMA segments, hand them
|
|
* out one base segment plus any residual segments based on
|
|
* weight
|
|
*/
|
|
remaining = phb->ioda.tce32_count;
|
|
tw = phb->ioda.dma_weight;
|
|
base = 0;
|
|
list_for_each_entry(pe, &phb->ioda.pe_dma_list, dma_link) {
|
|
if (!pe->dma_weight)
|
|
continue;
|
|
if (!remaining) {
|
|
pe_warn(pe, "No DMA32 resources available\n");
|
|
continue;
|
|
}
|
|
segs = 1;
|
|
if (residual) {
|
|
segs += ((pe->dma_weight * residual) + (tw / 2)) / tw;
|
|
if (segs > remaining)
|
|
segs = remaining;
|
|
}
|
|
|
|
/*
|
|
* For IODA2 compliant PHB3, we needn't care about the weight.
|
|
* The all available 32-bits DMA space will be assigned to
|
|
* the specific PE.
|
|
*/
|
|
if (phb->type == PNV_PHB_IODA1) {
|
|
pe_info(pe, "DMA weight %d, assigned %d DMA32 segments\n",
|
|
pe->dma_weight, segs);
|
|
pnv_pci_ioda_setup_dma_pe(phb, pe, base, segs);
|
|
} else {
|
|
pe_info(pe, "Assign DMA32 space\n");
|
|
segs = 0;
|
|
pnv_pci_ioda2_setup_dma_pe(phb, pe);
|
|
}
|
|
|
|
remaining -= segs;
|
|
base += segs;
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_PCI_MSI
|
|
static void pnv_ioda2_msi_eoi(struct irq_data *d)
|
|
{
|
|
unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
|
|
struct irq_chip *chip = irq_data_get_irq_chip(d);
|
|
struct pnv_phb *phb = container_of(chip, struct pnv_phb,
|
|
ioda.irq_chip);
|
|
int64_t rc;
|
|
|
|
rc = opal_pci_msi_eoi(phb->opal_id, hw_irq);
|
|
WARN_ON_ONCE(rc);
|
|
|
|
icp_native_eoi(d);
|
|
}
|
|
|
|
static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
|
|
unsigned int hwirq, unsigned int virq,
|
|
unsigned int is_64, struct msi_msg *msg)
|
|
{
|
|
struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
|
|
struct pci_dn *pdn = pci_get_pdn(dev);
|
|
struct irq_data *idata;
|
|
struct irq_chip *ichip;
|
|
unsigned int xive_num = hwirq - phb->msi_base;
|
|
uint64_t addr64;
|
|
uint32_t addr32, data;
|
|
int rc;
|
|
|
|
/* No PE assigned ? bail out ... no MSI for you ! */
|
|
if (pe == NULL)
|
|
return -ENXIO;
|
|
|
|
/* Check if we have an MVE */
|
|
if (pe->mve_number < 0)
|
|
return -ENXIO;
|
|
|
|
/* Force 32-bit MSI on some broken devices */
|
|
if (pdn && pdn->force_32bit_msi)
|
|
is_64 = 0;
|
|
|
|
/* Assign XIVE to PE */
|
|
rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
|
|
if (rc) {
|
|
pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
|
|
pci_name(dev), rc, xive_num);
|
|
return -EIO;
|
|
}
|
|
|
|
if (is_64) {
|
|
rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
|
|
&addr64, &data);
|
|
if (rc) {
|
|
pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
|
|
pci_name(dev), rc);
|
|
return -EIO;
|
|
}
|
|
msg->address_hi = addr64 >> 32;
|
|
msg->address_lo = addr64 & 0xfffffffful;
|
|
} else {
|
|
rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
|
|
&addr32, &data);
|
|
if (rc) {
|
|
pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
|
|
pci_name(dev), rc);
|
|
return -EIO;
|
|
}
|
|
msg->address_hi = 0;
|
|
msg->address_lo = addr32;
|
|
}
|
|
msg->data = data;
|
|
|
|
/*
|
|
* Change the IRQ chip for the MSI interrupts on PHB3.
|
|
* The corresponding IRQ chip should be populated for
|
|
* the first time.
|
|
*/
|
|
if (phb->type == PNV_PHB_IODA2) {
|
|
if (!phb->ioda.irq_chip_init) {
|
|
idata = irq_get_irq_data(virq);
|
|
ichip = irq_data_get_irq_chip(idata);
|
|
phb->ioda.irq_chip_init = 1;
|
|
phb->ioda.irq_chip = *ichip;
|
|
phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
|
|
}
|
|
|
|
irq_set_chip(virq, &phb->ioda.irq_chip);
|
|
}
|
|
|
|
pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
|
|
" address=%x_%08x data=%x PE# %d\n",
|
|
pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
|
|
msg->address_hi, msg->address_lo, data, pe->pe_number);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
|
|
{
|
|
unsigned int count;
|
|
const __be32 *prop = of_get_property(phb->hose->dn,
|
|
"ibm,opal-msi-ranges", NULL);
|
|
if (!prop) {
|
|
/* BML Fallback */
|
|
prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
|
|
}
|
|
if (!prop)
|
|
return;
|
|
|
|
phb->msi_base = be32_to_cpup(prop);
|
|
count = be32_to_cpup(prop + 1);
|
|
if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
|
|
pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
|
|
phb->hose->global_number);
|
|
return;
|
|
}
|
|
|
|
phb->msi_setup = pnv_pci_ioda_msi_setup;
|
|
phb->msi32_support = 1;
|
|
pr_info(" Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
|
|
count, phb->msi_base);
|
|
}
|
|
#else
|
|
static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
|
|
#endif /* CONFIG_PCI_MSI */
|
|
|
|
/*
|
|
* This function is supposed to be called on basis of PE from top
|
|
* to bottom style. So the the I/O or MMIO segment assigned to
|
|
* parent PE could be overrided by its child PEs if necessary.
|
|
*/
|
|
static void pnv_ioda_setup_pe_seg(struct pci_controller *hose,
|
|
struct pnv_ioda_pe *pe)
|
|
{
|
|
struct pnv_phb *phb = hose->private_data;
|
|
struct pci_bus_region region;
|
|
struct resource *res;
|
|
int i, index;
|
|
int rc;
|
|
|
|
/*
|
|
* NOTE: We only care PCI bus based PE for now. For PCI
|
|
* device based PE, for example SRIOV sensitive VF should
|
|
* be figured out later.
|
|
*/
|
|
BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
|
|
|
|
pci_bus_for_each_resource(pe->pbus, res, i) {
|
|
if (!res || !res->flags ||
|
|
res->start > res->end)
|
|
continue;
|
|
|
|
if (res->flags & IORESOURCE_IO) {
|
|
region.start = res->start - phb->ioda.io_pci_base;
|
|
region.end = res->end - phb->ioda.io_pci_base;
|
|
index = region.start / phb->ioda.io_segsize;
|
|
|
|
while (index < phb->ioda.total_pe &&
|
|
region.start <= region.end) {
|
|
phb->ioda.io_segmap[index] = pe->pe_number;
|
|
rc = opal_pci_map_pe_mmio_window(phb->opal_id,
|
|
pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
|
|
if (rc != OPAL_SUCCESS) {
|
|
pr_err("%s: OPAL error %d when mapping IO "
|
|
"segment #%d to PE#%d\n",
|
|
__func__, rc, index, pe->pe_number);
|
|
break;
|
|
}
|
|
|
|
region.start += phb->ioda.io_segsize;
|
|
index++;
|
|
}
|
|
} else if (res->flags & IORESOURCE_MEM) {
|
|
/* WARNING: Assumes M32 is mem region 0 in PHB. We need to
|
|
* harden that algorithm when we start supporting M64
|
|
*/
|
|
region.start = res->start -
|
|
hose->mem_offset[0] -
|
|
phb->ioda.m32_pci_base;
|
|
region.end = res->end -
|
|
hose->mem_offset[0] -
|
|
phb->ioda.m32_pci_base;
|
|
index = region.start / phb->ioda.m32_segsize;
|
|
|
|
while (index < phb->ioda.total_pe &&
|
|
region.start <= region.end) {
|
|
phb->ioda.m32_segmap[index] = pe->pe_number;
|
|
rc = opal_pci_map_pe_mmio_window(phb->opal_id,
|
|
pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
|
|
if (rc != OPAL_SUCCESS) {
|
|
pr_err("%s: OPAL error %d when mapping M32 "
|
|
"segment#%d to PE#%d",
|
|
__func__, rc, index, pe->pe_number);
|
|
break;
|
|
}
|
|
|
|
region.start += phb->ioda.m32_segsize;
|
|
index++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void pnv_pci_ioda_setup_seg(void)
|
|
{
|
|
struct pci_controller *tmp, *hose;
|
|
struct pnv_phb *phb;
|
|
struct pnv_ioda_pe *pe;
|
|
|
|
list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
|
|
phb = hose->private_data;
|
|
list_for_each_entry(pe, &phb->ioda.pe_list, list) {
|
|
pnv_ioda_setup_pe_seg(hose, pe);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void pnv_pci_ioda_setup_DMA(void)
|
|
{
|
|
struct pci_controller *hose, *tmp;
|
|
struct pnv_phb *phb;
|
|
|
|
list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
|
|
pnv_ioda_setup_dma(hose->private_data);
|
|
|
|
/* Mark the PHB initialization done */
|
|
phb = hose->private_data;
|
|
phb->initialized = 1;
|
|
}
|
|
}
|
|
|
|
static void pnv_pci_ioda_fixup(void)
|
|
{
|
|
pnv_pci_ioda_setup_PEs();
|
|
pnv_pci_ioda_setup_seg();
|
|
pnv_pci_ioda_setup_DMA();
|
|
}
|
|
|
|
/*
|
|
* Returns the alignment for I/O or memory windows for P2P
|
|
* bridges. That actually depends on how PEs are segmented.
|
|
* For now, we return I/O or M32 segment size for PE sensitive
|
|
* P2P bridges. Otherwise, the default values (4KiB for I/O,
|
|
* 1MiB for memory) will be returned.
|
|
*
|
|
* The current PCI bus might be put into one PE, which was
|
|
* create against the parent PCI bridge. For that case, we
|
|
* needn't enlarge the alignment so that we can save some
|
|
* resources.
|
|
*/
|
|
static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
|
|
unsigned long type)
|
|
{
|
|
struct pci_dev *bridge;
|
|
struct pci_controller *hose = pci_bus_to_host(bus);
|
|
struct pnv_phb *phb = hose->private_data;
|
|
int num_pci_bridges = 0;
|
|
|
|
bridge = bus->self;
|
|
while (bridge) {
|
|
if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
|
|
num_pci_bridges++;
|
|
if (num_pci_bridges >= 2)
|
|
return 1;
|
|
}
|
|
|
|
bridge = bridge->bus->self;
|
|
}
|
|
|
|
/* We need support prefetchable memory window later */
|
|
if (type & IORESOURCE_MEM)
|
|
return phb->ioda.m32_segsize;
|
|
|
|
return phb->ioda.io_segsize;
|
|
}
|
|
|
|
/* Prevent enabling devices for which we couldn't properly
|
|
* assign a PE
|
|
*/
|
|
static int pnv_pci_enable_device_hook(struct pci_dev *dev)
|
|
{
|
|
struct pci_controller *hose = pci_bus_to_host(dev->bus);
|
|
struct pnv_phb *phb = hose->private_data;
|
|
struct pci_dn *pdn;
|
|
|
|
/* The function is probably called while the PEs have
|
|
* not be created yet. For example, resource reassignment
|
|
* during PCI probe period. We just skip the check if
|
|
* PEs isn't ready.
|
|
*/
|
|
if (!phb->initialized)
|
|
return 0;
|
|
|
|
pdn = pci_get_pdn(dev);
|
|
if (!pdn || pdn->pe_number == IODA_INVALID_PE)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u32 pnv_ioda_bdfn_to_pe(struct pnv_phb *phb, struct pci_bus *bus,
|
|
u32 devfn)
|
|
{
|
|
return phb->ioda.pe_rmap[(bus->number << 8) | devfn];
|
|
}
|
|
|
|
static void pnv_pci_ioda_shutdown(struct pnv_phb *phb)
|
|
{
|
|
opal_pci_reset(phb->opal_id, OPAL_PCI_IODA_TABLE_RESET,
|
|
OPAL_ASSERT_RESET);
|
|
}
|
|
|
|
void __init pnv_pci_init_ioda_phb(struct device_node *np, int ioda_type)
|
|
{
|
|
struct pci_controller *hose;
|
|
static int primary = 1;
|
|
struct pnv_phb *phb;
|
|
unsigned long size, m32map_off, iomap_off, pemap_off;
|
|
const u64 *prop64;
|
|
const u32 *prop32;
|
|
u64 phb_id;
|
|
void *aux;
|
|
long rc;
|
|
|
|
pr_info(" Initializing IODA%d OPAL PHB %s\n", ioda_type, np->full_name);
|
|
|
|
prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
|
|
if (!prop64) {
|
|
pr_err(" Missing \"ibm,opal-phbid\" property !\n");
|
|
return;
|
|
}
|
|
phb_id = be64_to_cpup(prop64);
|
|
pr_debug(" PHB-ID : 0x%016llx\n", phb_id);
|
|
|
|
phb = alloc_bootmem(sizeof(struct pnv_phb));
|
|
if (phb) {
|
|
memset(phb, 0, sizeof(struct pnv_phb));
|
|
phb->hose = hose = pcibios_alloc_controller(np);
|
|
}
|
|
if (!phb || !phb->hose) {
|
|
pr_err("PCI: Failed to allocate PCI controller for %s\n",
|
|
np->full_name);
|
|
return;
|
|
}
|
|
|
|
spin_lock_init(&phb->lock);
|
|
/* XXX Use device-tree */
|
|
hose->first_busno = 0;
|
|
hose->last_busno = 0xff;
|
|
hose->private_data = phb;
|
|
phb->opal_id = phb_id;
|
|
phb->type = ioda_type;
|
|
|
|
/* Detect specific models for error handling */
|
|
if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
|
|
phb->model = PNV_PHB_MODEL_P7IOC;
|
|
else if (of_device_is_compatible(np, "ibm,power8-pciex"))
|
|
phb->model = PNV_PHB_MODEL_PHB3;
|
|
else
|
|
phb->model = PNV_PHB_MODEL_UNKNOWN;
|
|
|
|
/* Parse 32-bit and IO ranges (if any) */
|
|
pci_process_bridge_OF_ranges(phb->hose, np, primary);
|
|
primary = 0;
|
|
|
|
/* Get registers */
|
|
phb->regs = of_iomap(np, 0);
|
|
if (phb->regs == NULL)
|
|
pr_err(" Failed to map registers !\n");
|
|
|
|
/* Initialize more IODA stuff */
|
|
prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
|
|
if (!prop32)
|
|
phb->ioda.total_pe = 1;
|
|
else
|
|
phb->ioda.total_pe = *prop32;
|
|
|
|
phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
|
|
/* FW Has already off top 64k of M32 space (MSI space) */
|
|
phb->ioda.m32_size += 0x10000;
|
|
|
|
phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe;
|
|
phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
|
|
phb->ioda.io_size = hose->pci_io_size;
|
|
phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe;
|
|
phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
|
|
|
|
/* Allocate aux data & arrays
|
|
*
|
|
* XXX TODO: Don't allocate io segmap on PHB3
|
|
*/
|
|
size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
|
|
m32map_off = size;
|
|
size += phb->ioda.total_pe * sizeof(phb->ioda.m32_segmap[0]);
|
|
iomap_off = size;
|
|
size += phb->ioda.total_pe * sizeof(phb->ioda.io_segmap[0]);
|
|
pemap_off = size;
|
|
size += phb->ioda.total_pe * sizeof(struct pnv_ioda_pe);
|
|
aux = alloc_bootmem(size);
|
|
memset(aux, 0, size);
|
|
phb->ioda.pe_alloc = aux;
|
|
phb->ioda.m32_segmap = aux + m32map_off;
|
|
phb->ioda.io_segmap = aux + iomap_off;
|
|
phb->ioda.pe_array = aux + pemap_off;
|
|
set_bit(0, phb->ioda.pe_alloc);
|
|
|
|
INIT_LIST_HEAD(&phb->ioda.pe_dma_list);
|
|
INIT_LIST_HEAD(&phb->ioda.pe_list);
|
|
|
|
/* Calculate how many 32-bit TCE segments we have */
|
|
phb->ioda.tce32_count = phb->ioda.m32_pci_base >> 28;
|
|
|
|
/* Clear unusable m64 */
|
|
hose->mem_resources[1].flags = 0;
|
|
hose->mem_resources[1].start = 0;
|
|
hose->mem_resources[1].end = 0;
|
|
hose->mem_resources[2].flags = 0;
|
|
hose->mem_resources[2].start = 0;
|
|
hose->mem_resources[2].end = 0;
|
|
|
|
#if 0 /* We should really do that ... */
|
|
rc = opal_pci_set_phb_mem_window(opal->phb_id,
|
|
window_type,
|
|
window_num,
|
|
starting_real_address,
|
|
starting_pci_address,
|
|
segment_size);
|
|
#endif
|
|
|
|
pr_info(" %d PE's M32: 0x%x [segment=0x%x] IO: 0x%x [segment=0x%x]\n",
|
|
phb->ioda.total_pe,
|
|
phb->ioda.m32_size, phb->ioda.m32_segsize,
|
|
phb->ioda.io_size, phb->ioda.io_segsize);
|
|
|
|
phb->hose->ops = &pnv_pci_ops;
|
|
|
|
/* Setup RID -> PE mapping function */
|
|
phb->bdfn_to_pe = pnv_ioda_bdfn_to_pe;
|
|
|
|
/* Setup TCEs */
|
|
phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
|
|
|
|
/* Setup shutdown function for kexec */
|
|
phb->shutdown = pnv_pci_ioda_shutdown;
|
|
|
|
/* Setup MSI support */
|
|
pnv_pci_init_ioda_msis(phb);
|
|
|
|
/*
|
|
* We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
|
|
* to let the PCI core do resource assignment. It's supposed
|
|
* that the PCI core will do correct I/O and MMIO alignment
|
|
* for the P2P bridge bars so that each PCI bus (excluding
|
|
* the child P2P bridges) can form individual PE.
|
|
*/
|
|
ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
|
|
ppc_md.pcibios_enable_device_hook = pnv_pci_enable_device_hook;
|
|
ppc_md.pcibios_window_alignment = pnv_pci_window_alignment;
|
|
pci_add_flags(PCI_REASSIGN_ALL_RSRC);
|
|
|
|
/* Reset IODA tables to a clean state */
|
|
rc = opal_pci_reset(phb_id, OPAL_PCI_IODA_TABLE_RESET, OPAL_ASSERT_RESET);
|
|
if (rc)
|
|
pr_warning(" OPAL Error %ld performing IODA table reset !\n", rc);
|
|
|
|
/*
|
|
* On IODA1 map everything to PE#0, on IODA2 we assume the IODA reset
|
|
* has cleared the RTT which has the same effect
|
|
*/
|
|
if (ioda_type == PNV_PHB_IODA1)
|
|
opal_pci_set_pe(phb_id, 0, 0, 7, 1, 1 , OPAL_MAP_PE);
|
|
}
|
|
|
|
void pnv_pci_init_ioda2_phb(struct device_node *np)
|
|
{
|
|
pnv_pci_init_ioda_phb(np, PNV_PHB_IODA2);
|
|
}
|
|
|
|
void __init pnv_pci_init_ioda_hub(struct device_node *np)
|
|
{
|
|
struct device_node *phbn;
|
|
const u64 *prop64;
|
|
u64 hub_id;
|
|
|
|
pr_info("Probing IODA IO-Hub %s\n", np->full_name);
|
|
|
|
prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
|
|
if (!prop64) {
|
|
pr_err(" Missing \"ibm,opal-hubid\" property !\n");
|
|
return;
|
|
}
|
|
hub_id = be64_to_cpup(prop64);
|
|
pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
|
|
|
|
/* Count child PHBs */
|
|
for_each_child_of_node(np, phbn) {
|
|
/* Look for IODA1 PHBs */
|
|
if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
|
|
pnv_pci_init_ioda_phb(phbn, PNV_PHB_IODA1);
|
|
}
|
|
}
|