mirror of https://gitee.com/openkylin/linux.git
383 lines
8.2 KiB
C
383 lines
8.2 KiB
C
/*
|
|
* arch/s390/mm/vmem.c
|
|
*
|
|
* Copyright IBM Corp. 2006
|
|
* Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
|
|
*/
|
|
|
|
#include <linux/bootmem.h>
|
|
#include <linux/pfn.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/module.h>
|
|
#include <linux/list.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/tlbflush.h>
|
|
|
|
unsigned long vmalloc_end;
|
|
EXPORT_SYMBOL(vmalloc_end);
|
|
|
|
static struct page *vmem_map;
|
|
static DEFINE_MUTEX(vmem_mutex);
|
|
|
|
struct memory_segment {
|
|
struct list_head list;
|
|
unsigned long start;
|
|
unsigned long size;
|
|
};
|
|
|
|
static LIST_HEAD(mem_segs);
|
|
|
|
void memmap_init(unsigned long size, int nid, unsigned long zone,
|
|
unsigned long start_pfn)
|
|
{
|
|
struct page *start, *end;
|
|
struct page *map_start, *map_end;
|
|
int i;
|
|
|
|
start = pfn_to_page(start_pfn);
|
|
end = start + size;
|
|
|
|
for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
|
|
unsigned long cstart, cend;
|
|
|
|
cstart = PFN_DOWN(memory_chunk[i].addr);
|
|
cend = cstart + PFN_DOWN(memory_chunk[i].size);
|
|
|
|
map_start = mem_map + cstart;
|
|
map_end = mem_map + cend;
|
|
|
|
if (map_start < start)
|
|
map_start = start;
|
|
if (map_end > end)
|
|
map_end = end;
|
|
|
|
map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1))
|
|
/ sizeof(struct page);
|
|
map_end += ((PFN_ALIGN((unsigned long) map_end)
|
|
- (unsigned long) map_end)
|
|
/ sizeof(struct page));
|
|
|
|
if (map_start < map_end)
|
|
memmap_init_zone((unsigned long)(map_end - map_start),
|
|
nid, zone, page_to_pfn(map_start),
|
|
MEMMAP_EARLY);
|
|
}
|
|
}
|
|
|
|
static inline void *vmem_alloc_pages(unsigned int order)
|
|
{
|
|
if (slab_is_available())
|
|
return (void *)__get_free_pages(GFP_KERNEL, order);
|
|
return alloc_bootmem_pages((1 << order) * PAGE_SIZE);
|
|
}
|
|
|
|
static inline pmd_t *vmem_pmd_alloc(void)
|
|
{
|
|
pmd_t *pmd;
|
|
int i;
|
|
|
|
pmd = vmem_alloc_pages(PMD_ALLOC_ORDER);
|
|
if (!pmd)
|
|
return NULL;
|
|
for (i = 0; i < PTRS_PER_PMD; i++)
|
|
pmd_clear_kernel(pmd + i);
|
|
return pmd;
|
|
}
|
|
|
|
static inline pte_t *vmem_pte_alloc(void)
|
|
{
|
|
pte_t *pte;
|
|
pte_t empty_pte;
|
|
int i;
|
|
|
|
pte = vmem_alloc_pages(PTE_ALLOC_ORDER);
|
|
if (!pte)
|
|
return NULL;
|
|
pte_val(empty_pte) = _PAGE_TYPE_EMPTY;
|
|
for (i = 0; i < PTRS_PER_PTE; i++)
|
|
pte[i] = empty_pte;
|
|
return pte;
|
|
}
|
|
|
|
/*
|
|
* Add a physical memory range to the 1:1 mapping.
|
|
*/
|
|
static int vmem_add_range(unsigned long start, unsigned long size)
|
|
{
|
|
unsigned long address;
|
|
pgd_t *pg_dir;
|
|
pmd_t *pm_dir;
|
|
pte_t *pt_dir;
|
|
pte_t pte;
|
|
int ret = -ENOMEM;
|
|
|
|
for (address = start; address < start + size; address += PAGE_SIZE) {
|
|
pg_dir = pgd_offset_k(address);
|
|
if (pgd_none(*pg_dir)) {
|
|
pm_dir = vmem_pmd_alloc();
|
|
if (!pm_dir)
|
|
goto out;
|
|
pgd_populate_kernel(&init_mm, pg_dir, pm_dir);
|
|
}
|
|
|
|
pm_dir = pmd_offset(pg_dir, address);
|
|
if (pmd_none(*pm_dir)) {
|
|
pt_dir = vmem_pte_alloc();
|
|
if (!pt_dir)
|
|
goto out;
|
|
pmd_populate_kernel(&init_mm, pm_dir, pt_dir);
|
|
}
|
|
|
|
pt_dir = pte_offset_kernel(pm_dir, address);
|
|
pte = pfn_pte(address >> PAGE_SHIFT, PAGE_KERNEL);
|
|
*pt_dir = pte;
|
|
}
|
|
ret = 0;
|
|
out:
|
|
flush_tlb_kernel_range(start, start + size);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Remove a physical memory range from the 1:1 mapping.
|
|
* Currently only invalidates page table entries.
|
|
*/
|
|
static void vmem_remove_range(unsigned long start, unsigned long size)
|
|
{
|
|
unsigned long address;
|
|
pgd_t *pg_dir;
|
|
pmd_t *pm_dir;
|
|
pte_t *pt_dir;
|
|
pte_t pte;
|
|
|
|
pte_val(pte) = _PAGE_TYPE_EMPTY;
|
|
for (address = start; address < start + size; address += PAGE_SIZE) {
|
|
pg_dir = pgd_offset_k(address);
|
|
if (pgd_none(*pg_dir))
|
|
continue;
|
|
pm_dir = pmd_offset(pg_dir, address);
|
|
if (pmd_none(*pm_dir))
|
|
continue;
|
|
pt_dir = pte_offset_kernel(pm_dir, address);
|
|
*pt_dir = pte;
|
|
}
|
|
flush_tlb_kernel_range(start, start + size);
|
|
}
|
|
|
|
/*
|
|
* Add a backed mem_map array to the virtual mem_map array.
|
|
*/
|
|
static int vmem_add_mem_map(unsigned long start, unsigned long size)
|
|
{
|
|
unsigned long address, start_addr, end_addr;
|
|
struct page *map_start, *map_end;
|
|
pgd_t *pg_dir;
|
|
pmd_t *pm_dir;
|
|
pte_t *pt_dir;
|
|
pte_t pte;
|
|
int ret = -ENOMEM;
|
|
|
|
map_start = vmem_map + PFN_DOWN(start);
|
|
map_end = vmem_map + PFN_DOWN(start + size);
|
|
|
|
start_addr = (unsigned long) map_start & PAGE_MASK;
|
|
end_addr = PFN_ALIGN((unsigned long) map_end);
|
|
|
|
for (address = start_addr; address < end_addr; address += PAGE_SIZE) {
|
|
pg_dir = pgd_offset_k(address);
|
|
if (pgd_none(*pg_dir)) {
|
|
pm_dir = vmem_pmd_alloc();
|
|
if (!pm_dir)
|
|
goto out;
|
|
pgd_populate_kernel(&init_mm, pg_dir, pm_dir);
|
|
}
|
|
|
|
pm_dir = pmd_offset(pg_dir, address);
|
|
if (pmd_none(*pm_dir)) {
|
|
pt_dir = vmem_pte_alloc();
|
|
if (!pt_dir)
|
|
goto out;
|
|
pmd_populate_kernel(&init_mm, pm_dir, pt_dir);
|
|
}
|
|
|
|
pt_dir = pte_offset_kernel(pm_dir, address);
|
|
if (pte_none(*pt_dir)) {
|
|
unsigned long new_page;
|
|
|
|
new_page =__pa(vmem_alloc_pages(0));
|
|
if (!new_page)
|
|
goto out;
|
|
pte = pfn_pte(new_page >> PAGE_SHIFT, PAGE_KERNEL);
|
|
*pt_dir = pte;
|
|
}
|
|
}
|
|
ret = 0;
|
|
out:
|
|
flush_tlb_kernel_range(start_addr, end_addr);
|
|
return ret;
|
|
}
|
|
|
|
static int vmem_add_mem(unsigned long start, unsigned long size)
|
|
{
|
|
int ret;
|
|
|
|
ret = vmem_add_range(start, size);
|
|
if (ret)
|
|
return ret;
|
|
return vmem_add_mem_map(start, size);
|
|
}
|
|
|
|
/*
|
|
* Add memory segment to the segment list if it doesn't overlap with
|
|
* an already present segment.
|
|
*/
|
|
static int insert_memory_segment(struct memory_segment *seg)
|
|
{
|
|
struct memory_segment *tmp;
|
|
|
|
if (PFN_DOWN(seg->start + seg->size) > max_pfn ||
|
|
seg->start + seg->size < seg->start)
|
|
return -ERANGE;
|
|
|
|
list_for_each_entry(tmp, &mem_segs, list) {
|
|
if (seg->start >= tmp->start + tmp->size)
|
|
continue;
|
|
if (seg->start + seg->size <= tmp->start)
|
|
continue;
|
|
return -ENOSPC;
|
|
}
|
|
list_add(&seg->list, &mem_segs);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Remove memory segment from the segment list.
|
|
*/
|
|
static void remove_memory_segment(struct memory_segment *seg)
|
|
{
|
|
list_del(&seg->list);
|
|
}
|
|
|
|
static void __remove_shared_memory(struct memory_segment *seg)
|
|
{
|
|
remove_memory_segment(seg);
|
|
vmem_remove_range(seg->start, seg->size);
|
|
}
|
|
|
|
int remove_shared_memory(unsigned long start, unsigned long size)
|
|
{
|
|
struct memory_segment *seg;
|
|
int ret;
|
|
|
|
mutex_lock(&vmem_mutex);
|
|
|
|
ret = -ENOENT;
|
|
list_for_each_entry(seg, &mem_segs, list) {
|
|
if (seg->start == start && seg->size == size)
|
|
break;
|
|
}
|
|
|
|
if (seg->start != start || seg->size != size)
|
|
goto out;
|
|
|
|
ret = 0;
|
|
__remove_shared_memory(seg);
|
|
kfree(seg);
|
|
out:
|
|
mutex_unlock(&vmem_mutex);
|
|
return ret;
|
|
}
|
|
|
|
int add_shared_memory(unsigned long start, unsigned long size)
|
|
{
|
|
struct memory_segment *seg;
|
|
struct page *page;
|
|
unsigned long pfn, num_pfn, end_pfn;
|
|
int ret;
|
|
|
|
mutex_lock(&vmem_mutex);
|
|
ret = -ENOMEM;
|
|
seg = kzalloc(sizeof(*seg), GFP_KERNEL);
|
|
if (!seg)
|
|
goto out;
|
|
seg->start = start;
|
|
seg->size = size;
|
|
|
|
ret = insert_memory_segment(seg);
|
|
if (ret)
|
|
goto out_free;
|
|
|
|
ret = vmem_add_mem(start, size);
|
|
if (ret)
|
|
goto out_remove;
|
|
|
|
pfn = PFN_DOWN(start);
|
|
num_pfn = PFN_DOWN(size);
|
|
end_pfn = pfn + num_pfn;
|
|
|
|
page = pfn_to_page(pfn);
|
|
memset(page, 0, num_pfn * sizeof(struct page));
|
|
|
|
for (; pfn < end_pfn; pfn++) {
|
|
page = pfn_to_page(pfn);
|
|
init_page_count(page);
|
|
reset_page_mapcount(page);
|
|
SetPageReserved(page);
|
|
INIT_LIST_HEAD(&page->lru);
|
|
}
|
|
goto out;
|
|
|
|
out_remove:
|
|
__remove_shared_memory(seg);
|
|
out_free:
|
|
kfree(seg);
|
|
out:
|
|
mutex_unlock(&vmem_mutex);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* map whole physical memory to virtual memory (identity mapping)
|
|
*/
|
|
void __init vmem_map_init(void)
|
|
{
|
|
unsigned long map_size;
|
|
int i;
|
|
|
|
map_size = ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) * sizeof(struct page);
|
|
vmalloc_end = PFN_ALIGN(VMALLOC_END_INIT) - PFN_ALIGN(map_size);
|
|
vmem_map = (struct page *) vmalloc_end;
|
|
NODE_DATA(0)->node_mem_map = vmem_map;
|
|
|
|
for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++)
|
|
vmem_add_mem(memory_chunk[i].addr, memory_chunk[i].size);
|
|
}
|
|
|
|
/*
|
|
* Convert memory chunk array to a memory segment list so there is a single
|
|
* list that contains both r/w memory and shared memory segments.
|
|
*/
|
|
static int __init vmem_convert_memory_chunk(void)
|
|
{
|
|
struct memory_segment *seg;
|
|
int i;
|
|
|
|
mutex_lock(&vmem_mutex);
|
|
for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
|
|
if (!memory_chunk[i].size)
|
|
continue;
|
|
seg = kzalloc(sizeof(*seg), GFP_KERNEL);
|
|
if (!seg)
|
|
panic("Out of memory...\n");
|
|
seg->start = memory_chunk[i].addr;
|
|
seg->size = memory_chunk[i].size;
|
|
insert_memory_segment(seg);
|
|
}
|
|
mutex_unlock(&vmem_mutex);
|
|
return 0;
|
|
}
|
|
|
|
core_initcall(vmem_convert_memory_chunk);
|