mirror of https://gitee.com/openkylin/linux.git
608 lines
14 KiB
C
608 lines
14 KiB
C
/*
|
|
* File: arch/blackfin/mm/blackfin_sram.c
|
|
* Based on:
|
|
* Author:
|
|
*
|
|
* Created:
|
|
* Description: SRAM driver for Blackfin ADSP-BF5xx
|
|
*
|
|
* Modified:
|
|
* Copyright 2004-2007 Analog Devices Inc.
|
|
*
|
|
* Bugs: Enter bugs at http://blackfin.uclinux.org/
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, see the file COPYING, or write
|
|
* to the Free Software Foundation, Inc.,
|
|
* 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/types.h>
|
|
#include <linux/miscdevice.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/fcntl.h>
|
|
#include <linux/init.h>
|
|
#include <linux/poll.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/rtc.h>
|
|
#include <asm/blackfin.h>
|
|
#include "blackfin_sram.h"
|
|
|
|
spinlock_t l1sram_lock, l1_data_sram_lock, l1_inst_sram_lock;
|
|
|
|
#if CONFIG_L1_MAX_PIECE < 16
|
|
#undef CONFIG_L1_MAX_PIECE
|
|
#define CONFIG_L1_MAX_PIECE 16
|
|
#endif
|
|
|
|
#if CONFIG_L1_MAX_PIECE > 1024
|
|
#undef CONFIG_L1_MAX_PIECE
|
|
#define CONFIG_L1_MAX_PIECE 1024
|
|
#endif
|
|
|
|
#define SRAM_SLT_NULL 0
|
|
#define SRAM_SLT_FREE 1
|
|
#define SRAM_SLT_ALLOCATED 2
|
|
|
|
/* the data structure for L1 scratchpad and DATA SRAM */
|
|
struct l1_sram_piece {
|
|
void *paddr;
|
|
int size;
|
|
int flag;
|
|
pid_t pid;
|
|
};
|
|
|
|
static struct l1_sram_piece l1_ssram[CONFIG_L1_MAX_PIECE];
|
|
|
|
#if L1_DATA_A_LENGTH != 0
|
|
static struct l1_sram_piece l1_data_A_sram[CONFIG_L1_MAX_PIECE];
|
|
#endif
|
|
|
|
#if L1_DATA_B_LENGTH != 0
|
|
static struct l1_sram_piece l1_data_B_sram[CONFIG_L1_MAX_PIECE];
|
|
#endif
|
|
|
|
#if L1_CODE_LENGTH != 0
|
|
static struct l1_sram_piece l1_inst_sram[CONFIG_L1_MAX_PIECE];
|
|
#endif
|
|
|
|
/* L1 Scratchpad SRAM initialization function */
|
|
void __init l1sram_init(void)
|
|
{
|
|
printk(KERN_INFO "Blackfin Scratchpad data SRAM: %d KB\n",
|
|
L1_SCRATCH_LENGTH >> 10);
|
|
|
|
memset(&l1_ssram, 0x00, sizeof(l1_ssram));
|
|
l1_ssram[0].paddr = (void *)L1_SCRATCH_START;
|
|
l1_ssram[0].size = L1_SCRATCH_LENGTH;
|
|
l1_ssram[0].flag = SRAM_SLT_FREE;
|
|
|
|
/* mutex initialize */
|
|
spin_lock_init(&l1sram_lock);
|
|
}
|
|
|
|
void __init l1_data_sram_init(void)
|
|
{
|
|
#if L1_DATA_A_LENGTH != 0
|
|
memset(&l1_data_A_sram, 0x00, sizeof(l1_data_A_sram));
|
|
l1_data_A_sram[0].paddr = (void *)L1_DATA_A_START +
|
|
(_ebss_l1 - _sdata_l1);
|
|
l1_data_A_sram[0].size = L1_DATA_A_LENGTH - (_ebss_l1 - _sdata_l1);
|
|
l1_data_A_sram[0].flag = SRAM_SLT_FREE;
|
|
|
|
printk(KERN_INFO "Blackfin Data A SRAM: %d KB (%d KB free)\n",
|
|
L1_DATA_A_LENGTH >> 10, l1_data_A_sram[0].size >> 10);
|
|
#endif
|
|
#if L1_DATA_B_LENGTH != 0
|
|
memset(&l1_data_B_sram, 0x00, sizeof(l1_data_B_sram));
|
|
l1_data_B_sram[0].paddr = (void *)L1_DATA_B_START +
|
|
(_ebss_b_l1 - _sdata_b_l1);
|
|
l1_data_B_sram[0].size = L1_DATA_B_LENGTH - (_ebss_b_l1 - _sdata_b_l1);
|
|
l1_data_B_sram[0].flag = SRAM_SLT_FREE;
|
|
|
|
printk(KERN_INFO "Blackfin Data B SRAM: %d KB (%d KB free)\n",
|
|
L1_DATA_B_LENGTH >> 10, l1_data_B_sram[0].size >> 10);
|
|
#endif
|
|
|
|
/* mutex initialize */
|
|
spin_lock_init(&l1_data_sram_lock);
|
|
}
|
|
|
|
void __init l1_inst_sram_init(void)
|
|
{
|
|
#if L1_CODE_LENGTH != 0
|
|
memset(&l1_inst_sram, 0x00, sizeof(l1_inst_sram));
|
|
l1_inst_sram[0].paddr = (void *)L1_CODE_START + (_etext_l1 - _stext_l1);
|
|
l1_inst_sram[0].size = L1_CODE_LENGTH - (_etext_l1 - _stext_l1);
|
|
l1_inst_sram[0].flag = SRAM_SLT_FREE;
|
|
|
|
printk(KERN_INFO "Blackfin Instruction SRAM: %d KB (%d KB free)\n",
|
|
L1_CODE_LENGTH >> 10, l1_inst_sram[0].size >> 10);
|
|
#endif
|
|
|
|
/* mutex initialize */
|
|
spin_lock_init(&l1_inst_sram_lock);
|
|
}
|
|
|
|
/* L1 memory allocate function */
|
|
static void *_l1_sram_alloc(size_t size, struct l1_sram_piece *pfree, int count)
|
|
{
|
|
int i, index = 0;
|
|
void *addr = NULL;
|
|
|
|
if (size <= 0)
|
|
return NULL;
|
|
|
|
/* Align the size */
|
|
size = (size + 3) & ~3;
|
|
|
|
/* not use the good method to match the best slot !!! */
|
|
/* search an available memory slot */
|
|
for (i = 0; i < count; i++) {
|
|
if ((pfree[i].flag == SRAM_SLT_FREE)
|
|
&& (pfree[i].size >= size)) {
|
|
addr = pfree[i].paddr;
|
|
pfree[i].flag = SRAM_SLT_ALLOCATED;
|
|
pfree[i].pid = current->pid;
|
|
index = i;
|
|
break;
|
|
}
|
|
}
|
|
if (i >= count)
|
|
return NULL;
|
|
|
|
/* updated the NULL memory slot !!! */
|
|
if (pfree[i].size > size) {
|
|
for (i = 0; i < count; i++) {
|
|
if (pfree[i].flag == SRAM_SLT_NULL) {
|
|
pfree[i].pid = 0;
|
|
pfree[i].flag = SRAM_SLT_FREE;
|
|
pfree[i].paddr = addr + size;
|
|
pfree[i].size = pfree[index].size - size;
|
|
pfree[index].size = size;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return addr;
|
|
}
|
|
|
|
/* Allocate the largest available block. */
|
|
static void *_l1_sram_alloc_max(struct l1_sram_piece *pfree, int count,
|
|
unsigned long *psize)
|
|
{
|
|
unsigned long best = 0;
|
|
int i, index = -1;
|
|
void *addr = NULL;
|
|
|
|
/* search an available memory slot */
|
|
for (i = 0; i < count; i++) {
|
|
if (pfree[i].flag == SRAM_SLT_FREE && pfree[i].size > best) {
|
|
addr = pfree[i].paddr;
|
|
index = i;
|
|
best = pfree[i].size;
|
|
}
|
|
}
|
|
if (index < 0)
|
|
return NULL;
|
|
*psize = best;
|
|
|
|
pfree[index].pid = current->pid;
|
|
pfree[index].flag = SRAM_SLT_ALLOCATED;
|
|
return addr;
|
|
}
|
|
|
|
/* L1 memory free function */
|
|
static int _l1_sram_free(const void *addr,
|
|
struct l1_sram_piece *pfree,
|
|
int count)
|
|
{
|
|
int i, index = 0;
|
|
|
|
/* search the relevant memory slot */
|
|
for (i = 0; i < count; i++) {
|
|
if (pfree[i].paddr == addr) {
|
|
if (pfree[i].flag != SRAM_SLT_ALLOCATED) {
|
|
/* error log */
|
|
return -1;
|
|
}
|
|
index = i;
|
|
break;
|
|
}
|
|
}
|
|
if (i >= count)
|
|
return -1;
|
|
|
|
pfree[index].pid = 0;
|
|
pfree[index].flag = SRAM_SLT_FREE;
|
|
|
|
/* link the next address slot */
|
|
for (i = 0; i < count; i++) {
|
|
if (((pfree[index].paddr + pfree[index].size) == pfree[i].paddr)
|
|
&& (pfree[i].flag == SRAM_SLT_FREE)) {
|
|
pfree[i].pid = 0;
|
|
pfree[i].flag = SRAM_SLT_NULL;
|
|
pfree[index].size += pfree[i].size;
|
|
pfree[index].flag = SRAM_SLT_FREE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* link the last address slot */
|
|
for (i = 0; i < count; i++) {
|
|
if (((pfree[i].paddr + pfree[i].size) == pfree[index].paddr) &&
|
|
(pfree[i].flag == SRAM_SLT_FREE)) {
|
|
pfree[index].flag = SRAM_SLT_NULL;
|
|
pfree[i].size += pfree[index].size;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int sram_free(const void *addr)
|
|
{
|
|
if (0) {}
|
|
#if L1_CODE_LENGTH != 0
|
|
else if (addr >= (void *)L1_CODE_START
|
|
&& addr < (void *)(L1_CODE_START + L1_CODE_LENGTH))
|
|
return l1_inst_sram_free(addr);
|
|
#endif
|
|
#if L1_DATA_A_LENGTH != 0
|
|
else if (addr >= (void *)L1_DATA_A_START
|
|
&& addr < (void *)(L1_DATA_A_START + L1_DATA_A_LENGTH))
|
|
return l1_data_A_sram_free(addr);
|
|
#endif
|
|
#if L1_DATA_B_LENGTH != 0
|
|
else if (addr >= (void *)L1_DATA_B_START
|
|
&& addr < (void *)(L1_DATA_B_START + L1_DATA_B_LENGTH))
|
|
return l1_data_B_sram_free(addr);
|
|
#endif
|
|
else
|
|
return -1;
|
|
}
|
|
EXPORT_SYMBOL(sram_free);
|
|
|
|
void *l1_data_A_sram_alloc(size_t size)
|
|
{
|
|
unsigned flags;
|
|
void *addr = NULL;
|
|
|
|
/* add mutex operation */
|
|
spin_lock_irqsave(&l1_data_sram_lock, flags);
|
|
|
|
#if L1_DATA_A_LENGTH != 0
|
|
addr = _l1_sram_alloc(size, l1_data_A_sram, ARRAY_SIZE(l1_data_A_sram));
|
|
#endif
|
|
|
|
/* add mutex operation */
|
|
spin_unlock_irqrestore(&l1_data_sram_lock, flags);
|
|
|
|
pr_debug("Allocated address in l1_data_A_sram_alloc is 0x%lx+0x%lx\n",
|
|
(long unsigned int)addr, size);
|
|
|
|
return addr;
|
|
}
|
|
EXPORT_SYMBOL(l1_data_A_sram_alloc);
|
|
|
|
int l1_data_A_sram_free(const void *addr)
|
|
{
|
|
unsigned flags;
|
|
int ret;
|
|
|
|
/* add mutex operation */
|
|
spin_lock_irqsave(&l1_data_sram_lock, flags);
|
|
|
|
#if L1_DATA_A_LENGTH != 0
|
|
ret = _l1_sram_free(addr,
|
|
l1_data_A_sram, ARRAY_SIZE(l1_data_A_sram));
|
|
#else
|
|
ret = -1;
|
|
#endif
|
|
|
|
/* add mutex operation */
|
|
spin_unlock_irqrestore(&l1_data_sram_lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(l1_data_A_sram_free);
|
|
|
|
void *l1_data_B_sram_alloc(size_t size)
|
|
{
|
|
#if L1_DATA_B_LENGTH != 0
|
|
unsigned flags;
|
|
void *addr;
|
|
|
|
/* add mutex operation */
|
|
spin_lock_irqsave(&l1_data_sram_lock, flags);
|
|
|
|
addr = _l1_sram_alloc(size, l1_data_B_sram, ARRAY_SIZE(l1_data_B_sram));
|
|
|
|
/* add mutex operation */
|
|
spin_unlock_irqrestore(&l1_data_sram_lock, flags);
|
|
|
|
pr_debug("Allocated address in l1_data_B_sram_alloc is 0x%lx+0x%lx\n",
|
|
(long unsigned int)addr, size);
|
|
|
|
return addr;
|
|
#else
|
|
return NULL;
|
|
#endif
|
|
}
|
|
EXPORT_SYMBOL(l1_data_B_sram_alloc);
|
|
|
|
int l1_data_B_sram_free(const void *addr)
|
|
{
|
|
#if L1_DATA_B_LENGTH != 0
|
|
unsigned flags;
|
|
int ret;
|
|
|
|
/* add mutex operation */
|
|
spin_lock_irqsave(&l1_data_sram_lock, flags);
|
|
|
|
ret = _l1_sram_free(addr, l1_data_B_sram, ARRAY_SIZE(l1_data_B_sram));
|
|
|
|
/* add mutex operation */
|
|
spin_unlock_irqrestore(&l1_data_sram_lock, flags);
|
|
|
|
return ret;
|
|
#else
|
|
return -1;
|
|
#endif
|
|
}
|
|
EXPORT_SYMBOL(l1_data_B_sram_free);
|
|
|
|
void *l1_data_sram_alloc(size_t size)
|
|
{
|
|
void *addr = l1_data_A_sram_alloc(size);
|
|
|
|
if (!addr)
|
|
addr = l1_data_B_sram_alloc(size);
|
|
|
|
return addr;
|
|
}
|
|
EXPORT_SYMBOL(l1_data_sram_alloc);
|
|
|
|
void *l1_data_sram_zalloc(size_t size)
|
|
{
|
|
void *addr = l1_data_sram_alloc(size);
|
|
|
|
if (addr)
|
|
memset(addr, 0x00, size);
|
|
|
|
return addr;
|
|
}
|
|
EXPORT_SYMBOL(l1_data_sram_zalloc);
|
|
|
|
int l1_data_sram_free(const void *addr)
|
|
{
|
|
int ret;
|
|
ret = l1_data_A_sram_free(addr);
|
|
if (ret == -1)
|
|
ret = l1_data_B_sram_free(addr);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(l1_data_sram_free);
|
|
|
|
void *l1_inst_sram_alloc(size_t size)
|
|
{
|
|
#if L1_DATA_A_LENGTH != 0
|
|
unsigned flags;
|
|
void *addr;
|
|
|
|
/* add mutex operation */
|
|
spin_lock_irqsave(&l1_inst_sram_lock, flags);
|
|
|
|
addr = _l1_sram_alloc(size, l1_inst_sram, ARRAY_SIZE(l1_inst_sram));
|
|
|
|
/* add mutex operation */
|
|
spin_unlock_irqrestore(&l1_inst_sram_lock, flags);
|
|
|
|
pr_debug("Allocated address in l1_inst_sram_alloc is 0x%lx+0x%lx\n",
|
|
(long unsigned int)addr, size);
|
|
|
|
return addr;
|
|
#else
|
|
return NULL;
|
|
#endif
|
|
}
|
|
EXPORT_SYMBOL(l1_inst_sram_alloc);
|
|
|
|
int l1_inst_sram_free(const void *addr)
|
|
{
|
|
#if L1_CODE_LENGTH != 0
|
|
unsigned flags;
|
|
int ret;
|
|
|
|
/* add mutex operation */
|
|
spin_lock_irqsave(&l1_inst_sram_lock, flags);
|
|
|
|
ret = _l1_sram_free(addr, l1_inst_sram, ARRAY_SIZE(l1_inst_sram));
|
|
|
|
/* add mutex operation */
|
|
spin_unlock_irqrestore(&l1_inst_sram_lock, flags);
|
|
|
|
return ret;
|
|
#else
|
|
return -1;
|
|
#endif
|
|
}
|
|
EXPORT_SYMBOL(l1_inst_sram_free);
|
|
|
|
/* L1 Scratchpad memory allocate function */
|
|
void *l1sram_alloc(size_t size)
|
|
{
|
|
unsigned flags;
|
|
void *addr;
|
|
|
|
/* add mutex operation */
|
|
spin_lock_irqsave(&l1sram_lock, flags);
|
|
|
|
addr = _l1_sram_alloc(size, l1_ssram, ARRAY_SIZE(l1_ssram));
|
|
|
|
/* add mutex operation */
|
|
spin_unlock_irqrestore(&l1sram_lock, flags);
|
|
|
|
return addr;
|
|
}
|
|
|
|
/* L1 Scratchpad memory allocate function */
|
|
void *l1sram_alloc_max(size_t *psize)
|
|
{
|
|
unsigned flags;
|
|
void *addr;
|
|
|
|
/* add mutex operation */
|
|
spin_lock_irqsave(&l1sram_lock, flags);
|
|
|
|
addr = _l1_sram_alloc_max(l1_ssram, ARRAY_SIZE(l1_ssram), psize);
|
|
|
|
/* add mutex operation */
|
|
spin_unlock_irqrestore(&l1sram_lock, flags);
|
|
|
|
return addr;
|
|
}
|
|
|
|
/* L1 Scratchpad memory free function */
|
|
int l1sram_free(const void *addr)
|
|
{
|
|
unsigned flags;
|
|
int ret;
|
|
|
|
/* add mutex operation */
|
|
spin_lock_irqsave(&l1sram_lock, flags);
|
|
|
|
ret = _l1_sram_free(addr, l1_ssram, ARRAY_SIZE(l1_ssram));
|
|
|
|
/* add mutex operation */
|
|
spin_unlock_irqrestore(&l1sram_lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int sram_free_with_lsl(const void *addr)
|
|
{
|
|
struct sram_list_struct *lsl, **tmp;
|
|
struct mm_struct *mm = current->mm;
|
|
|
|
for (tmp = &mm->context.sram_list; *tmp; tmp = &(*tmp)->next)
|
|
if ((*tmp)->addr == addr)
|
|
goto found;
|
|
return -1;
|
|
found:
|
|
lsl = *tmp;
|
|
sram_free(addr);
|
|
*tmp = lsl->next;
|
|
kfree(lsl);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(sram_free_with_lsl);
|
|
|
|
void *sram_alloc_with_lsl(size_t size, unsigned long flags)
|
|
{
|
|
void *addr = NULL;
|
|
struct sram_list_struct *lsl = NULL;
|
|
struct mm_struct *mm = current->mm;
|
|
|
|
lsl = kzalloc(sizeof(struct sram_list_struct), GFP_KERNEL);
|
|
if (!lsl)
|
|
return NULL;
|
|
|
|
if (flags & L1_INST_SRAM)
|
|
addr = l1_inst_sram_alloc(size);
|
|
|
|
if (addr == NULL && (flags & L1_DATA_A_SRAM))
|
|
addr = l1_data_A_sram_alloc(size);
|
|
|
|
if (addr == NULL && (flags & L1_DATA_B_SRAM))
|
|
addr = l1_data_B_sram_alloc(size);
|
|
|
|
if (addr == NULL) {
|
|
kfree(lsl);
|
|
return NULL;
|
|
}
|
|
lsl->addr = addr;
|
|
lsl->length = size;
|
|
lsl->next = mm->context.sram_list;
|
|
mm->context.sram_list = lsl;
|
|
return addr;
|
|
}
|
|
EXPORT_SYMBOL(sram_alloc_with_lsl);
|
|
|
|
#ifdef CONFIG_PROC_FS
|
|
/* Once we get a real allocator, we'll throw all of this away.
|
|
* Until then, we need some sort of visibility into the L1 alloc.
|
|
*/
|
|
static void _l1sram_proc_read(char *buf, int *len, const char *desc,
|
|
struct l1_sram_piece *pfree, const int array_size)
|
|
{
|
|
int i;
|
|
|
|
*len += sprintf(&buf[*len], "--- L1 %-14s Size PID State\n", desc);
|
|
for (i = 0; i < array_size; ++i) {
|
|
const char *alloc_type;
|
|
switch (pfree[i].flag) {
|
|
case SRAM_SLT_NULL: alloc_type = "NULL"; break;
|
|
case SRAM_SLT_FREE: alloc_type = "FREE"; break;
|
|
case SRAM_SLT_ALLOCATED: alloc_type = "ALLOCATED"; break;
|
|
default: alloc_type = "????"; break;
|
|
}
|
|
*len += sprintf(&buf[*len], "%p-%p %8i %4i %s\n",
|
|
pfree[i].paddr, pfree[i].paddr + pfree[i].size,
|
|
pfree[i].size, pfree[i].pid, alloc_type);
|
|
}
|
|
}
|
|
static int l1sram_proc_read(char *buf, char **start, off_t offset, int count,
|
|
int *eof, void *data)
|
|
{
|
|
int len = 0;
|
|
|
|
_l1sram_proc_read(buf, &len, "Scratchpad",
|
|
l1_ssram, ARRAY_SIZE(l1_ssram));
|
|
#if L1_DATA_A_LENGTH != 0
|
|
_l1sram_proc_read(buf, &len, "Data A",
|
|
l1_data_A_sram, ARRAY_SIZE(l1_data_A_sram));
|
|
#endif
|
|
#if L1_DATA_B_LENGTH != 0
|
|
_l1sram_proc_read(buf, &len, "Data B",
|
|
l1_data_B_sram, ARRAY_SIZE(l1_data_B_sram));
|
|
#endif
|
|
#if L1_CODE_LENGTH != 0
|
|
_l1sram_proc_read(buf, &len, "Instruction",
|
|
l1_inst_sram, ARRAY_SIZE(l1_inst_sram));
|
|
#endif
|
|
|
|
return len;
|
|
}
|
|
|
|
static int __init l1sram_proc_init(void)
|
|
{
|
|
struct proc_dir_entry *ptr;
|
|
ptr = create_proc_entry("sram", S_IFREG | S_IRUGO, NULL);
|
|
if (!ptr) {
|
|
printk(KERN_WARNING "unable to create /proc/sram\n");
|
|
return -1;
|
|
}
|
|
ptr->owner = THIS_MODULE;
|
|
ptr->read_proc = l1sram_proc_read;
|
|
return 0;
|
|
}
|
|
late_initcall(l1sram_proc_init);
|
|
#endif
|