mirror of https://gitee.com/openkylin/linux.git
5217 lines
140 KiB
C
5217 lines
140 KiB
C
/*
|
|
* Copyright (C) 2007 Oracle. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public
|
|
* License v2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public
|
|
* License along with this program; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 021110-1307, USA.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/buffer_head.h>
|
|
#include <linux/file.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/time.h>
|
|
#include <linux/init.h>
|
|
#include <linux/string.h>
|
|
#include <linux/smp_lock.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/mpage.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/statfs.h>
|
|
#include <linux/compat.h>
|
|
#include <linux/bit_spinlock.h>
|
|
#include <linux/xattr.h>
|
|
#include <linux/posix_acl.h>
|
|
#include <linux/falloc.h>
|
|
#include "compat.h"
|
|
#include "ctree.h"
|
|
#include "disk-io.h"
|
|
#include "transaction.h"
|
|
#include "btrfs_inode.h"
|
|
#include "ioctl.h"
|
|
#include "print-tree.h"
|
|
#include "volumes.h"
|
|
#include "ordered-data.h"
|
|
#include "xattr.h"
|
|
#include "tree-log.h"
|
|
#include "ref-cache.h"
|
|
#include "compression.h"
|
|
#include "locking.h"
|
|
|
|
struct btrfs_iget_args {
|
|
u64 ino;
|
|
struct btrfs_root *root;
|
|
};
|
|
|
|
static struct inode_operations btrfs_dir_inode_operations;
|
|
static struct inode_operations btrfs_symlink_inode_operations;
|
|
static struct inode_operations btrfs_dir_ro_inode_operations;
|
|
static struct inode_operations btrfs_special_inode_operations;
|
|
static struct inode_operations btrfs_file_inode_operations;
|
|
static struct address_space_operations btrfs_aops;
|
|
static struct address_space_operations btrfs_symlink_aops;
|
|
static struct file_operations btrfs_dir_file_operations;
|
|
static struct extent_io_ops btrfs_extent_io_ops;
|
|
|
|
static struct kmem_cache *btrfs_inode_cachep;
|
|
struct kmem_cache *btrfs_trans_handle_cachep;
|
|
struct kmem_cache *btrfs_transaction_cachep;
|
|
struct kmem_cache *btrfs_bit_radix_cachep;
|
|
struct kmem_cache *btrfs_path_cachep;
|
|
|
|
#define S_SHIFT 12
|
|
static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
|
|
[S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
|
|
[S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
|
|
[S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
|
|
[S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
|
|
[S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
|
|
[S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
|
|
[S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
|
|
};
|
|
|
|
static void btrfs_truncate(struct inode *inode);
|
|
static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
|
|
static noinline int cow_file_range(struct inode *inode,
|
|
struct page *locked_page,
|
|
u64 start, u64 end, int *page_started,
|
|
unsigned long *nr_written, int unlock);
|
|
|
|
static int btrfs_init_inode_security(struct inode *inode, struct inode *dir)
|
|
{
|
|
int err;
|
|
|
|
err = btrfs_init_acl(inode, dir);
|
|
if (!err)
|
|
err = btrfs_xattr_security_init(inode, dir);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* this does all the hard work for inserting an inline extent into
|
|
* the btree. The caller should have done a btrfs_drop_extents so that
|
|
* no overlapping inline items exist in the btree
|
|
*/
|
|
static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, struct inode *inode,
|
|
u64 start, size_t size, size_t compressed_size,
|
|
struct page **compressed_pages)
|
|
{
|
|
struct btrfs_key key;
|
|
struct btrfs_path *path;
|
|
struct extent_buffer *leaf;
|
|
struct page *page = NULL;
|
|
char *kaddr;
|
|
unsigned long ptr;
|
|
struct btrfs_file_extent_item *ei;
|
|
int err = 0;
|
|
int ret;
|
|
size_t cur_size = size;
|
|
size_t datasize;
|
|
unsigned long offset;
|
|
int use_compress = 0;
|
|
|
|
if (compressed_size && compressed_pages) {
|
|
use_compress = 1;
|
|
cur_size = compressed_size;
|
|
}
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
path->leave_spinning = 1;
|
|
btrfs_set_trans_block_group(trans, inode);
|
|
|
|
key.objectid = inode->i_ino;
|
|
key.offset = start;
|
|
btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
|
|
datasize = btrfs_file_extent_calc_inline_size(cur_size);
|
|
|
|
inode_add_bytes(inode, size);
|
|
ret = btrfs_insert_empty_item(trans, root, path, &key,
|
|
datasize);
|
|
BUG_ON(ret);
|
|
if (ret) {
|
|
err = ret;
|
|
goto fail;
|
|
}
|
|
leaf = path->nodes[0];
|
|
ei = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_file_extent_item);
|
|
btrfs_set_file_extent_generation(leaf, ei, trans->transid);
|
|
btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
|
|
btrfs_set_file_extent_encryption(leaf, ei, 0);
|
|
btrfs_set_file_extent_other_encoding(leaf, ei, 0);
|
|
btrfs_set_file_extent_ram_bytes(leaf, ei, size);
|
|
ptr = btrfs_file_extent_inline_start(ei);
|
|
|
|
if (use_compress) {
|
|
struct page *cpage;
|
|
int i = 0;
|
|
while (compressed_size > 0) {
|
|
cpage = compressed_pages[i];
|
|
cur_size = min_t(unsigned long, compressed_size,
|
|
PAGE_CACHE_SIZE);
|
|
|
|
kaddr = kmap_atomic(cpage, KM_USER0);
|
|
write_extent_buffer(leaf, kaddr, ptr, cur_size);
|
|
kunmap_atomic(kaddr, KM_USER0);
|
|
|
|
i++;
|
|
ptr += cur_size;
|
|
compressed_size -= cur_size;
|
|
}
|
|
btrfs_set_file_extent_compression(leaf, ei,
|
|
BTRFS_COMPRESS_ZLIB);
|
|
} else {
|
|
page = find_get_page(inode->i_mapping,
|
|
start >> PAGE_CACHE_SHIFT);
|
|
btrfs_set_file_extent_compression(leaf, ei, 0);
|
|
kaddr = kmap_atomic(page, KM_USER0);
|
|
offset = start & (PAGE_CACHE_SIZE - 1);
|
|
write_extent_buffer(leaf, kaddr + offset, ptr, size);
|
|
kunmap_atomic(kaddr, KM_USER0);
|
|
page_cache_release(page);
|
|
}
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
btrfs_free_path(path);
|
|
|
|
BTRFS_I(inode)->disk_i_size = inode->i_size;
|
|
btrfs_update_inode(trans, root, inode);
|
|
return 0;
|
|
fail:
|
|
btrfs_free_path(path);
|
|
return err;
|
|
}
|
|
|
|
|
|
/*
|
|
* conditionally insert an inline extent into the file. This
|
|
* does the checks required to make sure the data is small enough
|
|
* to fit as an inline extent.
|
|
*/
|
|
static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct inode *inode, u64 start, u64 end,
|
|
size_t compressed_size,
|
|
struct page **compressed_pages)
|
|
{
|
|
u64 isize = i_size_read(inode);
|
|
u64 actual_end = min(end + 1, isize);
|
|
u64 inline_len = actual_end - start;
|
|
u64 aligned_end = (end + root->sectorsize - 1) &
|
|
~((u64)root->sectorsize - 1);
|
|
u64 hint_byte;
|
|
u64 data_len = inline_len;
|
|
int ret;
|
|
|
|
if (compressed_size)
|
|
data_len = compressed_size;
|
|
|
|
if (start > 0 ||
|
|
actual_end >= PAGE_CACHE_SIZE ||
|
|
data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
|
|
(!compressed_size &&
|
|
(actual_end & (root->sectorsize - 1)) == 0) ||
|
|
end + 1 < isize ||
|
|
data_len > root->fs_info->max_inline) {
|
|
return 1;
|
|
}
|
|
|
|
ret = btrfs_drop_extents(trans, root, inode, start,
|
|
aligned_end, start, &hint_byte);
|
|
BUG_ON(ret);
|
|
|
|
if (isize > actual_end)
|
|
inline_len = min_t(u64, isize, actual_end);
|
|
ret = insert_inline_extent(trans, root, inode, start,
|
|
inline_len, compressed_size,
|
|
compressed_pages);
|
|
BUG_ON(ret);
|
|
btrfs_drop_extent_cache(inode, start, aligned_end, 0);
|
|
return 0;
|
|
}
|
|
|
|
struct async_extent {
|
|
u64 start;
|
|
u64 ram_size;
|
|
u64 compressed_size;
|
|
struct page **pages;
|
|
unsigned long nr_pages;
|
|
struct list_head list;
|
|
};
|
|
|
|
struct async_cow {
|
|
struct inode *inode;
|
|
struct btrfs_root *root;
|
|
struct page *locked_page;
|
|
u64 start;
|
|
u64 end;
|
|
struct list_head extents;
|
|
struct btrfs_work work;
|
|
};
|
|
|
|
static noinline int add_async_extent(struct async_cow *cow,
|
|
u64 start, u64 ram_size,
|
|
u64 compressed_size,
|
|
struct page **pages,
|
|
unsigned long nr_pages)
|
|
{
|
|
struct async_extent *async_extent;
|
|
|
|
async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
|
|
async_extent->start = start;
|
|
async_extent->ram_size = ram_size;
|
|
async_extent->compressed_size = compressed_size;
|
|
async_extent->pages = pages;
|
|
async_extent->nr_pages = nr_pages;
|
|
list_add_tail(&async_extent->list, &cow->extents);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* we create compressed extents in two phases. The first
|
|
* phase compresses a range of pages that have already been
|
|
* locked (both pages and state bits are locked).
|
|
*
|
|
* This is done inside an ordered work queue, and the compression
|
|
* is spread across many cpus. The actual IO submission is step
|
|
* two, and the ordered work queue takes care of making sure that
|
|
* happens in the same order things were put onto the queue by
|
|
* writepages and friends.
|
|
*
|
|
* If this code finds it can't get good compression, it puts an
|
|
* entry onto the work queue to write the uncompressed bytes. This
|
|
* makes sure that both compressed inodes and uncompressed inodes
|
|
* are written in the same order that pdflush sent them down.
|
|
*/
|
|
static noinline int compress_file_range(struct inode *inode,
|
|
struct page *locked_page,
|
|
u64 start, u64 end,
|
|
struct async_cow *async_cow,
|
|
int *num_added)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_trans_handle *trans;
|
|
u64 num_bytes;
|
|
u64 orig_start;
|
|
u64 disk_num_bytes;
|
|
u64 blocksize = root->sectorsize;
|
|
u64 actual_end;
|
|
u64 isize = i_size_read(inode);
|
|
int ret = 0;
|
|
struct page **pages = NULL;
|
|
unsigned long nr_pages;
|
|
unsigned long nr_pages_ret = 0;
|
|
unsigned long total_compressed = 0;
|
|
unsigned long total_in = 0;
|
|
unsigned long max_compressed = 128 * 1024;
|
|
unsigned long max_uncompressed = 128 * 1024;
|
|
int i;
|
|
int will_compress;
|
|
|
|
orig_start = start;
|
|
|
|
actual_end = min_t(u64, isize, end + 1);
|
|
again:
|
|
will_compress = 0;
|
|
nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
|
|
nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
|
|
|
|
/*
|
|
* we don't want to send crud past the end of i_size through
|
|
* compression, that's just a waste of CPU time. So, if the
|
|
* end of the file is before the start of our current
|
|
* requested range of bytes, we bail out to the uncompressed
|
|
* cleanup code that can deal with all of this.
|
|
*
|
|
* It isn't really the fastest way to fix things, but this is a
|
|
* very uncommon corner.
|
|
*/
|
|
if (actual_end <= start)
|
|
goto cleanup_and_bail_uncompressed;
|
|
|
|
total_compressed = actual_end - start;
|
|
|
|
/* we want to make sure that amount of ram required to uncompress
|
|
* an extent is reasonable, so we limit the total size in ram
|
|
* of a compressed extent to 128k. This is a crucial number
|
|
* because it also controls how easily we can spread reads across
|
|
* cpus for decompression.
|
|
*
|
|
* We also want to make sure the amount of IO required to do
|
|
* a random read is reasonably small, so we limit the size of
|
|
* a compressed extent to 128k.
|
|
*/
|
|
total_compressed = min(total_compressed, max_uncompressed);
|
|
num_bytes = (end - start + blocksize) & ~(blocksize - 1);
|
|
num_bytes = max(blocksize, num_bytes);
|
|
disk_num_bytes = num_bytes;
|
|
total_in = 0;
|
|
ret = 0;
|
|
|
|
/*
|
|
* we do compression for mount -o compress and when the
|
|
* inode has not been flagged as nocompress. This flag can
|
|
* change at any time if we discover bad compression ratios.
|
|
*/
|
|
if (!btrfs_test_flag(inode, NOCOMPRESS) &&
|
|
btrfs_test_opt(root, COMPRESS)) {
|
|
WARN_ON(pages);
|
|
pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
|
|
|
|
ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
|
|
total_compressed, pages,
|
|
nr_pages, &nr_pages_ret,
|
|
&total_in,
|
|
&total_compressed,
|
|
max_compressed);
|
|
|
|
if (!ret) {
|
|
unsigned long offset = total_compressed &
|
|
(PAGE_CACHE_SIZE - 1);
|
|
struct page *page = pages[nr_pages_ret - 1];
|
|
char *kaddr;
|
|
|
|
/* zero the tail end of the last page, we might be
|
|
* sending it down to disk
|
|
*/
|
|
if (offset) {
|
|
kaddr = kmap_atomic(page, KM_USER0);
|
|
memset(kaddr + offset, 0,
|
|
PAGE_CACHE_SIZE - offset);
|
|
kunmap_atomic(kaddr, KM_USER0);
|
|
}
|
|
will_compress = 1;
|
|
}
|
|
}
|
|
if (start == 0) {
|
|
trans = btrfs_join_transaction(root, 1);
|
|
BUG_ON(!trans);
|
|
btrfs_set_trans_block_group(trans, inode);
|
|
|
|
/* lets try to make an inline extent */
|
|
if (ret || total_in < (actual_end - start)) {
|
|
/* we didn't compress the entire range, try
|
|
* to make an uncompressed inline extent.
|
|
*/
|
|
ret = cow_file_range_inline(trans, root, inode,
|
|
start, end, 0, NULL);
|
|
} else {
|
|
/* try making a compressed inline extent */
|
|
ret = cow_file_range_inline(trans, root, inode,
|
|
start, end,
|
|
total_compressed, pages);
|
|
}
|
|
btrfs_end_transaction(trans, root);
|
|
if (ret == 0) {
|
|
/*
|
|
* inline extent creation worked, we don't need
|
|
* to create any more async work items. Unlock
|
|
* and free up our temp pages.
|
|
*/
|
|
extent_clear_unlock_delalloc(inode,
|
|
&BTRFS_I(inode)->io_tree,
|
|
start, end, NULL, 1, 0,
|
|
0, 1, 1, 1);
|
|
ret = 0;
|
|
goto free_pages_out;
|
|
}
|
|
}
|
|
|
|
if (will_compress) {
|
|
/*
|
|
* we aren't doing an inline extent round the compressed size
|
|
* up to a block size boundary so the allocator does sane
|
|
* things
|
|
*/
|
|
total_compressed = (total_compressed + blocksize - 1) &
|
|
~(blocksize - 1);
|
|
|
|
/*
|
|
* one last check to make sure the compression is really a
|
|
* win, compare the page count read with the blocks on disk
|
|
*/
|
|
total_in = (total_in + PAGE_CACHE_SIZE - 1) &
|
|
~(PAGE_CACHE_SIZE - 1);
|
|
if (total_compressed >= total_in) {
|
|
will_compress = 0;
|
|
} else {
|
|
disk_num_bytes = total_compressed;
|
|
num_bytes = total_in;
|
|
}
|
|
}
|
|
if (!will_compress && pages) {
|
|
/*
|
|
* the compression code ran but failed to make things smaller,
|
|
* free any pages it allocated and our page pointer array
|
|
*/
|
|
for (i = 0; i < nr_pages_ret; i++) {
|
|
WARN_ON(pages[i]->mapping);
|
|
page_cache_release(pages[i]);
|
|
}
|
|
kfree(pages);
|
|
pages = NULL;
|
|
total_compressed = 0;
|
|
nr_pages_ret = 0;
|
|
|
|
/* flag the file so we don't compress in the future */
|
|
btrfs_set_flag(inode, NOCOMPRESS);
|
|
}
|
|
if (will_compress) {
|
|
*num_added += 1;
|
|
|
|
/* the async work queues will take care of doing actual
|
|
* allocation on disk for these compressed pages,
|
|
* and will submit them to the elevator.
|
|
*/
|
|
add_async_extent(async_cow, start, num_bytes,
|
|
total_compressed, pages, nr_pages_ret);
|
|
|
|
if (start + num_bytes < end && start + num_bytes < actual_end) {
|
|
start += num_bytes;
|
|
pages = NULL;
|
|
cond_resched();
|
|
goto again;
|
|
}
|
|
} else {
|
|
cleanup_and_bail_uncompressed:
|
|
/*
|
|
* No compression, but we still need to write the pages in
|
|
* the file we've been given so far. redirty the locked
|
|
* page if it corresponds to our extent and set things up
|
|
* for the async work queue to run cow_file_range to do
|
|
* the normal delalloc dance
|
|
*/
|
|
if (page_offset(locked_page) >= start &&
|
|
page_offset(locked_page) <= end) {
|
|
__set_page_dirty_nobuffers(locked_page);
|
|
/* unlocked later on in the async handlers */
|
|
}
|
|
add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
|
|
*num_added += 1;
|
|
}
|
|
|
|
out:
|
|
return 0;
|
|
|
|
free_pages_out:
|
|
for (i = 0; i < nr_pages_ret; i++) {
|
|
WARN_ON(pages[i]->mapping);
|
|
page_cache_release(pages[i]);
|
|
}
|
|
kfree(pages);
|
|
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* phase two of compressed writeback. This is the ordered portion
|
|
* of the code, which only gets called in the order the work was
|
|
* queued. We walk all the async extents created by compress_file_range
|
|
* and send them down to the disk.
|
|
*/
|
|
static noinline int submit_compressed_extents(struct inode *inode,
|
|
struct async_cow *async_cow)
|
|
{
|
|
struct async_extent *async_extent;
|
|
u64 alloc_hint = 0;
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_key ins;
|
|
struct extent_map *em;
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
|
|
struct extent_io_tree *io_tree;
|
|
int ret;
|
|
|
|
if (list_empty(&async_cow->extents))
|
|
return 0;
|
|
|
|
trans = btrfs_join_transaction(root, 1);
|
|
|
|
while (!list_empty(&async_cow->extents)) {
|
|
async_extent = list_entry(async_cow->extents.next,
|
|
struct async_extent, list);
|
|
list_del(&async_extent->list);
|
|
|
|
io_tree = &BTRFS_I(inode)->io_tree;
|
|
|
|
/* did the compression code fall back to uncompressed IO? */
|
|
if (!async_extent->pages) {
|
|
int page_started = 0;
|
|
unsigned long nr_written = 0;
|
|
|
|
lock_extent(io_tree, async_extent->start,
|
|
async_extent->start +
|
|
async_extent->ram_size - 1, GFP_NOFS);
|
|
|
|
/* allocate blocks */
|
|
cow_file_range(inode, async_cow->locked_page,
|
|
async_extent->start,
|
|
async_extent->start +
|
|
async_extent->ram_size - 1,
|
|
&page_started, &nr_written, 0);
|
|
|
|
/*
|
|
* if page_started, cow_file_range inserted an
|
|
* inline extent and took care of all the unlocking
|
|
* and IO for us. Otherwise, we need to submit
|
|
* all those pages down to the drive.
|
|
*/
|
|
if (!page_started)
|
|
extent_write_locked_range(io_tree,
|
|
inode, async_extent->start,
|
|
async_extent->start +
|
|
async_extent->ram_size - 1,
|
|
btrfs_get_extent,
|
|
WB_SYNC_ALL);
|
|
kfree(async_extent);
|
|
cond_resched();
|
|
continue;
|
|
}
|
|
|
|
lock_extent(io_tree, async_extent->start,
|
|
async_extent->start + async_extent->ram_size - 1,
|
|
GFP_NOFS);
|
|
/*
|
|
* here we're doing allocation and writeback of the
|
|
* compressed pages
|
|
*/
|
|
btrfs_drop_extent_cache(inode, async_extent->start,
|
|
async_extent->start +
|
|
async_extent->ram_size - 1, 0);
|
|
|
|
ret = btrfs_reserve_extent(trans, root,
|
|
async_extent->compressed_size,
|
|
async_extent->compressed_size,
|
|
0, alloc_hint,
|
|
(u64)-1, &ins, 1);
|
|
BUG_ON(ret);
|
|
em = alloc_extent_map(GFP_NOFS);
|
|
em->start = async_extent->start;
|
|
em->len = async_extent->ram_size;
|
|
em->orig_start = em->start;
|
|
|
|
em->block_start = ins.objectid;
|
|
em->block_len = ins.offset;
|
|
em->bdev = root->fs_info->fs_devices->latest_bdev;
|
|
set_bit(EXTENT_FLAG_PINNED, &em->flags);
|
|
set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
|
|
|
|
while (1) {
|
|
spin_lock(&em_tree->lock);
|
|
ret = add_extent_mapping(em_tree, em);
|
|
spin_unlock(&em_tree->lock);
|
|
if (ret != -EEXIST) {
|
|
free_extent_map(em);
|
|
break;
|
|
}
|
|
btrfs_drop_extent_cache(inode, async_extent->start,
|
|
async_extent->start +
|
|
async_extent->ram_size - 1, 0);
|
|
}
|
|
|
|
ret = btrfs_add_ordered_extent(inode, async_extent->start,
|
|
ins.objectid,
|
|
async_extent->ram_size,
|
|
ins.offset,
|
|
BTRFS_ORDERED_COMPRESSED);
|
|
BUG_ON(ret);
|
|
|
|
btrfs_end_transaction(trans, root);
|
|
|
|
/*
|
|
* clear dirty, set writeback and unlock the pages.
|
|
*/
|
|
extent_clear_unlock_delalloc(inode,
|
|
&BTRFS_I(inode)->io_tree,
|
|
async_extent->start,
|
|
async_extent->start +
|
|
async_extent->ram_size - 1,
|
|
NULL, 1, 1, 0, 1, 1, 0);
|
|
|
|
ret = btrfs_submit_compressed_write(inode,
|
|
async_extent->start,
|
|
async_extent->ram_size,
|
|
ins.objectid,
|
|
ins.offset, async_extent->pages,
|
|
async_extent->nr_pages);
|
|
|
|
BUG_ON(ret);
|
|
trans = btrfs_join_transaction(root, 1);
|
|
alloc_hint = ins.objectid + ins.offset;
|
|
kfree(async_extent);
|
|
cond_resched();
|
|
}
|
|
|
|
btrfs_end_transaction(trans, root);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* when extent_io.c finds a delayed allocation range in the file,
|
|
* the call backs end up in this code. The basic idea is to
|
|
* allocate extents on disk for the range, and create ordered data structs
|
|
* in ram to track those extents.
|
|
*
|
|
* locked_page is the page that writepage had locked already. We use
|
|
* it to make sure we don't do extra locks or unlocks.
|
|
*
|
|
* *page_started is set to one if we unlock locked_page and do everything
|
|
* required to start IO on it. It may be clean and already done with
|
|
* IO when we return.
|
|
*/
|
|
static noinline int cow_file_range(struct inode *inode,
|
|
struct page *locked_page,
|
|
u64 start, u64 end, int *page_started,
|
|
unsigned long *nr_written,
|
|
int unlock)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_trans_handle *trans;
|
|
u64 alloc_hint = 0;
|
|
u64 num_bytes;
|
|
unsigned long ram_size;
|
|
u64 disk_num_bytes;
|
|
u64 cur_alloc_size;
|
|
u64 blocksize = root->sectorsize;
|
|
u64 actual_end;
|
|
u64 isize = i_size_read(inode);
|
|
struct btrfs_key ins;
|
|
struct extent_map *em;
|
|
struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
|
|
int ret = 0;
|
|
|
|
trans = btrfs_join_transaction(root, 1);
|
|
BUG_ON(!trans);
|
|
btrfs_set_trans_block_group(trans, inode);
|
|
|
|
actual_end = min_t(u64, isize, end + 1);
|
|
|
|
num_bytes = (end - start + blocksize) & ~(blocksize - 1);
|
|
num_bytes = max(blocksize, num_bytes);
|
|
disk_num_bytes = num_bytes;
|
|
ret = 0;
|
|
|
|
if (start == 0) {
|
|
/* lets try to make an inline extent */
|
|
ret = cow_file_range_inline(trans, root, inode,
|
|
start, end, 0, NULL);
|
|
if (ret == 0) {
|
|
extent_clear_unlock_delalloc(inode,
|
|
&BTRFS_I(inode)->io_tree,
|
|
start, end, NULL, 1, 1,
|
|
1, 1, 1, 1);
|
|
*nr_written = *nr_written +
|
|
(end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
|
|
*page_started = 1;
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
BUG_ON(disk_num_bytes >
|
|
btrfs_super_total_bytes(&root->fs_info->super_copy));
|
|
|
|
btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
|
|
|
|
while (disk_num_bytes > 0) {
|
|
cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
|
|
ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
|
|
root->sectorsize, 0, alloc_hint,
|
|
(u64)-1, &ins, 1);
|
|
BUG_ON(ret);
|
|
|
|
em = alloc_extent_map(GFP_NOFS);
|
|
em->start = start;
|
|
em->orig_start = em->start;
|
|
|
|
ram_size = ins.offset;
|
|
em->len = ins.offset;
|
|
|
|
em->block_start = ins.objectid;
|
|
em->block_len = ins.offset;
|
|
em->bdev = root->fs_info->fs_devices->latest_bdev;
|
|
set_bit(EXTENT_FLAG_PINNED, &em->flags);
|
|
|
|
while (1) {
|
|
spin_lock(&em_tree->lock);
|
|
ret = add_extent_mapping(em_tree, em);
|
|
spin_unlock(&em_tree->lock);
|
|
if (ret != -EEXIST) {
|
|
free_extent_map(em);
|
|
break;
|
|
}
|
|
btrfs_drop_extent_cache(inode, start,
|
|
start + ram_size - 1, 0);
|
|
}
|
|
|
|
cur_alloc_size = ins.offset;
|
|
ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
|
|
ram_size, cur_alloc_size, 0);
|
|
BUG_ON(ret);
|
|
|
|
if (root->root_key.objectid ==
|
|
BTRFS_DATA_RELOC_TREE_OBJECTID) {
|
|
ret = btrfs_reloc_clone_csums(inode, start,
|
|
cur_alloc_size);
|
|
BUG_ON(ret);
|
|
}
|
|
|
|
if (disk_num_bytes < cur_alloc_size)
|
|
break;
|
|
|
|
/* we're not doing compressed IO, don't unlock the first
|
|
* page (which the caller expects to stay locked), don't
|
|
* clear any dirty bits and don't set any writeback bits
|
|
*/
|
|
extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
|
|
start, start + ram_size - 1,
|
|
locked_page, unlock, 1,
|
|
1, 0, 0, 0);
|
|
disk_num_bytes -= cur_alloc_size;
|
|
num_bytes -= cur_alloc_size;
|
|
alloc_hint = ins.objectid + ins.offset;
|
|
start += cur_alloc_size;
|
|
}
|
|
out:
|
|
ret = 0;
|
|
btrfs_end_transaction(trans, root);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* work queue call back to started compression on a file and pages
|
|
*/
|
|
static noinline void async_cow_start(struct btrfs_work *work)
|
|
{
|
|
struct async_cow *async_cow;
|
|
int num_added = 0;
|
|
async_cow = container_of(work, struct async_cow, work);
|
|
|
|
compress_file_range(async_cow->inode, async_cow->locked_page,
|
|
async_cow->start, async_cow->end, async_cow,
|
|
&num_added);
|
|
if (num_added == 0)
|
|
async_cow->inode = NULL;
|
|
}
|
|
|
|
/*
|
|
* work queue call back to submit previously compressed pages
|
|
*/
|
|
static noinline void async_cow_submit(struct btrfs_work *work)
|
|
{
|
|
struct async_cow *async_cow;
|
|
struct btrfs_root *root;
|
|
unsigned long nr_pages;
|
|
|
|
async_cow = container_of(work, struct async_cow, work);
|
|
|
|
root = async_cow->root;
|
|
nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
|
|
PAGE_CACHE_SHIFT;
|
|
|
|
atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
|
|
|
|
if (atomic_read(&root->fs_info->async_delalloc_pages) <
|
|
5 * 1042 * 1024 &&
|
|
waitqueue_active(&root->fs_info->async_submit_wait))
|
|
wake_up(&root->fs_info->async_submit_wait);
|
|
|
|
if (async_cow->inode)
|
|
submit_compressed_extents(async_cow->inode, async_cow);
|
|
}
|
|
|
|
static noinline void async_cow_free(struct btrfs_work *work)
|
|
{
|
|
struct async_cow *async_cow;
|
|
async_cow = container_of(work, struct async_cow, work);
|
|
kfree(async_cow);
|
|
}
|
|
|
|
static int cow_file_range_async(struct inode *inode, struct page *locked_page,
|
|
u64 start, u64 end, int *page_started,
|
|
unsigned long *nr_written)
|
|
{
|
|
struct async_cow *async_cow;
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
unsigned long nr_pages;
|
|
u64 cur_end;
|
|
int limit = 10 * 1024 * 1042;
|
|
|
|
clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED |
|
|
EXTENT_DELALLOC, 1, 0, GFP_NOFS);
|
|
while (start < end) {
|
|
async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
|
|
async_cow->inode = inode;
|
|
async_cow->root = root;
|
|
async_cow->locked_page = locked_page;
|
|
async_cow->start = start;
|
|
|
|
if (btrfs_test_flag(inode, NOCOMPRESS))
|
|
cur_end = end;
|
|
else
|
|
cur_end = min(end, start + 512 * 1024 - 1);
|
|
|
|
async_cow->end = cur_end;
|
|
INIT_LIST_HEAD(&async_cow->extents);
|
|
|
|
async_cow->work.func = async_cow_start;
|
|
async_cow->work.ordered_func = async_cow_submit;
|
|
async_cow->work.ordered_free = async_cow_free;
|
|
async_cow->work.flags = 0;
|
|
|
|
nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
|
|
PAGE_CACHE_SHIFT;
|
|
atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
|
|
|
|
btrfs_queue_worker(&root->fs_info->delalloc_workers,
|
|
&async_cow->work);
|
|
|
|
if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
|
|
wait_event(root->fs_info->async_submit_wait,
|
|
(atomic_read(&root->fs_info->async_delalloc_pages) <
|
|
limit));
|
|
}
|
|
|
|
while (atomic_read(&root->fs_info->async_submit_draining) &&
|
|
atomic_read(&root->fs_info->async_delalloc_pages)) {
|
|
wait_event(root->fs_info->async_submit_wait,
|
|
(atomic_read(&root->fs_info->async_delalloc_pages) ==
|
|
0));
|
|
}
|
|
|
|
*nr_written += nr_pages;
|
|
start = cur_end + 1;
|
|
}
|
|
*page_started = 1;
|
|
return 0;
|
|
}
|
|
|
|
static noinline int csum_exist_in_range(struct btrfs_root *root,
|
|
u64 bytenr, u64 num_bytes)
|
|
{
|
|
int ret;
|
|
struct btrfs_ordered_sum *sums;
|
|
LIST_HEAD(list);
|
|
|
|
ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
|
|
bytenr + num_bytes - 1, &list);
|
|
if (ret == 0 && list_empty(&list))
|
|
return 0;
|
|
|
|
while (!list_empty(&list)) {
|
|
sums = list_entry(list.next, struct btrfs_ordered_sum, list);
|
|
list_del(&sums->list);
|
|
kfree(sums);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* when nowcow writeback call back. This checks for snapshots or COW copies
|
|
* of the extents that exist in the file, and COWs the file as required.
|
|
*
|
|
* If no cow copies or snapshots exist, we write directly to the existing
|
|
* blocks on disk
|
|
*/
|
|
static noinline int run_delalloc_nocow(struct inode *inode,
|
|
struct page *locked_page,
|
|
u64 start, u64 end, int *page_started, int force,
|
|
unsigned long *nr_written)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_trans_handle *trans;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_path *path;
|
|
struct btrfs_file_extent_item *fi;
|
|
struct btrfs_key found_key;
|
|
u64 cow_start;
|
|
u64 cur_offset;
|
|
u64 extent_end;
|
|
u64 disk_bytenr;
|
|
u64 num_bytes;
|
|
int extent_type;
|
|
int ret;
|
|
int type;
|
|
int nocow;
|
|
int check_prev = 1;
|
|
|
|
path = btrfs_alloc_path();
|
|
BUG_ON(!path);
|
|
trans = btrfs_join_transaction(root, 1);
|
|
BUG_ON(!trans);
|
|
|
|
cow_start = (u64)-1;
|
|
cur_offset = start;
|
|
while (1) {
|
|
ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
|
|
cur_offset, 0);
|
|
BUG_ON(ret < 0);
|
|
if (ret > 0 && path->slots[0] > 0 && check_prev) {
|
|
leaf = path->nodes[0];
|
|
btrfs_item_key_to_cpu(leaf, &found_key,
|
|
path->slots[0] - 1);
|
|
if (found_key.objectid == inode->i_ino &&
|
|
found_key.type == BTRFS_EXTENT_DATA_KEY)
|
|
path->slots[0]--;
|
|
}
|
|
check_prev = 0;
|
|
next_slot:
|
|
leaf = path->nodes[0];
|
|
if (path->slots[0] >= btrfs_header_nritems(leaf)) {
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret < 0)
|
|
BUG_ON(1);
|
|
if (ret > 0)
|
|
break;
|
|
leaf = path->nodes[0];
|
|
}
|
|
|
|
nocow = 0;
|
|
disk_bytenr = 0;
|
|
num_bytes = 0;
|
|
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
|
|
|
|
if (found_key.objectid > inode->i_ino ||
|
|
found_key.type > BTRFS_EXTENT_DATA_KEY ||
|
|
found_key.offset > end)
|
|
break;
|
|
|
|
if (found_key.offset > cur_offset) {
|
|
extent_end = found_key.offset;
|
|
goto out_check;
|
|
}
|
|
|
|
fi = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_file_extent_item);
|
|
extent_type = btrfs_file_extent_type(leaf, fi);
|
|
|
|
if (extent_type == BTRFS_FILE_EXTENT_REG ||
|
|
extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
|
|
disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
|
|
extent_end = found_key.offset +
|
|
btrfs_file_extent_num_bytes(leaf, fi);
|
|
if (extent_end <= start) {
|
|
path->slots[0]++;
|
|
goto next_slot;
|
|
}
|
|
if (disk_bytenr == 0)
|
|
goto out_check;
|
|
if (btrfs_file_extent_compression(leaf, fi) ||
|
|
btrfs_file_extent_encryption(leaf, fi) ||
|
|
btrfs_file_extent_other_encoding(leaf, fi))
|
|
goto out_check;
|
|
if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
|
|
goto out_check;
|
|
if (btrfs_extent_readonly(root, disk_bytenr))
|
|
goto out_check;
|
|
if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
|
|
disk_bytenr))
|
|
goto out_check;
|
|
disk_bytenr += btrfs_file_extent_offset(leaf, fi);
|
|
disk_bytenr += cur_offset - found_key.offset;
|
|
num_bytes = min(end + 1, extent_end) - cur_offset;
|
|
/*
|
|
* force cow if csum exists in the range.
|
|
* this ensure that csum for a given extent are
|
|
* either valid or do not exist.
|
|
*/
|
|
if (csum_exist_in_range(root, disk_bytenr, num_bytes))
|
|
goto out_check;
|
|
nocow = 1;
|
|
} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
|
|
extent_end = found_key.offset +
|
|
btrfs_file_extent_inline_len(leaf, fi);
|
|
extent_end = ALIGN(extent_end, root->sectorsize);
|
|
} else {
|
|
BUG_ON(1);
|
|
}
|
|
out_check:
|
|
if (extent_end <= start) {
|
|
path->slots[0]++;
|
|
goto next_slot;
|
|
}
|
|
if (!nocow) {
|
|
if (cow_start == (u64)-1)
|
|
cow_start = cur_offset;
|
|
cur_offset = extent_end;
|
|
if (cur_offset > end)
|
|
break;
|
|
path->slots[0]++;
|
|
goto next_slot;
|
|
}
|
|
|
|
btrfs_release_path(root, path);
|
|
if (cow_start != (u64)-1) {
|
|
ret = cow_file_range(inode, locked_page, cow_start,
|
|
found_key.offset - 1, page_started,
|
|
nr_written, 1);
|
|
BUG_ON(ret);
|
|
cow_start = (u64)-1;
|
|
}
|
|
|
|
if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
|
|
struct extent_map *em;
|
|
struct extent_map_tree *em_tree;
|
|
em_tree = &BTRFS_I(inode)->extent_tree;
|
|
em = alloc_extent_map(GFP_NOFS);
|
|
em->start = cur_offset;
|
|
em->orig_start = em->start;
|
|
em->len = num_bytes;
|
|
em->block_len = num_bytes;
|
|
em->block_start = disk_bytenr;
|
|
em->bdev = root->fs_info->fs_devices->latest_bdev;
|
|
set_bit(EXTENT_FLAG_PINNED, &em->flags);
|
|
while (1) {
|
|
spin_lock(&em_tree->lock);
|
|
ret = add_extent_mapping(em_tree, em);
|
|
spin_unlock(&em_tree->lock);
|
|
if (ret != -EEXIST) {
|
|
free_extent_map(em);
|
|
break;
|
|
}
|
|
btrfs_drop_extent_cache(inode, em->start,
|
|
em->start + em->len - 1, 0);
|
|
}
|
|
type = BTRFS_ORDERED_PREALLOC;
|
|
} else {
|
|
type = BTRFS_ORDERED_NOCOW;
|
|
}
|
|
|
|
ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
|
|
num_bytes, num_bytes, type);
|
|
BUG_ON(ret);
|
|
|
|
extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
|
|
cur_offset, cur_offset + num_bytes - 1,
|
|
locked_page, 1, 1, 1, 0, 0, 0);
|
|
cur_offset = extent_end;
|
|
if (cur_offset > end)
|
|
break;
|
|
}
|
|
btrfs_release_path(root, path);
|
|
|
|
if (cur_offset <= end && cow_start == (u64)-1)
|
|
cow_start = cur_offset;
|
|
if (cow_start != (u64)-1) {
|
|
ret = cow_file_range(inode, locked_page, cow_start, end,
|
|
page_started, nr_written, 1);
|
|
BUG_ON(ret);
|
|
}
|
|
|
|
ret = btrfs_end_transaction(trans, root);
|
|
BUG_ON(ret);
|
|
btrfs_free_path(path);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* extent_io.c call back to do delayed allocation processing
|
|
*/
|
|
static int run_delalloc_range(struct inode *inode, struct page *locked_page,
|
|
u64 start, u64 end, int *page_started,
|
|
unsigned long *nr_written)
|
|
{
|
|
int ret;
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
|
|
if (btrfs_test_flag(inode, NODATACOW))
|
|
ret = run_delalloc_nocow(inode, locked_page, start, end,
|
|
page_started, 1, nr_written);
|
|
else if (btrfs_test_flag(inode, PREALLOC))
|
|
ret = run_delalloc_nocow(inode, locked_page, start, end,
|
|
page_started, 0, nr_written);
|
|
else if (!btrfs_test_opt(root, COMPRESS))
|
|
ret = cow_file_range(inode, locked_page, start, end,
|
|
page_started, nr_written, 1);
|
|
else
|
|
ret = cow_file_range_async(inode, locked_page, start, end,
|
|
page_started, nr_written);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* extent_io.c set_bit_hook, used to track delayed allocation
|
|
* bytes in this file, and to maintain the list of inodes that
|
|
* have pending delalloc work to be done.
|
|
*/
|
|
static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
|
|
unsigned long old, unsigned long bits)
|
|
{
|
|
/*
|
|
* set_bit and clear bit hooks normally require _irqsave/restore
|
|
* but in this case, we are only testeing for the DELALLOC
|
|
* bit, which is only set or cleared with irqs on
|
|
*/
|
|
if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
btrfs_delalloc_reserve_space(root, inode, end - start + 1);
|
|
spin_lock(&root->fs_info->delalloc_lock);
|
|
BTRFS_I(inode)->delalloc_bytes += end - start + 1;
|
|
root->fs_info->delalloc_bytes += end - start + 1;
|
|
if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
|
|
list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
|
|
&root->fs_info->delalloc_inodes);
|
|
}
|
|
spin_unlock(&root->fs_info->delalloc_lock);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* extent_io.c clear_bit_hook, see set_bit_hook for why
|
|
*/
|
|
static int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
|
|
unsigned long old, unsigned long bits)
|
|
{
|
|
/*
|
|
* set_bit and clear bit hooks normally require _irqsave/restore
|
|
* but in this case, we are only testeing for the DELALLOC
|
|
* bit, which is only set or cleared with irqs on
|
|
*/
|
|
if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
|
|
spin_lock(&root->fs_info->delalloc_lock);
|
|
if (end - start + 1 > root->fs_info->delalloc_bytes) {
|
|
printk(KERN_INFO "btrfs warning: delalloc account "
|
|
"%llu %llu\n",
|
|
(unsigned long long)end - start + 1,
|
|
(unsigned long long)
|
|
root->fs_info->delalloc_bytes);
|
|
btrfs_delalloc_free_space(root, inode, (u64)-1);
|
|
root->fs_info->delalloc_bytes = 0;
|
|
BTRFS_I(inode)->delalloc_bytes = 0;
|
|
} else {
|
|
btrfs_delalloc_free_space(root, inode,
|
|
end - start + 1);
|
|
root->fs_info->delalloc_bytes -= end - start + 1;
|
|
BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
|
|
}
|
|
if (BTRFS_I(inode)->delalloc_bytes == 0 &&
|
|
!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
|
|
list_del_init(&BTRFS_I(inode)->delalloc_inodes);
|
|
}
|
|
spin_unlock(&root->fs_info->delalloc_lock);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* extent_io.c merge_bio_hook, this must check the chunk tree to make sure
|
|
* we don't create bios that span stripes or chunks
|
|
*/
|
|
int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
|
|
size_t size, struct bio *bio,
|
|
unsigned long bio_flags)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
|
|
struct btrfs_mapping_tree *map_tree;
|
|
u64 logical = (u64)bio->bi_sector << 9;
|
|
u64 length = 0;
|
|
u64 map_length;
|
|
int ret;
|
|
|
|
if (bio_flags & EXTENT_BIO_COMPRESSED)
|
|
return 0;
|
|
|
|
length = bio->bi_size;
|
|
map_tree = &root->fs_info->mapping_tree;
|
|
map_length = length;
|
|
ret = btrfs_map_block(map_tree, READ, logical,
|
|
&map_length, NULL, 0);
|
|
|
|
if (map_length < length + size)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* in order to insert checksums into the metadata in large chunks,
|
|
* we wait until bio submission time. All the pages in the bio are
|
|
* checksummed and sums are attached onto the ordered extent record.
|
|
*
|
|
* At IO completion time the cums attached on the ordered extent record
|
|
* are inserted into the btree
|
|
*/
|
|
static int __btrfs_submit_bio_start(struct inode *inode, int rw,
|
|
struct bio *bio, int mirror_num,
|
|
unsigned long bio_flags)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
int ret = 0;
|
|
|
|
ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
|
|
BUG_ON(ret);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* in order to insert checksums into the metadata in large chunks,
|
|
* we wait until bio submission time. All the pages in the bio are
|
|
* checksummed and sums are attached onto the ordered extent record.
|
|
*
|
|
* At IO completion time the cums attached on the ordered extent record
|
|
* are inserted into the btree
|
|
*/
|
|
static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
|
|
int mirror_num, unsigned long bio_flags)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
return btrfs_map_bio(root, rw, bio, mirror_num, 1);
|
|
}
|
|
|
|
/*
|
|
* extent_io.c submission hook. This does the right thing for csum calculation
|
|
* on write, or reading the csums from the tree before a read
|
|
*/
|
|
static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
|
|
int mirror_num, unsigned long bio_flags)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
int ret = 0;
|
|
int skip_sum;
|
|
|
|
skip_sum = btrfs_test_flag(inode, NODATASUM);
|
|
|
|
ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
|
|
BUG_ON(ret);
|
|
|
|
if (!(rw & (1 << BIO_RW))) {
|
|
if (bio_flags & EXTENT_BIO_COMPRESSED) {
|
|
return btrfs_submit_compressed_read(inode, bio,
|
|
mirror_num, bio_flags);
|
|
} else if (!skip_sum)
|
|
btrfs_lookup_bio_sums(root, inode, bio, NULL);
|
|
goto mapit;
|
|
} else if (!skip_sum) {
|
|
/* csum items have already been cloned */
|
|
if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
|
|
goto mapit;
|
|
/* we're doing a write, do the async checksumming */
|
|
return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
|
|
inode, rw, bio, mirror_num,
|
|
bio_flags, __btrfs_submit_bio_start,
|
|
__btrfs_submit_bio_done);
|
|
}
|
|
|
|
mapit:
|
|
return btrfs_map_bio(root, rw, bio, mirror_num, 0);
|
|
}
|
|
|
|
/*
|
|
* given a list of ordered sums record them in the inode. This happens
|
|
* at IO completion time based on sums calculated at bio submission time.
|
|
*/
|
|
static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
|
|
struct inode *inode, u64 file_offset,
|
|
struct list_head *list)
|
|
{
|
|
struct btrfs_ordered_sum *sum;
|
|
|
|
btrfs_set_trans_block_group(trans, inode);
|
|
|
|
list_for_each_entry(sum, list, list) {
|
|
btrfs_csum_file_blocks(trans,
|
|
BTRFS_I(inode)->root->fs_info->csum_root, sum);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
|
|
{
|
|
if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
|
|
WARN_ON(1);
|
|
return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
|
|
GFP_NOFS);
|
|
}
|
|
|
|
/* see btrfs_writepage_start_hook for details on why this is required */
|
|
struct btrfs_writepage_fixup {
|
|
struct page *page;
|
|
struct btrfs_work work;
|
|
};
|
|
|
|
static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
|
|
{
|
|
struct btrfs_writepage_fixup *fixup;
|
|
struct btrfs_ordered_extent *ordered;
|
|
struct page *page;
|
|
struct inode *inode;
|
|
u64 page_start;
|
|
u64 page_end;
|
|
|
|
fixup = container_of(work, struct btrfs_writepage_fixup, work);
|
|
page = fixup->page;
|
|
again:
|
|
lock_page(page);
|
|
if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
|
|
ClearPageChecked(page);
|
|
goto out_page;
|
|
}
|
|
|
|
inode = page->mapping->host;
|
|
page_start = page_offset(page);
|
|
page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
|
|
|
|
lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
|
|
|
|
/* already ordered? We're done */
|
|
if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
|
|
EXTENT_ORDERED, 0)) {
|
|
goto out;
|
|
}
|
|
|
|
ordered = btrfs_lookup_ordered_extent(inode, page_start);
|
|
if (ordered) {
|
|
unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
|
|
page_end, GFP_NOFS);
|
|
unlock_page(page);
|
|
btrfs_start_ordered_extent(inode, ordered, 1);
|
|
goto again;
|
|
}
|
|
|
|
btrfs_set_extent_delalloc(inode, page_start, page_end);
|
|
ClearPageChecked(page);
|
|
out:
|
|
unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
|
|
out_page:
|
|
unlock_page(page);
|
|
page_cache_release(page);
|
|
}
|
|
|
|
/*
|
|
* There are a few paths in the higher layers of the kernel that directly
|
|
* set the page dirty bit without asking the filesystem if it is a
|
|
* good idea. This causes problems because we want to make sure COW
|
|
* properly happens and the data=ordered rules are followed.
|
|
*
|
|
* In our case any range that doesn't have the ORDERED bit set
|
|
* hasn't been properly setup for IO. We kick off an async process
|
|
* to fix it up. The async helper will wait for ordered extents, set
|
|
* the delalloc bit and make it safe to write the page.
|
|
*/
|
|
static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
|
|
{
|
|
struct inode *inode = page->mapping->host;
|
|
struct btrfs_writepage_fixup *fixup;
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
int ret;
|
|
|
|
ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
|
|
EXTENT_ORDERED, 0);
|
|
if (ret)
|
|
return 0;
|
|
|
|
if (PageChecked(page))
|
|
return -EAGAIN;
|
|
|
|
fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
|
|
if (!fixup)
|
|
return -EAGAIN;
|
|
|
|
SetPageChecked(page);
|
|
page_cache_get(page);
|
|
fixup->work.func = btrfs_writepage_fixup_worker;
|
|
fixup->page = page;
|
|
btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
|
|
struct inode *inode, u64 file_pos,
|
|
u64 disk_bytenr, u64 disk_num_bytes,
|
|
u64 num_bytes, u64 ram_bytes,
|
|
u8 compression, u8 encryption,
|
|
u16 other_encoding, int extent_type)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_file_extent_item *fi;
|
|
struct btrfs_path *path;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_key ins;
|
|
u64 hint;
|
|
int ret;
|
|
|
|
path = btrfs_alloc_path();
|
|
BUG_ON(!path);
|
|
|
|
path->leave_spinning = 1;
|
|
ret = btrfs_drop_extents(trans, root, inode, file_pos,
|
|
file_pos + num_bytes, file_pos, &hint);
|
|
BUG_ON(ret);
|
|
|
|
ins.objectid = inode->i_ino;
|
|
ins.offset = file_pos;
|
|
ins.type = BTRFS_EXTENT_DATA_KEY;
|
|
ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
|
|
BUG_ON(ret);
|
|
leaf = path->nodes[0];
|
|
fi = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_file_extent_item);
|
|
btrfs_set_file_extent_generation(leaf, fi, trans->transid);
|
|
btrfs_set_file_extent_type(leaf, fi, extent_type);
|
|
btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
|
|
btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
|
|
btrfs_set_file_extent_offset(leaf, fi, 0);
|
|
btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
|
|
btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
|
|
btrfs_set_file_extent_compression(leaf, fi, compression);
|
|
btrfs_set_file_extent_encryption(leaf, fi, encryption);
|
|
btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
|
|
|
|
btrfs_unlock_up_safe(path, 1);
|
|
btrfs_set_lock_blocking(leaf);
|
|
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
|
|
inode_add_bytes(inode, num_bytes);
|
|
btrfs_drop_extent_cache(inode, file_pos, file_pos + num_bytes - 1, 0);
|
|
|
|
ins.objectid = disk_bytenr;
|
|
ins.offset = disk_num_bytes;
|
|
ins.type = BTRFS_EXTENT_ITEM_KEY;
|
|
ret = btrfs_alloc_reserved_extent(trans, root, leaf->start,
|
|
root->root_key.objectid,
|
|
trans->transid, inode->i_ino, &ins);
|
|
BUG_ON(ret);
|
|
btrfs_free_path(path);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* helper function for btrfs_finish_ordered_io, this
|
|
* just reads in some of the csum leaves to prime them into ram
|
|
* before we start the transaction. It limits the amount of btree
|
|
* reads required while inside the transaction.
|
|
*/
|
|
static noinline void reada_csum(struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
struct btrfs_ordered_extent *ordered_extent)
|
|
{
|
|
struct btrfs_ordered_sum *sum;
|
|
u64 bytenr;
|
|
|
|
sum = list_entry(ordered_extent->list.next, struct btrfs_ordered_sum,
|
|
list);
|
|
bytenr = sum->sums[0].bytenr;
|
|
|
|
/*
|
|
* we don't care about the results, the point of this search is
|
|
* just to get the btree leaves into ram
|
|
*/
|
|
btrfs_lookup_csum(NULL, root->fs_info->csum_root, path, bytenr, 0);
|
|
}
|
|
|
|
/* as ordered data IO finishes, this gets called so we can finish
|
|
* an ordered extent if the range of bytes in the file it covers are
|
|
* fully written.
|
|
*/
|
|
static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_ordered_extent *ordered_extent = NULL;
|
|
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
|
|
struct btrfs_path *path;
|
|
int compressed = 0;
|
|
int ret;
|
|
|
|
ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
|
|
if (!ret)
|
|
return 0;
|
|
|
|
/*
|
|
* before we join the transaction, try to do some of our IO.
|
|
* This will limit the amount of IO that we have to do with
|
|
* the transaction running. We're unlikely to need to do any
|
|
* IO if the file extents are new, the disk_i_size checks
|
|
* covers the most common case.
|
|
*/
|
|
if (start < BTRFS_I(inode)->disk_i_size) {
|
|
path = btrfs_alloc_path();
|
|
if (path) {
|
|
ret = btrfs_lookup_file_extent(NULL, root, path,
|
|
inode->i_ino,
|
|
start, 0);
|
|
ordered_extent = btrfs_lookup_ordered_extent(inode,
|
|
start);
|
|
if (!list_empty(&ordered_extent->list)) {
|
|
btrfs_release_path(root, path);
|
|
reada_csum(root, path, ordered_extent);
|
|
}
|
|
btrfs_free_path(path);
|
|
}
|
|
}
|
|
|
|
trans = btrfs_join_transaction(root, 1);
|
|
|
|
if (!ordered_extent)
|
|
ordered_extent = btrfs_lookup_ordered_extent(inode, start);
|
|
BUG_ON(!ordered_extent);
|
|
if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
|
|
goto nocow;
|
|
|
|
lock_extent(io_tree, ordered_extent->file_offset,
|
|
ordered_extent->file_offset + ordered_extent->len - 1,
|
|
GFP_NOFS);
|
|
|
|
if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
|
|
compressed = 1;
|
|
if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
|
|
BUG_ON(compressed);
|
|
ret = btrfs_mark_extent_written(trans, root, inode,
|
|
ordered_extent->file_offset,
|
|
ordered_extent->file_offset +
|
|
ordered_extent->len);
|
|
BUG_ON(ret);
|
|
} else {
|
|
ret = insert_reserved_file_extent(trans, inode,
|
|
ordered_extent->file_offset,
|
|
ordered_extent->start,
|
|
ordered_extent->disk_len,
|
|
ordered_extent->len,
|
|
ordered_extent->len,
|
|
compressed, 0, 0,
|
|
BTRFS_FILE_EXTENT_REG);
|
|
BUG_ON(ret);
|
|
}
|
|
unlock_extent(io_tree, ordered_extent->file_offset,
|
|
ordered_extent->file_offset + ordered_extent->len - 1,
|
|
GFP_NOFS);
|
|
nocow:
|
|
add_pending_csums(trans, inode, ordered_extent->file_offset,
|
|
&ordered_extent->list);
|
|
|
|
mutex_lock(&BTRFS_I(inode)->extent_mutex);
|
|
btrfs_ordered_update_i_size(inode, ordered_extent);
|
|
btrfs_update_inode(trans, root, inode);
|
|
btrfs_remove_ordered_extent(inode, ordered_extent);
|
|
mutex_unlock(&BTRFS_I(inode)->extent_mutex);
|
|
|
|
/* once for us */
|
|
btrfs_put_ordered_extent(ordered_extent);
|
|
/* once for the tree */
|
|
btrfs_put_ordered_extent(ordered_extent);
|
|
|
|
btrfs_end_transaction(trans, root);
|
|
return 0;
|
|
}
|
|
|
|
static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
|
|
struct extent_state *state, int uptodate)
|
|
{
|
|
return btrfs_finish_ordered_io(page->mapping->host, start, end);
|
|
}
|
|
|
|
/*
|
|
* When IO fails, either with EIO or csum verification fails, we
|
|
* try other mirrors that might have a good copy of the data. This
|
|
* io_failure_record is used to record state as we go through all the
|
|
* mirrors. If another mirror has good data, the page is set up to date
|
|
* and things continue. If a good mirror can't be found, the original
|
|
* bio end_io callback is called to indicate things have failed.
|
|
*/
|
|
struct io_failure_record {
|
|
struct page *page;
|
|
u64 start;
|
|
u64 len;
|
|
u64 logical;
|
|
unsigned long bio_flags;
|
|
int last_mirror;
|
|
};
|
|
|
|
static int btrfs_io_failed_hook(struct bio *failed_bio,
|
|
struct page *page, u64 start, u64 end,
|
|
struct extent_state *state)
|
|
{
|
|
struct io_failure_record *failrec = NULL;
|
|
u64 private;
|
|
struct extent_map *em;
|
|
struct inode *inode = page->mapping->host;
|
|
struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
|
|
struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
|
|
struct bio *bio;
|
|
int num_copies;
|
|
int ret;
|
|
int rw;
|
|
u64 logical;
|
|
|
|
ret = get_state_private(failure_tree, start, &private);
|
|
if (ret) {
|
|
failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
|
|
if (!failrec)
|
|
return -ENOMEM;
|
|
failrec->start = start;
|
|
failrec->len = end - start + 1;
|
|
failrec->last_mirror = 0;
|
|
failrec->bio_flags = 0;
|
|
|
|
spin_lock(&em_tree->lock);
|
|
em = lookup_extent_mapping(em_tree, start, failrec->len);
|
|
if (em->start > start || em->start + em->len < start) {
|
|
free_extent_map(em);
|
|
em = NULL;
|
|
}
|
|
spin_unlock(&em_tree->lock);
|
|
|
|
if (!em || IS_ERR(em)) {
|
|
kfree(failrec);
|
|
return -EIO;
|
|
}
|
|
logical = start - em->start;
|
|
logical = em->block_start + logical;
|
|
if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
|
|
logical = em->block_start;
|
|
failrec->bio_flags = EXTENT_BIO_COMPRESSED;
|
|
}
|
|
failrec->logical = logical;
|
|
free_extent_map(em);
|
|
set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
|
|
EXTENT_DIRTY, GFP_NOFS);
|
|
set_state_private(failure_tree, start,
|
|
(u64)(unsigned long)failrec);
|
|
} else {
|
|
failrec = (struct io_failure_record *)(unsigned long)private;
|
|
}
|
|
num_copies = btrfs_num_copies(
|
|
&BTRFS_I(inode)->root->fs_info->mapping_tree,
|
|
failrec->logical, failrec->len);
|
|
failrec->last_mirror++;
|
|
if (!state) {
|
|
spin_lock(&BTRFS_I(inode)->io_tree.lock);
|
|
state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
|
|
failrec->start,
|
|
EXTENT_LOCKED);
|
|
if (state && state->start != failrec->start)
|
|
state = NULL;
|
|
spin_unlock(&BTRFS_I(inode)->io_tree.lock);
|
|
}
|
|
if (!state || failrec->last_mirror > num_copies) {
|
|
set_state_private(failure_tree, failrec->start, 0);
|
|
clear_extent_bits(failure_tree, failrec->start,
|
|
failrec->start + failrec->len - 1,
|
|
EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
|
|
kfree(failrec);
|
|
return -EIO;
|
|
}
|
|
bio = bio_alloc(GFP_NOFS, 1);
|
|
bio->bi_private = state;
|
|
bio->bi_end_io = failed_bio->bi_end_io;
|
|
bio->bi_sector = failrec->logical >> 9;
|
|
bio->bi_bdev = failed_bio->bi_bdev;
|
|
bio->bi_size = 0;
|
|
|
|
bio_add_page(bio, page, failrec->len, start - page_offset(page));
|
|
if (failed_bio->bi_rw & (1 << BIO_RW))
|
|
rw = WRITE;
|
|
else
|
|
rw = READ;
|
|
|
|
BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
|
|
failrec->last_mirror,
|
|
failrec->bio_flags);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* each time an IO finishes, we do a fast check in the IO failure tree
|
|
* to see if we need to process or clean up an io_failure_record
|
|
*/
|
|
static int btrfs_clean_io_failures(struct inode *inode, u64 start)
|
|
{
|
|
u64 private;
|
|
u64 private_failure;
|
|
struct io_failure_record *failure;
|
|
int ret;
|
|
|
|
private = 0;
|
|
if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
|
|
(u64)-1, 1, EXTENT_DIRTY)) {
|
|
ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
|
|
start, &private_failure);
|
|
if (ret == 0) {
|
|
failure = (struct io_failure_record *)(unsigned long)
|
|
private_failure;
|
|
set_state_private(&BTRFS_I(inode)->io_failure_tree,
|
|
failure->start, 0);
|
|
clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
|
|
failure->start,
|
|
failure->start + failure->len - 1,
|
|
EXTENT_DIRTY | EXTENT_LOCKED,
|
|
GFP_NOFS);
|
|
kfree(failure);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* when reads are done, we need to check csums to verify the data is correct
|
|
* if there's a match, we allow the bio to finish. If not, we go through
|
|
* the io_failure_record routines to find good copies
|
|
*/
|
|
static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
|
|
struct extent_state *state)
|
|
{
|
|
size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
|
|
struct inode *inode = page->mapping->host;
|
|
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
|
|
char *kaddr;
|
|
u64 private = ~(u32)0;
|
|
int ret;
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
u32 csum = ~(u32)0;
|
|
|
|
if (PageChecked(page)) {
|
|
ClearPageChecked(page);
|
|
goto good;
|
|
}
|
|
if (btrfs_test_flag(inode, NODATASUM))
|
|
return 0;
|
|
|
|
if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
|
|
test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1)) {
|
|
clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
|
|
GFP_NOFS);
|
|
return 0;
|
|
}
|
|
|
|
if (state && state->start == start) {
|
|
private = state->private;
|
|
ret = 0;
|
|
} else {
|
|
ret = get_state_private(io_tree, start, &private);
|
|
}
|
|
kaddr = kmap_atomic(page, KM_USER0);
|
|
if (ret)
|
|
goto zeroit;
|
|
|
|
csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
|
|
btrfs_csum_final(csum, (char *)&csum);
|
|
if (csum != private)
|
|
goto zeroit;
|
|
|
|
kunmap_atomic(kaddr, KM_USER0);
|
|
good:
|
|
/* if the io failure tree for this inode is non-empty,
|
|
* check to see if we've recovered from a failed IO
|
|
*/
|
|
btrfs_clean_io_failures(inode, start);
|
|
return 0;
|
|
|
|
zeroit:
|
|
printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
|
|
"private %llu\n", page->mapping->host->i_ino,
|
|
(unsigned long long)start, csum,
|
|
(unsigned long long)private);
|
|
memset(kaddr + offset, 1, end - start + 1);
|
|
flush_dcache_page(page);
|
|
kunmap_atomic(kaddr, KM_USER0);
|
|
if (private == 0)
|
|
return 0;
|
|
return -EIO;
|
|
}
|
|
|
|
/*
|
|
* This creates an orphan entry for the given inode in case something goes
|
|
* wrong in the middle of an unlink/truncate.
|
|
*/
|
|
int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
int ret = 0;
|
|
|
|
spin_lock(&root->list_lock);
|
|
|
|
/* already on the orphan list, we're good */
|
|
if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
|
|
spin_unlock(&root->list_lock);
|
|
return 0;
|
|
}
|
|
|
|
list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
|
|
|
|
spin_unlock(&root->list_lock);
|
|
|
|
/*
|
|
* insert an orphan item to track this unlinked/truncated file
|
|
*/
|
|
ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* We have done the truncate/delete so we can go ahead and remove the orphan
|
|
* item for this particular inode.
|
|
*/
|
|
int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
int ret = 0;
|
|
|
|
spin_lock(&root->list_lock);
|
|
|
|
if (list_empty(&BTRFS_I(inode)->i_orphan)) {
|
|
spin_unlock(&root->list_lock);
|
|
return 0;
|
|
}
|
|
|
|
list_del_init(&BTRFS_I(inode)->i_orphan);
|
|
if (!trans) {
|
|
spin_unlock(&root->list_lock);
|
|
return 0;
|
|
}
|
|
|
|
spin_unlock(&root->list_lock);
|
|
|
|
ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* this cleans up any orphans that may be left on the list from the last use
|
|
* of this root.
|
|
*/
|
|
void btrfs_orphan_cleanup(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_path *path;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_item *item;
|
|
struct btrfs_key key, found_key;
|
|
struct btrfs_trans_handle *trans;
|
|
struct inode *inode;
|
|
int ret = 0, nr_unlink = 0, nr_truncate = 0;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return;
|
|
path->reada = -1;
|
|
|
|
key.objectid = BTRFS_ORPHAN_OBJECTID;
|
|
btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
|
|
key.offset = (u64)-1;
|
|
|
|
|
|
while (1) {
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
if (ret < 0) {
|
|
printk(KERN_ERR "Error searching slot for orphan: %d"
|
|
"\n", ret);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* if ret == 0 means we found what we were searching for, which
|
|
* is weird, but possible, so only screw with path if we didnt
|
|
* find the key and see if we have stuff that matches
|
|
*/
|
|
if (ret > 0) {
|
|
if (path->slots[0] == 0)
|
|
break;
|
|
path->slots[0]--;
|
|
}
|
|
|
|
/* pull out the item */
|
|
leaf = path->nodes[0];
|
|
item = btrfs_item_nr(leaf, path->slots[0]);
|
|
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
|
|
|
|
/* make sure the item matches what we want */
|
|
if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
|
|
break;
|
|
if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
|
|
break;
|
|
|
|
/* release the path since we're done with it */
|
|
btrfs_release_path(root, path);
|
|
|
|
/*
|
|
* this is where we are basically btrfs_lookup, without the
|
|
* crossing root thing. we store the inode number in the
|
|
* offset of the orphan item.
|
|
*/
|
|
inode = btrfs_iget_locked(root->fs_info->sb,
|
|
found_key.offset, root);
|
|
if (!inode)
|
|
break;
|
|
|
|
if (inode->i_state & I_NEW) {
|
|
BTRFS_I(inode)->root = root;
|
|
|
|
/* have to set the location manually */
|
|
BTRFS_I(inode)->location.objectid = inode->i_ino;
|
|
BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
|
|
BTRFS_I(inode)->location.offset = 0;
|
|
|
|
btrfs_read_locked_inode(inode);
|
|
unlock_new_inode(inode);
|
|
}
|
|
|
|
/*
|
|
* add this inode to the orphan list so btrfs_orphan_del does
|
|
* the proper thing when we hit it
|
|
*/
|
|
spin_lock(&root->list_lock);
|
|
list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
|
|
spin_unlock(&root->list_lock);
|
|
|
|
/*
|
|
* if this is a bad inode, means we actually succeeded in
|
|
* removing the inode, but not the orphan record, which means
|
|
* we need to manually delete the orphan since iput will just
|
|
* do a destroy_inode
|
|
*/
|
|
if (is_bad_inode(inode)) {
|
|
trans = btrfs_start_transaction(root, 1);
|
|
btrfs_orphan_del(trans, inode);
|
|
btrfs_end_transaction(trans, root);
|
|
iput(inode);
|
|
continue;
|
|
}
|
|
|
|
/* if we have links, this was a truncate, lets do that */
|
|
if (inode->i_nlink) {
|
|
nr_truncate++;
|
|
btrfs_truncate(inode);
|
|
} else {
|
|
nr_unlink++;
|
|
}
|
|
|
|
/* this will do delete_inode and everything for us */
|
|
iput(inode);
|
|
}
|
|
|
|
if (nr_unlink)
|
|
printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
|
|
if (nr_truncate)
|
|
printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
|
|
|
|
btrfs_free_path(path);
|
|
}
|
|
|
|
/*
|
|
* read an inode from the btree into the in-memory inode
|
|
*/
|
|
void btrfs_read_locked_inode(struct inode *inode)
|
|
{
|
|
struct btrfs_path *path;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_inode_item *inode_item;
|
|
struct btrfs_timespec *tspec;
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_key location;
|
|
u64 alloc_group_block;
|
|
u32 rdev;
|
|
int ret;
|
|
|
|
path = btrfs_alloc_path();
|
|
BUG_ON(!path);
|
|
memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
|
|
|
|
ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
|
|
if (ret)
|
|
goto make_bad;
|
|
|
|
leaf = path->nodes[0];
|
|
inode_item = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_inode_item);
|
|
|
|
inode->i_mode = btrfs_inode_mode(leaf, inode_item);
|
|
inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
|
|
inode->i_uid = btrfs_inode_uid(leaf, inode_item);
|
|
inode->i_gid = btrfs_inode_gid(leaf, inode_item);
|
|
btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
|
|
|
|
tspec = btrfs_inode_atime(inode_item);
|
|
inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
|
|
inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
|
|
|
|
tspec = btrfs_inode_mtime(inode_item);
|
|
inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
|
|
inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
|
|
|
|
tspec = btrfs_inode_ctime(inode_item);
|
|
inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
|
|
inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
|
|
|
|
inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
|
|
BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
|
|
BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
|
|
inode->i_generation = BTRFS_I(inode)->generation;
|
|
inode->i_rdev = 0;
|
|
rdev = btrfs_inode_rdev(leaf, inode_item);
|
|
|
|
BTRFS_I(inode)->index_cnt = (u64)-1;
|
|
BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
|
|
|
|
alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
|
|
|
|
BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
|
|
alloc_group_block, 0);
|
|
btrfs_free_path(path);
|
|
inode_item = NULL;
|
|
|
|
switch (inode->i_mode & S_IFMT) {
|
|
case S_IFREG:
|
|
inode->i_mapping->a_ops = &btrfs_aops;
|
|
inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
|
|
BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
|
|
inode->i_fop = &btrfs_file_operations;
|
|
inode->i_op = &btrfs_file_inode_operations;
|
|
break;
|
|
case S_IFDIR:
|
|
inode->i_fop = &btrfs_dir_file_operations;
|
|
if (root == root->fs_info->tree_root)
|
|
inode->i_op = &btrfs_dir_ro_inode_operations;
|
|
else
|
|
inode->i_op = &btrfs_dir_inode_operations;
|
|
break;
|
|
case S_IFLNK:
|
|
inode->i_op = &btrfs_symlink_inode_operations;
|
|
inode->i_mapping->a_ops = &btrfs_symlink_aops;
|
|
inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
|
|
break;
|
|
default:
|
|
inode->i_op = &btrfs_special_inode_operations;
|
|
init_special_inode(inode, inode->i_mode, rdev);
|
|
break;
|
|
}
|
|
return;
|
|
|
|
make_bad:
|
|
btrfs_free_path(path);
|
|
make_bad_inode(inode);
|
|
}
|
|
|
|
/*
|
|
* given a leaf and an inode, copy the inode fields into the leaf
|
|
*/
|
|
static void fill_inode_item(struct btrfs_trans_handle *trans,
|
|
struct extent_buffer *leaf,
|
|
struct btrfs_inode_item *item,
|
|
struct inode *inode)
|
|
{
|
|
btrfs_set_inode_uid(leaf, item, inode->i_uid);
|
|
btrfs_set_inode_gid(leaf, item, inode->i_gid);
|
|
btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
|
|
btrfs_set_inode_mode(leaf, item, inode->i_mode);
|
|
btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
|
|
|
|
btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
|
|
inode->i_atime.tv_sec);
|
|
btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
|
|
inode->i_atime.tv_nsec);
|
|
|
|
btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
|
|
inode->i_mtime.tv_sec);
|
|
btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
|
|
inode->i_mtime.tv_nsec);
|
|
|
|
btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
|
|
inode->i_ctime.tv_sec);
|
|
btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
|
|
inode->i_ctime.tv_nsec);
|
|
|
|
btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
|
|
btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
|
|
btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
|
|
btrfs_set_inode_transid(leaf, item, trans->transid);
|
|
btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
|
|
btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
|
|
btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
|
|
}
|
|
|
|
/*
|
|
* copy everything in the in-memory inode into the btree.
|
|
*/
|
|
noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, struct inode *inode)
|
|
{
|
|
struct btrfs_inode_item *inode_item;
|
|
struct btrfs_path *path;
|
|
struct extent_buffer *leaf;
|
|
int ret;
|
|
|
|
path = btrfs_alloc_path();
|
|
BUG_ON(!path);
|
|
path->leave_spinning = 1;
|
|
ret = btrfs_lookup_inode(trans, root, path,
|
|
&BTRFS_I(inode)->location, 1);
|
|
if (ret) {
|
|
if (ret > 0)
|
|
ret = -ENOENT;
|
|
goto failed;
|
|
}
|
|
|
|
btrfs_unlock_up_safe(path, 1);
|
|
leaf = path->nodes[0];
|
|
inode_item = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_inode_item);
|
|
|
|
fill_inode_item(trans, leaf, inode_item, inode);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
btrfs_set_inode_last_trans(trans, inode);
|
|
ret = 0;
|
|
failed:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
|
|
/*
|
|
* unlink helper that gets used here in inode.c and in the tree logging
|
|
* recovery code. It remove a link in a directory with a given name, and
|
|
* also drops the back refs in the inode to the directory
|
|
*/
|
|
int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct inode *dir, struct inode *inode,
|
|
const char *name, int name_len)
|
|
{
|
|
struct btrfs_path *path;
|
|
int ret = 0;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_dir_item *di;
|
|
struct btrfs_key key;
|
|
u64 index;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path) {
|
|
ret = -ENOMEM;
|
|
goto err;
|
|
}
|
|
|
|
path->leave_spinning = 1;
|
|
di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
|
|
name, name_len, -1);
|
|
if (IS_ERR(di)) {
|
|
ret = PTR_ERR(di);
|
|
goto err;
|
|
}
|
|
if (!di) {
|
|
ret = -ENOENT;
|
|
goto err;
|
|
}
|
|
leaf = path->nodes[0];
|
|
btrfs_dir_item_key_to_cpu(leaf, di, &key);
|
|
ret = btrfs_delete_one_dir_name(trans, root, path, di);
|
|
if (ret)
|
|
goto err;
|
|
btrfs_release_path(root, path);
|
|
|
|
ret = btrfs_del_inode_ref(trans, root, name, name_len,
|
|
inode->i_ino,
|
|
dir->i_ino, &index);
|
|
if (ret) {
|
|
printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
|
|
"inode %lu parent %lu\n", name_len, name,
|
|
inode->i_ino, dir->i_ino);
|
|
goto err;
|
|
}
|
|
|
|
di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
|
|
index, name, name_len, -1);
|
|
if (IS_ERR(di)) {
|
|
ret = PTR_ERR(di);
|
|
goto err;
|
|
}
|
|
if (!di) {
|
|
ret = -ENOENT;
|
|
goto err;
|
|
}
|
|
ret = btrfs_delete_one_dir_name(trans, root, path, di);
|
|
btrfs_release_path(root, path);
|
|
|
|
ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
|
|
inode, dir->i_ino);
|
|
BUG_ON(ret != 0 && ret != -ENOENT);
|
|
|
|
ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
|
|
dir, index);
|
|
BUG_ON(ret);
|
|
err:
|
|
btrfs_free_path(path);
|
|
if (ret)
|
|
goto out;
|
|
|
|
btrfs_i_size_write(dir, dir->i_size - name_len * 2);
|
|
inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
|
|
btrfs_update_inode(trans, root, dir);
|
|
btrfs_drop_nlink(inode);
|
|
ret = btrfs_update_inode(trans, root, inode);
|
|
dir->i_sb->s_dirt = 1;
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
|
|
{
|
|
struct btrfs_root *root;
|
|
struct btrfs_trans_handle *trans;
|
|
struct inode *inode = dentry->d_inode;
|
|
int ret;
|
|
unsigned long nr = 0;
|
|
|
|
root = BTRFS_I(dir)->root;
|
|
|
|
trans = btrfs_start_transaction(root, 1);
|
|
|
|
btrfs_set_trans_block_group(trans, dir);
|
|
|
|
btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
|
|
|
|
ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
|
|
dentry->d_name.name, dentry->d_name.len);
|
|
|
|
if (inode->i_nlink == 0)
|
|
ret = btrfs_orphan_add(trans, inode);
|
|
|
|
nr = trans->blocks_used;
|
|
|
|
btrfs_end_transaction_throttle(trans, root);
|
|
btrfs_btree_balance_dirty(root, nr);
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
|
|
{
|
|
struct inode *inode = dentry->d_inode;
|
|
int err = 0;
|
|
int ret;
|
|
struct btrfs_root *root = BTRFS_I(dir)->root;
|
|
struct btrfs_trans_handle *trans;
|
|
unsigned long nr = 0;
|
|
|
|
/*
|
|
* the FIRST_FREE_OBJECTID check makes sure we don't try to rmdir
|
|
* the root of a subvolume or snapshot
|
|
*/
|
|
if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
|
|
inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) {
|
|
return -ENOTEMPTY;
|
|
}
|
|
|
|
trans = btrfs_start_transaction(root, 1);
|
|
btrfs_set_trans_block_group(trans, dir);
|
|
|
|
err = btrfs_orphan_add(trans, inode);
|
|
if (err)
|
|
goto fail_trans;
|
|
|
|
/* now the directory is empty */
|
|
err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
|
|
dentry->d_name.name, dentry->d_name.len);
|
|
if (!err)
|
|
btrfs_i_size_write(inode, 0);
|
|
|
|
fail_trans:
|
|
nr = trans->blocks_used;
|
|
ret = btrfs_end_transaction_throttle(trans, root);
|
|
btrfs_btree_balance_dirty(root, nr);
|
|
|
|
if (ret && !err)
|
|
err = ret;
|
|
return err;
|
|
}
|
|
|
|
#if 0
|
|
/*
|
|
* when truncating bytes in a file, it is possible to avoid reading
|
|
* the leaves that contain only checksum items. This can be the
|
|
* majority of the IO required to delete a large file, but it must
|
|
* be done carefully.
|
|
*
|
|
* The keys in the level just above the leaves are checked to make sure
|
|
* the lowest key in a given leaf is a csum key, and starts at an offset
|
|
* after the new size.
|
|
*
|
|
* Then the key for the next leaf is checked to make sure it also has
|
|
* a checksum item for the same file. If it does, we know our target leaf
|
|
* contains only checksum items, and it can be safely freed without reading
|
|
* it.
|
|
*
|
|
* This is just an optimization targeted at large files. It may do
|
|
* nothing. It will return 0 unless things went badly.
|
|
*/
|
|
static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
struct inode *inode, u64 new_size)
|
|
{
|
|
struct btrfs_key key;
|
|
int ret;
|
|
int nritems;
|
|
struct btrfs_key found_key;
|
|
struct btrfs_key other_key;
|
|
struct btrfs_leaf_ref *ref;
|
|
u64 leaf_gen;
|
|
u64 leaf_start;
|
|
|
|
path->lowest_level = 1;
|
|
key.objectid = inode->i_ino;
|
|
key.type = BTRFS_CSUM_ITEM_KEY;
|
|
key.offset = new_size;
|
|
again:
|
|
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
if (path->nodes[1] == NULL) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
ret = 0;
|
|
btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
|
|
nritems = btrfs_header_nritems(path->nodes[1]);
|
|
|
|
if (!nritems)
|
|
goto out;
|
|
|
|
if (path->slots[1] >= nritems)
|
|
goto next_node;
|
|
|
|
/* did we find a key greater than anything we want to delete? */
|
|
if (found_key.objectid > inode->i_ino ||
|
|
(found_key.objectid == inode->i_ino && found_key.type > key.type))
|
|
goto out;
|
|
|
|
/* we check the next key in the node to make sure the leave contains
|
|
* only checksum items. This comparison doesn't work if our
|
|
* leaf is the last one in the node
|
|
*/
|
|
if (path->slots[1] + 1 >= nritems) {
|
|
next_node:
|
|
/* search forward from the last key in the node, this
|
|
* will bring us into the next node in the tree
|
|
*/
|
|
btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
|
|
|
|
/* unlikely, but we inc below, so check to be safe */
|
|
if (found_key.offset == (u64)-1)
|
|
goto out;
|
|
|
|
/* search_forward needs a path with locks held, do the
|
|
* search again for the original key. It is possible
|
|
* this will race with a balance and return a path that
|
|
* we could modify, but this drop is just an optimization
|
|
* and is allowed to miss some leaves.
|
|
*/
|
|
btrfs_release_path(root, path);
|
|
found_key.offset++;
|
|
|
|
/* setup a max key for search_forward */
|
|
other_key.offset = (u64)-1;
|
|
other_key.type = key.type;
|
|
other_key.objectid = key.objectid;
|
|
|
|
path->keep_locks = 1;
|
|
ret = btrfs_search_forward(root, &found_key, &other_key,
|
|
path, 0, 0);
|
|
path->keep_locks = 0;
|
|
if (ret || found_key.objectid != key.objectid ||
|
|
found_key.type != key.type) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
|
|
key.offset = found_key.offset;
|
|
btrfs_release_path(root, path);
|
|
cond_resched();
|
|
goto again;
|
|
}
|
|
|
|
/* we know there's one more slot after us in the tree,
|
|
* read that key so we can verify it is also a checksum item
|
|
*/
|
|
btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
|
|
|
|
if (found_key.objectid < inode->i_ino)
|
|
goto next_key;
|
|
|
|
if (found_key.type != key.type || found_key.offset < new_size)
|
|
goto next_key;
|
|
|
|
/*
|
|
* if the key for the next leaf isn't a csum key from this objectid,
|
|
* we can't be sure there aren't good items inside this leaf.
|
|
* Bail out
|
|
*/
|
|
if (other_key.objectid != inode->i_ino || other_key.type != key.type)
|
|
goto out;
|
|
|
|
leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
|
|
leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
|
|
/*
|
|
* it is safe to delete this leaf, it contains only
|
|
* csum items from this inode at an offset >= new_size
|
|
*/
|
|
ret = btrfs_del_leaf(trans, root, path, leaf_start);
|
|
BUG_ON(ret);
|
|
|
|
if (root->ref_cows && leaf_gen < trans->transid) {
|
|
ref = btrfs_alloc_leaf_ref(root, 0);
|
|
if (ref) {
|
|
ref->root_gen = root->root_key.offset;
|
|
ref->bytenr = leaf_start;
|
|
ref->owner = 0;
|
|
ref->generation = leaf_gen;
|
|
ref->nritems = 0;
|
|
|
|
btrfs_sort_leaf_ref(ref);
|
|
|
|
ret = btrfs_add_leaf_ref(root, ref, 0);
|
|
WARN_ON(ret);
|
|
btrfs_free_leaf_ref(root, ref);
|
|
} else {
|
|
WARN_ON(1);
|
|
}
|
|
}
|
|
next_key:
|
|
btrfs_release_path(root, path);
|
|
|
|
if (other_key.objectid == inode->i_ino &&
|
|
other_key.type == key.type && other_key.offset > key.offset) {
|
|
key.offset = other_key.offset;
|
|
cond_resched();
|
|
goto again;
|
|
}
|
|
ret = 0;
|
|
out:
|
|
/* fixup any changes we've made to the path */
|
|
path->lowest_level = 0;
|
|
path->keep_locks = 0;
|
|
btrfs_release_path(root, path);
|
|
return ret;
|
|
}
|
|
|
|
#endif
|
|
|
|
/*
|
|
* this can truncate away extent items, csum items and directory items.
|
|
* It starts at a high offset and removes keys until it can't find
|
|
* any higher than new_size
|
|
*
|
|
* csum items that cross the new i_size are truncated to the new size
|
|
* as well.
|
|
*
|
|
* min_type is the minimum key type to truncate down to. If set to 0, this
|
|
* will kill all the items on this inode, including the INODE_ITEM_KEY.
|
|
*/
|
|
noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct inode *inode,
|
|
u64 new_size, u32 min_type)
|
|
{
|
|
int ret;
|
|
struct btrfs_path *path;
|
|
struct btrfs_key key;
|
|
struct btrfs_key found_key;
|
|
u32 found_type = (u8)-1;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_file_extent_item *fi;
|
|
u64 extent_start = 0;
|
|
u64 extent_num_bytes = 0;
|
|
u64 item_end = 0;
|
|
u64 root_gen = 0;
|
|
u64 root_owner = 0;
|
|
int found_extent;
|
|
int del_item;
|
|
int pending_del_nr = 0;
|
|
int pending_del_slot = 0;
|
|
int extent_type = -1;
|
|
int encoding;
|
|
u64 mask = root->sectorsize - 1;
|
|
|
|
if (root->ref_cows)
|
|
btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
|
|
path = btrfs_alloc_path();
|
|
path->reada = -1;
|
|
BUG_ON(!path);
|
|
|
|
/* FIXME, add redo link to tree so we don't leak on crash */
|
|
key.objectid = inode->i_ino;
|
|
key.offset = (u64)-1;
|
|
key.type = (u8)-1;
|
|
|
|
search_again:
|
|
path->leave_spinning = 1;
|
|
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
|
|
if (ret < 0)
|
|
goto error;
|
|
|
|
if (ret > 0) {
|
|
/* there are no items in the tree for us to truncate, we're
|
|
* done
|
|
*/
|
|
if (path->slots[0] == 0) {
|
|
ret = 0;
|
|
goto error;
|
|
}
|
|
path->slots[0]--;
|
|
}
|
|
|
|
while (1) {
|
|
fi = NULL;
|
|
leaf = path->nodes[0];
|
|
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
|
|
found_type = btrfs_key_type(&found_key);
|
|
encoding = 0;
|
|
|
|
if (found_key.objectid != inode->i_ino)
|
|
break;
|
|
|
|
if (found_type < min_type)
|
|
break;
|
|
|
|
item_end = found_key.offset;
|
|
if (found_type == BTRFS_EXTENT_DATA_KEY) {
|
|
fi = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_file_extent_item);
|
|
extent_type = btrfs_file_extent_type(leaf, fi);
|
|
encoding = btrfs_file_extent_compression(leaf, fi);
|
|
encoding |= btrfs_file_extent_encryption(leaf, fi);
|
|
encoding |= btrfs_file_extent_other_encoding(leaf, fi);
|
|
|
|
if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
|
|
item_end +=
|
|
btrfs_file_extent_num_bytes(leaf, fi);
|
|
} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
|
|
item_end += btrfs_file_extent_inline_len(leaf,
|
|
fi);
|
|
}
|
|
item_end--;
|
|
}
|
|
if (item_end < new_size) {
|
|
if (found_type == BTRFS_DIR_ITEM_KEY)
|
|
found_type = BTRFS_INODE_ITEM_KEY;
|
|
else if (found_type == BTRFS_EXTENT_ITEM_KEY)
|
|
found_type = BTRFS_EXTENT_DATA_KEY;
|
|
else if (found_type == BTRFS_EXTENT_DATA_KEY)
|
|
found_type = BTRFS_XATTR_ITEM_KEY;
|
|
else if (found_type == BTRFS_XATTR_ITEM_KEY)
|
|
found_type = BTRFS_INODE_REF_KEY;
|
|
else if (found_type)
|
|
found_type--;
|
|
else
|
|
break;
|
|
btrfs_set_key_type(&key, found_type);
|
|
goto next;
|
|
}
|
|
if (found_key.offset >= new_size)
|
|
del_item = 1;
|
|
else
|
|
del_item = 0;
|
|
found_extent = 0;
|
|
|
|
/* FIXME, shrink the extent if the ref count is only 1 */
|
|
if (found_type != BTRFS_EXTENT_DATA_KEY)
|
|
goto delete;
|
|
|
|
if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
|
|
u64 num_dec;
|
|
extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
|
|
if (!del_item && !encoding) {
|
|
u64 orig_num_bytes =
|
|
btrfs_file_extent_num_bytes(leaf, fi);
|
|
extent_num_bytes = new_size -
|
|
found_key.offset + root->sectorsize - 1;
|
|
extent_num_bytes = extent_num_bytes &
|
|
~((u64)root->sectorsize - 1);
|
|
btrfs_set_file_extent_num_bytes(leaf, fi,
|
|
extent_num_bytes);
|
|
num_dec = (orig_num_bytes -
|
|
extent_num_bytes);
|
|
if (root->ref_cows && extent_start != 0)
|
|
inode_sub_bytes(inode, num_dec);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
} else {
|
|
extent_num_bytes =
|
|
btrfs_file_extent_disk_num_bytes(leaf,
|
|
fi);
|
|
/* FIXME blocksize != 4096 */
|
|
num_dec = btrfs_file_extent_num_bytes(leaf, fi);
|
|
if (extent_start != 0) {
|
|
found_extent = 1;
|
|
if (root->ref_cows)
|
|
inode_sub_bytes(inode, num_dec);
|
|
}
|
|
root_gen = btrfs_header_generation(leaf);
|
|
root_owner = btrfs_header_owner(leaf);
|
|
}
|
|
} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
|
|
/*
|
|
* we can't truncate inline items that have had
|
|
* special encodings
|
|
*/
|
|
if (!del_item &&
|
|
btrfs_file_extent_compression(leaf, fi) == 0 &&
|
|
btrfs_file_extent_encryption(leaf, fi) == 0 &&
|
|
btrfs_file_extent_other_encoding(leaf, fi) == 0) {
|
|
u32 size = new_size - found_key.offset;
|
|
|
|
if (root->ref_cows) {
|
|
inode_sub_bytes(inode, item_end + 1 -
|
|
new_size);
|
|
}
|
|
size =
|
|
btrfs_file_extent_calc_inline_size(size);
|
|
ret = btrfs_truncate_item(trans, root, path,
|
|
size, 1);
|
|
BUG_ON(ret);
|
|
} else if (root->ref_cows) {
|
|
inode_sub_bytes(inode, item_end + 1 -
|
|
found_key.offset);
|
|
}
|
|
}
|
|
delete:
|
|
if (del_item) {
|
|
if (!pending_del_nr) {
|
|
/* no pending yet, add ourselves */
|
|
pending_del_slot = path->slots[0];
|
|
pending_del_nr = 1;
|
|
} else if (pending_del_nr &&
|
|
path->slots[0] + 1 == pending_del_slot) {
|
|
/* hop on the pending chunk */
|
|
pending_del_nr++;
|
|
pending_del_slot = path->slots[0];
|
|
} else {
|
|
BUG();
|
|
}
|
|
} else {
|
|
break;
|
|
}
|
|
if (found_extent) {
|
|
btrfs_set_path_blocking(path);
|
|
ret = btrfs_free_extent(trans, root, extent_start,
|
|
extent_num_bytes,
|
|
leaf->start, root_owner,
|
|
root_gen, inode->i_ino, 0);
|
|
BUG_ON(ret);
|
|
}
|
|
next:
|
|
if (path->slots[0] == 0) {
|
|
if (pending_del_nr)
|
|
goto del_pending;
|
|
btrfs_release_path(root, path);
|
|
if (found_type == BTRFS_INODE_ITEM_KEY)
|
|
break;
|
|
goto search_again;
|
|
}
|
|
|
|
path->slots[0]--;
|
|
if (pending_del_nr &&
|
|
path->slots[0] + 1 != pending_del_slot) {
|
|
struct btrfs_key debug;
|
|
del_pending:
|
|
btrfs_item_key_to_cpu(path->nodes[0], &debug,
|
|
pending_del_slot);
|
|
ret = btrfs_del_items(trans, root, path,
|
|
pending_del_slot,
|
|
pending_del_nr);
|
|
BUG_ON(ret);
|
|
pending_del_nr = 0;
|
|
btrfs_release_path(root, path);
|
|
if (found_type == BTRFS_INODE_ITEM_KEY)
|
|
break;
|
|
goto search_again;
|
|
}
|
|
}
|
|
ret = 0;
|
|
error:
|
|
if (pending_del_nr) {
|
|
ret = btrfs_del_items(trans, root, path, pending_del_slot,
|
|
pending_del_nr);
|
|
}
|
|
btrfs_free_path(path);
|
|
inode->i_sb->s_dirt = 1;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* taken from block_truncate_page, but does cow as it zeros out
|
|
* any bytes left in the last page in the file.
|
|
*/
|
|
static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
|
|
{
|
|
struct inode *inode = mapping->host;
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
|
|
struct btrfs_ordered_extent *ordered;
|
|
char *kaddr;
|
|
u32 blocksize = root->sectorsize;
|
|
pgoff_t index = from >> PAGE_CACHE_SHIFT;
|
|
unsigned offset = from & (PAGE_CACHE_SIZE-1);
|
|
struct page *page;
|
|
int ret = 0;
|
|
u64 page_start;
|
|
u64 page_end;
|
|
|
|
if ((offset & (blocksize - 1)) == 0)
|
|
goto out;
|
|
|
|
ret = -ENOMEM;
|
|
again:
|
|
page = grab_cache_page(mapping, index);
|
|
if (!page)
|
|
goto out;
|
|
|
|
page_start = page_offset(page);
|
|
page_end = page_start + PAGE_CACHE_SIZE - 1;
|
|
|
|
if (!PageUptodate(page)) {
|
|
ret = btrfs_readpage(NULL, page);
|
|
lock_page(page);
|
|
if (page->mapping != mapping) {
|
|
unlock_page(page);
|
|
page_cache_release(page);
|
|
goto again;
|
|
}
|
|
if (!PageUptodate(page)) {
|
|
ret = -EIO;
|
|
goto out_unlock;
|
|
}
|
|
}
|
|
wait_on_page_writeback(page);
|
|
|
|
lock_extent(io_tree, page_start, page_end, GFP_NOFS);
|
|
set_page_extent_mapped(page);
|
|
|
|
ordered = btrfs_lookup_ordered_extent(inode, page_start);
|
|
if (ordered) {
|
|
unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
|
|
unlock_page(page);
|
|
page_cache_release(page);
|
|
btrfs_start_ordered_extent(inode, ordered, 1);
|
|
btrfs_put_ordered_extent(ordered);
|
|
goto again;
|
|
}
|
|
|
|
btrfs_set_extent_delalloc(inode, page_start, page_end);
|
|
ret = 0;
|
|
if (offset != PAGE_CACHE_SIZE) {
|
|
kaddr = kmap(page);
|
|
memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
|
|
flush_dcache_page(page);
|
|
kunmap(page);
|
|
}
|
|
ClearPageChecked(page);
|
|
set_page_dirty(page);
|
|
unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
|
|
|
|
out_unlock:
|
|
unlock_page(page);
|
|
page_cache_release(page);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_cont_expand(struct inode *inode, loff_t size)
|
|
{
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
|
|
struct extent_map *em;
|
|
u64 mask = root->sectorsize - 1;
|
|
u64 hole_start = (inode->i_size + mask) & ~mask;
|
|
u64 block_end = (size + mask) & ~mask;
|
|
u64 last_byte;
|
|
u64 cur_offset;
|
|
u64 hole_size;
|
|
int err;
|
|
|
|
if (size <= hole_start)
|
|
return 0;
|
|
|
|
err = btrfs_check_metadata_free_space(root);
|
|
if (err)
|
|
return err;
|
|
|
|
btrfs_truncate_page(inode->i_mapping, inode->i_size);
|
|
|
|
while (1) {
|
|
struct btrfs_ordered_extent *ordered;
|
|
btrfs_wait_ordered_range(inode, hole_start,
|
|
block_end - hole_start);
|
|
lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
|
|
ordered = btrfs_lookup_ordered_extent(inode, hole_start);
|
|
if (!ordered)
|
|
break;
|
|
unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
|
|
btrfs_put_ordered_extent(ordered);
|
|
}
|
|
|
|
trans = btrfs_start_transaction(root, 1);
|
|
btrfs_set_trans_block_group(trans, inode);
|
|
|
|
cur_offset = hole_start;
|
|
while (1) {
|
|
em = btrfs_get_extent(inode, NULL, 0, cur_offset,
|
|
block_end - cur_offset, 0);
|
|
BUG_ON(IS_ERR(em) || !em);
|
|
last_byte = min(extent_map_end(em), block_end);
|
|
last_byte = (last_byte + mask) & ~mask;
|
|
if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
|
|
u64 hint_byte = 0;
|
|
hole_size = last_byte - cur_offset;
|
|
err = btrfs_drop_extents(trans, root, inode,
|
|
cur_offset,
|
|
cur_offset + hole_size,
|
|
cur_offset, &hint_byte);
|
|
if (err)
|
|
break;
|
|
err = btrfs_insert_file_extent(trans, root,
|
|
inode->i_ino, cur_offset, 0,
|
|
0, hole_size, 0, hole_size,
|
|
0, 0, 0);
|
|
btrfs_drop_extent_cache(inode, hole_start,
|
|
last_byte - 1, 0);
|
|
}
|
|
free_extent_map(em);
|
|
cur_offset = last_byte;
|
|
if (err || cur_offset >= block_end)
|
|
break;
|
|
}
|
|
|
|
btrfs_end_transaction(trans, root);
|
|
unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
|
|
return err;
|
|
}
|
|
|
|
static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
|
|
{
|
|
struct inode *inode = dentry->d_inode;
|
|
int err;
|
|
|
|
err = inode_change_ok(inode, attr);
|
|
if (err)
|
|
return err;
|
|
|
|
if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
|
|
if (attr->ia_size > inode->i_size) {
|
|
err = btrfs_cont_expand(inode, attr->ia_size);
|
|
if (err)
|
|
return err;
|
|
} else if (inode->i_size > 0 &&
|
|
attr->ia_size == 0) {
|
|
|
|
/* we're truncating a file that used to have good
|
|
* data down to zero. Make sure it gets into
|
|
* the ordered flush list so that any new writes
|
|
* get down to disk quickly.
|
|
*/
|
|
BTRFS_I(inode)->ordered_data_close = 1;
|
|
}
|
|
}
|
|
|
|
err = inode_setattr(inode, attr);
|
|
|
|
if (!err && ((attr->ia_valid & ATTR_MODE)))
|
|
err = btrfs_acl_chmod(inode);
|
|
return err;
|
|
}
|
|
|
|
void btrfs_delete_inode(struct inode *inode)
|
|
{
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
unsigned long nr;
|
|
int ret;
|
|
|
|
truncate_inode_pages(&inode->i_data, 0);
|
|
if (is_bad_inode(inode)) {
|
|
btrfs_orphan_del(NULL, inode);
|
|
goto no_delete;
|
|
}
|
|
btrfs_wait_ordered_range(inode, 0, (u64)-1);
|
|
|
|
btrfs_i_size_write(inode, 0);
|
|
trans = btrfs_join_transaction(root, 1);
|
|
|
|
btrfs_set_trans_block_group(trans, inode);
|
|
ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
|
|
if (ret) {
|
|
btrfs_orphan_del(NULL, inode);
|
|
goto no_delete_lock;
|
|
}
|
|
|
|
btrfs_orphan_del(trans, inode);
|
|
|
|
nr = trans->blocks_used;
|
|
clear_inode(inode);
|
|
|
|
btrfs_end_transaction(trans, root);
|
|
btrfs_btree_balance_dirty(root, nr);
|
|
return;
|
|
|
|
no_delete_lock:
|
|
nr = trans->blocks_used;
|
|
btrfs_end_transaction(trans, root);
|
|
btrfs_btree_balance_dirty(root, nr);
|
|
no_delete:
|
|
clear_inode(inode);
|
|
}
|
|
|
|
/*
|
|
* this returns the key found in the dir entry in the location pointer.
|
|
* If no dir entries were found, location->objectid is 0.
|
|
*/
|
|
static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
|
|
struct btrfs_key *location)
|
|
{
|
|
const char *name = dentry->d_name.name;
|
|
int namelen = dentry->d_name.len;
|
|
struct btrfs_dir_item *di;
|
|
struct btrfs_path *path;
|
|
struct btrfs_root *root = BTRFS_I(dir)->root;
|
|
int ret = 0;
|
|
|
|
path = btrfs_alloc_path();
|
|
BUG_ON(!path);
|
|
|
|
di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
|
|
namelen, 0);
|
|
if (IS_ERR(di))
|
|
ret = PTR_ERR(di);
|
|
|
|
if (!di || IS_ERR(di))
|
|
goto out_err;
|
|
|
|
btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
out_err:
|
|
location->objectid = 0;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* when we hit a tree root in a directory, the btrfs part of the inode
|
|
* needs to be changed to reflect the root directory of the tree root. This
|
|
* is kind of like crossing a mount point.
|
|
*/
|
|
static int fixup_tree_root_location(struct btrfs_root *root,
|
|
struct btrfs_key *location,
|
|
struct btrfs_root **sub_root,
|
|
struct dentry *dentry)
|
|
{
|
|
struct btrfs_root_item *ri;
|
|
|
|
if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
|
|
return 0;
|
|
if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
|
|
return 0;
|
|
|
|
*sub_root = btrfs_read_fs_root(root->fs_info, location,
|
|
dentry->d_name.name,
|
|
dentry->d_name.len);
|
|
if (IS_ERR(*sub_root))
|
|
return PTR_ERR(*sub_root);
|
|
|
|
ri = &(*sub_root)->root_item;
|
|
location->objectid = btrfs_root_dirid(ri);
|
|
btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
|
|
location->offset = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static noinline void init_btrfs_i(struct inode *inode)
|
|
{
|
|
struct btrfs_inode *bi = BTRFS_I(inode);
|
|
|
|
bi->i_acl = NULL;
|
|
bi->i_default_acl = NULL;
|
|
|
|
bi->generation = 0;
|
|
bi->sequence = 0;
|
|
bi->last_trans = 0;
|
|
bi->logged_trans = 0;
|
|
bi->delalloc_bytes = 0;
|
|
bi->reserved_bytes = 0;
|
|
bi->disk_i_size = 0;
|
|
bi->flags = 0;
|
|
bi->index_cnt = (u64)-1;
|
|
bi->last_unlink_trans = 0;
|
|
extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
|
|
extent_io_tree_init(&BTRFS_I(inode)->io_tree,
|
|
inode->i_mapping, GFP_NOFS);
|
|
extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
|
|
inode->i_mapping, GFP_NOFS);
|
|
INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
|
|
INIT_LIST_HEAD(&BTRFS_I(inode)->ordered_operations);
|
|
btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
|
|
mutex_init(&BTRFS_I(inode)->extent_mutex);
|
|
mutex_init(&BTRFS_I(inode)->log_mutex);
|
|
}
|
|
|
|
static int btrfs_init_locked_inode(struct inode *inode, void *p)
|
|
{
|
|
struct btrfs_iget_args *args = p;
|
|
inode->i_ino = args->ino;
|
|
init_btrfs_i(inode);
|
|
BTRFS_I(inode)->root = args->root;
|
|
btrfs_set_inode_space_info(args->root, inode);
|
|
return 0;
|
|
}
|
|
|
|
static int btrfs_find_actor(struct inode *inode, void *opaque)
|
|
{
|
|
struct btrfs_iget_args *args = opaque;
|
|
return args->ino == inode->i_ino &&
|
|
args->root == BTRFS_I(inode)->root;
|
|
}
|
|
|
|
struct inode *btrfs_ilookup(struct super_block *s, u64 objectid,
|
|
struct btrfs_root *root, int wait)
|
|
{
|
|
struct inode *inode;
|
|
struct btrfs_iget_args args;
|
|
args.ino = objectid;
|
|
args.root = root;
|
|
|
|
if (wait) {
|
|
inode = ilookup5(s, objectid, btrfs_find_actor,
|
|
(void *)&args);
|
|
} else {
|
|
inode = ilookup5_nowait(s, objectid, btrfs_find_actor,
|
|
(void *)&args);
|
|
}
|
|
return inode;
|
|
}
|
|
|
|
struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid,
|
|
struct btrfs_root *root)
|
|
{
|
|
struct inode *inode;
|
|
struct btrfs_iget_args args;
|
|
args.ino = objectid;
|
|
args.root = root;
|
|
|
|
inode = iget5_locked(s, objectid, btrfs_find_actor,
|
|
btrfs_init_locked_inode,
|
|
(void *)&args);
|
|
return inode;
|
|
}
|
|
|
|
/* Get an inode object given its location and corresponding root.
|
|
* Returns in *is_new if the inode was read from disk
|
|
*/
|
|
struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
|
|
struct btrfs_root *root, int *is_new)
|
|
{
|
|
struct inode *inode;
|
|
|
|
inode = btrfs_iget_locked(s, location->objectid, root);
|
|
if (!inode)
|
|
return ERR_PTR(-EACCES);
|
|
|
|
if (inode->i_state & I_NEW) {
|
|
BTRFS_I(inode)->root = root;
|
|
memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
|
|
btrfs_read_locked_inode(inode);
|
|
unlock_new_inode(inode);
|
|
if (is_new)
|
|
*is_new = 1;
|
|
} else {
|
|
if (is_new)
|
|
*is_new = 0;
|
|
}
|
|
|
|
return inode;
|
|
}
|
|
|
|
struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
|
|
{
|
|
struct inode *inode;
|
|
struct btrfs_inode *bi = BTRFS_I(dir);
|
|
struct btrfs_root *root = bi->root;
|
|
struct btrfs_root *sub_root = root;
|
|
struct btrfs_key location;
|
|
int ret, new;
|
|
|
|
if (dentry->d_name.len > BTRFS_NAME_LEN)
|
|
return ERR_PTR(-ENAMETOOLONG);
|
|
|
|
ret = btrfs_inode_by_name(dir, dentry, &location);
|
|
|
|
if (ret < 0)
|
|
return ERR_PTR(ret);
|
|
|
|
inode = NULL;
|
|
if (location.objectid) {
|
|
ret = fixup_tree_root_location(root, &location, &sub_root,
|
|
dentry);
|
|
if (ret < 0)
|
|
return ERR_PTR(ret);
|
|
if (ret > 0)
|
|
return ERR_PTR(-ENOENT);
|
|
inode = btrfs_iget(dir->i_sb, &location, sub_root, &new);
|
|
if (IS_ERR(inode))
|
|
return ERR_CAST(inode);
|
|
}
|
|
return inode;
|
|
}
|
|
|
|
static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
|
|
struct nameidata *nd)
|
|
{
|
|
struct inode *inode;
|
|
|
|
if (dentry->d_name.len > BTRFS_NAME_LEN)
|
|
return ERR_PTR(-ENAMETOOLONG);
|
|
|
|
inode = btrfs_lookup_dentry(dir, dentry);
|
|
if (IS_ERR(inode))
|
|
return ERR_CAST(inode);
|
|
|
|
return d_splice_alias(inode, dentry);
|
|
}
|
|
|
|
static unsigned char btrfs_filetype_table[] = {
|
|
DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
|
|
};
|
|
|
|
static int btrfs_real_readdir(struct file *filp, void *dirent,
|
|
filldir_t filldir)
|
|
{
|
|
struct inode *inode = filp->f_dentry->d_inode;
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_item *item;
|
|
struct btrfs_dir_item *di;
|
|
struct btrfs_key key;
|
|
struct btrfs_key found_key;
|
|
struct btrfs_path *path;
|
|
int ret;
|
|
u32 nritems;
|
|
struct extent_buffer *leaf;
|
|
int slot;
|
|
int advance;
|
|
unsigned char d_type;
|
|
int over = 0;
|
|
u32 di_cur;
|
|
u32 di_total;
|
|
u32 di_len;
|
|
int key_type = BTRFS_DIR_INDEX_KEY;
|
|
char tmp_name[32];
|
|
char *name_ptr;
|
|
int name_len;
|
|
|
|
/* FIXME, use a real flag for deciding about the key type */
|
|
if (root->fs_info->tree_root == root)
|
|
key_type = BTRFS_DIR_ITEM_KEY;
|
|
|
|
/* special case for "." */
|
|
if (filp->f_pos == 0) {
|
|
over = filldir(dirent, ".", 1,
|
|
1, inode->i_ino,
|
|
DT_DIR);
|
|
if (over)
|
|
return 0;
|
|
filp->f_pos = 1;
|
|
}
|
|
/* special case for .., just use the back ref */
|
|
if (filp->f_pos == 1) {
|
|
u64 pino = parent_ino(filp->f_path.dentry);
|
|
over = filldir(dirent, "..", 2,
|
|
2, pino, DT_DIR);
|
|
if (over)
|
|
return 0;
|
|
filp->f_pos = 2;
|
|
}
|
|
path = btrfs_alloc_path();
|
|
path->reada = 2;
|
|
|
|
btrfs_set_key_type(&key, key_type);
|
|
key.offset = filp->f_pos;
|
|
key.objectid = inode->i_ino;
|
|
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto err;
|
|
advance = 0;
|
|
|
|
while (1) {
|
|
leaf = path->nodes[0];
|
|
nritems = btrfs_header_nritems(leaf);
|
|
slot = path->slots[0];
|
|
if (advance || slot >= nritems) {
|
|
if (slot >= nritems - 1) {
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret)
|
|
break;
|
|
leaf = path->nodes[0];
|
|
nritems = btrfs_header_nritems(leaf);
|
|
slot = path->slots[0];
|
|
} else {
|
|
slot++;
|
|
path->slots[0]++;
|
|
}
|
|
}
|
|
|
|
advance = 1;
|
|
item = btrfs_item_nr(leaf, slot);
|
|
btrfs_item_key_to_cpu(leaf, &found_key, slot);
|
|
|
|
if (found_key.objectid != key.objectid)
|
|
break;
|
|
if (btrfs_key_type(&found_key) != key_type)
|
|
break;
|
|
if (found_key.offset < filp->f_pos)
|
|
continue;
|
|
|
|
filp->f_pos = found_key.offset;
|
|
|
|
di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
|
|
di_cur = 0;
|
|
di_total = btrfs_item_size(leaf, item);
|
|
|
|
while (di_cur < di_total) {
|
|
struct btrfs_key location;
|
|
|
|
name_len = btrfs_dir_name_len(leaf, di);
|
|
if (name_len <= sizeof(tmp_name)) {
|
|
name_ptr = tmp_name;
|
|
} else {
|
|
name_ptr = kmalloc(name_len, GFP_NOFS);
|
|
if (!name_ptr) {
|
|
ret = -ENOMEM;
|
|
goto err;
|
|
}
|
|
}
|
|
read_extent_buffer(leaf, name_ptr,
|
|
(unsigned long)(di + 1), name_len);
|
|
|
|
d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
|
|
btrfs_dir_item_key_to_cpu(leaf, di, &location);
|
|
|
|
/* is this a reference to our own snapshot? If so
|
|
* skip it
|
|
*/
|
|
if (location.type == BTRFS_ROOT_ITEM_KEY &&
|
|
location.objectid == root->root_key.objectid) {
|
|
over = 0;
|
|
goto skip;
|
|
}
|
|
over = filldir(dirent, name_ptr, name_len,
|
|
found_key.offset, location.objectid,
|
|
d_type);
|
|
|
|
skip:
|
|
if (name_ptr != tmp_name)
|
|
kfree(name_ptr);
|
|
|
|
if (over)
|
|
goto nopos;
|
|
di_len = btrfs_dir_name_len(leaf, di) +
|
|
btrfs_dir_data_len(leaf, di) + sizeof(*di);
|
|
di_cur += di_len;
|
|
di = (struct btrfs_dir_item *)((char *)di + di_len);
|
|
}
|
|
}
|
|
|
|
/* Reached end of directory/root. Bump pos past the last item. */
|
|
if (key_type == BTRFS_DIR_INDEX_KEY)
|
|
filp->f_pos = INT_LIMIT(off_t);
|
|
else
|
|
filp->f_pos++;
|
|
nopos:
|
|
ret = 0;
|
|
err:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_write_inode(struct inode *inode, int wait)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_trans_handle *trans;
|
|
int ret = 0;
|
|
|
|
if (root->fs_info->btree_inode == inode)
|
|
return 0;
|
|
|
|
if (wait) {
|
|
trans = btrfs_join_transaction(root, 1);
|
|
btrfs_set_trans_block_group(trans, inode);
|
|
ret = btrfs_commit_transaction(trans, root);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This is somewhat expensive, updating the tree every time the
|
|
* inode changes. But, it is most likely to find the inode in cache.
|
|
* FIXME, needs more benchmarking...there are no reasons other than performance
|
|
* to keep or drop this code.
|
|
*/
|
|
void btrfs_dirty_inode(struct inode *inode)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_trans_handle *trans;
|
|
|
|
trans = btrfs_join_transaction(root, 1);
|
|
btrfs_set_trans_block_group(trans, inode);
|
|
btrfs_update_inode(trans, root, inode);
|
|
btrfs_end_transaction(trans, root);
|
|
}
|
|
|
|
/*
|
|
* find the highest existing sequence number in a directory
|
|
* and then set the in-memory index_cnt variable to reflect
|
|
* free sequence numbers
|
|
*/
|
|
static int btrfs_set_inode_index_count(struct inode *inode)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_key key, found_key;
|
|
struct btrfs_path *path;
|
|
struct extent_buffer *leaf;
|
|
int ret;
|
|
|
|
key.objectid = inode->i_ino;
|
|
btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
|
|
key.offset = (u64)-1;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto out;
|
|
/* FIXME: we should be able to handle this */
|
|
if (ret == 0)
|
|
goto out;
|
|
ret = 0;
|
|
|
|
/*
|
|
* MAGIC NUMBER EXPLANATION:
|
|
* since we search a directory based on f_pos we have to start at 2
|
|
* since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
|
|
* else has to start at 2
|
|
*/
|
|
if (path->slots[0] == 0) {
|
|
BTRFS_I(inode)->index_cnt = 2;
|
|
goto out;
|
|
}
|
|
|
|
path->slots[0]--;
|
|
|
|
leaf = path->nodes[0];
|
|
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
|
|
|
|
if (found_key.objectid != inode->i_ino ||
|
|
btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
|
|
BTRFS_I(inode)->index_cnt = 2;
|
|
goto out;
|
|
}
|
|
|
|
BTRFS_I(inode)->index_cnt = found_key.offset + 1;
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* helper to find a free sequence number in a given directory. This current
|
|
* code is very simple, later versions will do smarter things in the btree
|
|
*/
|
|
int btrfs_set_inode_index(struct inode *dir, u64 *index)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (BTRFS_I(dir)->index_cnt == (u64)-1) {
|
|
ret = btrfs_set_inode_index_count(dir);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
*index = BTRFS_I(dir)->index_cnt;
|
|
BTRFS_I(dir)->index_cnt++;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct inode *dir,
|
|
const char *name, int name_len,
|
|
u64 ref_objectid, u64 objectid,
|
|
u64 alloc_hint, int mode, u64 *index)
|
|
{
|
|
struct inode *inode;
|
|
struct btrfs_inode_item *inode_item;
|
|
struct btrfs_key *location;
|
|
struct btrfs_path *path;
|
|
struct btrfs_inode_ref *ref;
|
|
struct btrfs_key key[2];
|
|
u32 sizes[2];
|
|
unsigned long ptr;
|
|
int ret;
|
|
int owner;
|
|
|
|
path = btrfs_alloc_path();
|
|
BUG_ON(!path);
|
|
|
|
inode = new_inode(root->fs_info->sb);
|
|
if (!inode)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
if (dir) {
|
|
ret = btrfs_set_inode_index(dir, index);
|
|
if (ret) {
|
|
iput(inode);
|
|
return ERR_PTR(ret);
|
|
}
|
|
}
|
|
/*
|
|
* index_cnt is ignored for everything but a dir,
|
|
* btrfs_get_inode_index_count has an explanation for the magic
|
|
* number
|
|
*/
|
|
init_btrfs_i(inode);
|
|
BTRFS_I(inode)->index_cnt = 2;
|
|
BTRFS_I(inode)->root = root;
|
|
BTRFS_I(inode)->generation = trans->transid;
|
|
btrfs_set_inode_space_info(root, inode);
|
|
|
|
if (mode & S_IFDIR)
|
|
owner = 0;
|
|
else
|
|
owner = 1;
|
|
BTRFS_I(inode)->block_group =
|
|
btrfs_find_block_group(root, 0, alloc_hint, owner);
|
|
if ((mode & S_IFREG)) {
|
|
if (btrfs_test_opt(root, NODATASUM))
|
|
btrfs_set_flag(inode, NODATASUM);
|
|
if (btrfs_test_opt(root, NODATACOW))
|
|
btrfs_set_flag(inode, NODATACOW);
|
|
}
|
|
|
|
key[0].objectid = objectid;
|
|
btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
|
|
key[0].offset = 0;
|
|
|
|
key[1].objectid = objectid;
|
|
btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
|
|
key[1].offset = ref_objectid;
|
|
|
|
sizes[0] = sizeof(struct btrfs_inode_item);
|
|
sizes[1] = name_len + sizeof(*ref);
|
|
|
|
path->leave_spinning = 1;
|
|
ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
|
|
if (ret != 0)
|
|
goto fail;
|
|
|
|
if (objectid > root->highest_inode)
|
|
root->highest_inode = objectid;
|
|
|
|
inode->i_uid = current_fsuid();
|
|
|
|
if (dir && (dir->i_mode & S_ISGID)) {
|
|
inode->i_gid = dir->i_gid;
|
|
if (S_ISDIR(mode))
|
|
mode |= S_ISGID;
|
|
} else
|
|
inode->i_gid = current_fsgid();
|
|
|
|
inode->i_mode = mode;
|
|
inode->i_ino = objectid;
|
|
inode_set_bytes(inode, 0);
|
|
inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
|
|
inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
|
|
struct btrfs_inode_item);
|
|
fill_inode_item(trans, path->nodes[0], inode_item, inode);
|
|
|
|
ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
|
|
struct btrfs_inode_ref);
|
|
btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
|
|
btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
|
|
ptr = (unsigned long)(ref + 1);
|
|
write_extent_buffer(path->nodes[0], name, ptr, name_len);
|
|
|
|
btrfs_mark_buffer_dirty(path->nodes[0]);
|
|
btrfs_free_path(path);
|
|
|
|
location = &BTRFS_I(inode)->location;
|
|
location->objectid = objectid;
|
|
location->offset = 0;
|
|
btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
|
|
|
|
insert_inode_hash(inode);
|
|
return inode;
|
|
fail:
|
|
if (dir)
|
|
BTRFS_I(dir)->index_cnt--;
|
|
btrfs_free_path(path);
|
|
iput(inode);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
static inline u8 btrfs_inode_type(struct inode *inode)
|
|
{
|
|
return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
|
|
}
|
|
|
|
/*
|
|
* utility function to add 'inode' into 'parent_inode' with
|
|
* a give name and a given sequence number.
|
|
* if 'add_backref' is true, also insert a backref from the
|
|
* inode to the parent directory.
|
|
*/
|
|
int btrfs_add_link(struct btrfs_trans_handle *trans,
|
|
struct inode *parent_inode, struct inode *inode,
|
|
const char *name, int name_len, int add_backref, u64 index)
|
|
{
|
|
int ret;
|
|
struct btrfs_key key;
|
|
struct btrfs_root *root = BTRFS_I(parent_inode)->root;
|
|
|
|
key.objectid = inode->i_ino;
|
|
btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
|
|
key.offset = 0;
|
|
|
|
ret = btrfs_insert_dir_item(trans, root, name, name_len,
|
|
parent_inode->i_ino,
|
|
&key, btrfs_inode_type(inode),
|
|
index);
|
|
if (ret == 0) {
|
|
if (add_backref) {
|
|
ret = btrfs_insert_inode_ref(trans, root,
|
|
name, name_len,
|
|
inode->i_ino,
|
|
parent_inode->i_ino,
|
|
index);
|
|
}
|
|
btrfs_i_size_write(parent_inode, parent_inode->i_size +
|
|
name_len * 2);
|
|
parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
|
|
ret = btrfs_update_inode(trans, root, parent_inode);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
|
|
struct dentry *dentry, struct inode *inode,
|
|
int backref, u64 index)
|
|
{
|
|
int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
|
|
inode, dentry->d_name.name,
|
|
dentry->d_name.len, backref, index);
|
|
if (!err) {
|
|
d_instantiate(dentry, inode);
|
|
return 0;
|
|
}
|
|
if (err > 0)
|
|
err = -EEXIST;
|
|
return err;
|
|
}
|
|
|
|
static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
|
|
int mode, dev_t rdev)
|
|
{
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_root *root = BTRFS_I(dir)->root;
|
|
struct inode *inode = NULL;
|
|
int err;
|
|
int drop_inode = 0;
|
|
u64 objectid;
|
|
unsigned long nr = 0;
|
|
u64 index = 0;
|
|
|
|
if (!new_valid_dev(rdev))
|
|
return -EINVAL;
|
|
|
|
err = btrfs_check_metadata_free_space(root);
|
|
if (err)
|
|
goto fail;
|
|
|
|
trans = btrfs_start_transaction(root, 1);
|
|
btrfs_set_trans_block_group(trans, dir);
|
|
|
|
err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
|
|
if (err) {
|
|
err = -ENOSPC;
|
|
goto out_unlock;
|
|
}
|
|
|
|
inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
|
|
dentry->d_name.len,
|
|
dentry->d_parent->d_inode->i_ino, objectid,
|
|
BTRFS_I(dir)->block_group, mode, &index);
|
|
err = PTR_ERR(inode);
|
|
if (IS_ERR(inode))
|
|
goto out_unlock;
|
|
|
|
err = btrfs_init_inode_security(inode, dir);
|
|
if (err) {
|
|
drop_inode = 1;
|
|
goto out_unlock;
|
|
}
|
|
|
|
btrfs_set_trans_block_group(trans, inode);
|
|
err = btrfs_add_nondir(trans, dentry, inode, 0, index);
|
|
if (err)
|
|
drop_inode = 1;
|
|
else {
|
|
inode->i_op = &btrfs_special_inode_operations;
|
|
init_special_inode(inode, inode->i_mode, rdev);
|
|
btrfs_update_inode(trans, root, inode);
|
|
}
|
|
dir->i_sb->s_dirt = 1;
|
|
btrfs_update_inode_block_group(trans, inode);
|
|
btrfs_update_inode_block_group(trans, dir);
|
|
out_unlock:
|
|
nr = trans->blocks_used;
|
|
btrfs_end_transaction_throttle(trans, root);
|
|
fail:
|
|
if (drop_inode) {
|
|
inode_dec_link_count(inode);
|
|
iput(inode);
|
|
}
|
|
btrfs_btree_balance_dirty(root, nr);
|
|
return err;
|
|
}
|
|
|
|
static int btrfs_create(struct inode *dir, struct dentry *dentry,
|
|
int mode, struct nameidata *nd)
|
|
{
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_root *root = BTRFS_I(dir)->root;
|
|
struct inode *inode = NULL;
|
|
int err;
|
|
int drop_inode = 0;
|
|
unsigned long nr = 0;
|
|
u64 objectid;
|
|
u64 index = 0;
|
|
|
|
err = btrfs_check_metadata_free_space(root);
|
|
if (err)
|
|
goto fail;
|
|
trans = btrfs_start_transaction(root, 1);
|
|
btrfs_set_trans_block_group(trans, dir);
|
|
|
|
err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
|
|
if (err) {
|
|
err = -ENOSPC;
|
|
goto out_unlock;
|
|
}
|
|
|
|
inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
|
|
dentry->d_name.len,
|
|
dentry->d_parent->d_inode->i_ino,
|
|
objectid, BTRFS_I(dir)->block_group, mode,
|
|
&index);
|
|
err = PTR_ERR(inode);
|
|
if (IS_ERR(inode))
|
|
goto out_unlock;
|
|
|
|
err = btrfs_init_inode_security(inode, dir);
|
|
if (err) {
|
|
drop_inode = 1;
|
|
goto out_unlock;
|
|
}
|
|
|
|
btrfs_set_trans_block_group(trans, inode);
|
|
err = btrfs_add_nondir(trans, dentry, inode, 0, index);
|
|
if (err)
|
|
drop_inode = 1;
|
|
else {
|
|
inode->i_mapping->a_ops = &btrfs_aops;
|
|
inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
|
|
inode->i_fop = &btrfs_file_operations;
|
|
inode->i_op = &btrfs_file_inode_operations;
|
|
BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
|
|
}
|
|
dir->i_sb->s_dirt = 1;
|
|
btrfs_update_inode_block_group(trans, inode);
|
|
btrfs_update_inode_block_group(trans, dir);
|
|
out_unlock:
|
|
nr = trans->blocks_used;
|
|
btrfs_end_transaction_throttle(trans, root);
|
|
fail:
|
|
if (drop_inode) {
|
|
inode_dec_link_count(inode);
|
|
iput(inode);
|
|
}
|
|
btrfs_btree_balance_dirty(root, nr);
|
|
return err;
|
|
}
|
|
|
|
static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
|
|
struct dentry *dentry)
|
|
{
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_root *root = BTRFS_I(dir)->root;
|
|
struct inode *inode = old_dentry->d_inode;
|
|
u64 index;
|
|
unsigned long nr = 0;
|
|
int err;
|
|
int drop_inode = 0;
|
|
|
|
if (inode->i_nlink == 0)
|
|
return -ENOENT;
|
|
|
|
btrfs_inc_nlink(inode);
|
|
err = btrfs_check_metadata_free_space(root);
|
|
if (err)
|
|
goto fail;
|
|
err = btrfs_set_inode_index(dir, &index);
|
|
if (err)
|
|
goto fail;
|
|
|
|
trans = btrfs_start_transaction(root, 1);
|
|
|
|
btrfs_set_trans_block_group(trans, dir);
|
|
atomic_inc(&inode->i_count);
|
|
|
|
err = btrfs_add_nondir(trans, dentry, inode, 1, index);
|
|
|
|
if (err)
|
|
drop_inode = 1;
|
|
|
|
dir->i_sb->s_dirt = 1;
|
|
btrfs_update_inode_block_group(trans, dir);
|
|
err = btrfs_update_inode(trans, root, inode);
|
|
|
|
if (err)
|
|
drop_inode = 1;
|
|
|
|
nr = trans->blocks_used;
|
|
|
|
btrfs_log_new_name(trans, inode, NULL, dentry->d_parent);
|
|
btrfs_end_transaction_throttle(trans, root);
|
|
fail:
|
|
if (drop_inode) {
|
|
inode_dec_link_count(inode);
|
|
iput(inode);
|
|
}
|
|
btrfs_btree_balance_dirty(root, nr);
|
|
return err;
|
|
}
|
|
|
|
static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
|
|
{
|
|
struct inode *inode = NULL;
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_root *root = BTRFS_I(dir)->root;
|
|
int err = 0;
|
|
int drop_on_err = 0;
|
|
u64 objectid = 0;
|
|
u64 index = 0;
|
|
unsigned long nr = 1;
|
|
|
|
err = btrfs_check_metadata_free_space(root);
|
|
if (err)
|
|
goto out_unlock;
|
|
|
|
trans = btrfs_start_transaction(root, 1);
|
|
btrfs_set_trans_block_group(trans, dir);
|
|
|
|
if (IS_ERR(trans)) {
|
|
err = PTR_ERR(trans);
|
|
goto out_unlock;
|
|
}
|
|
|
|
err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
|
|
if (err) {
|
|
err = -ENOSPC;
|
|
goto out_unlock;
|
|
}
|
|
|
|
inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
|
|
dentry->d_name.len,
|
|
dentry->d_parent->d_inode->i_ino, objectid,
|
|
BTRFS_I(dir)->block_group, S_IFDIR | mode,
|
|
&index);
|
|
if (IS_ERR(inode)) {
|
|
err = PTR_ERR(inode);
|
|
goto out_fail;
|
|
}
|
|
|
|
drop_on_err = 1;
|
|
|
|
err = btrfs_init_inode_security(inode, dir);
|
|
if (err)
|
|
goto out_fail;
|
|
|
|
inode->i_op = &btrfs_dir_inode_operations;
|
|
inode->i_fop = &btrfs_dir_file_operations;
|
|
btrfs_set_trans_block_group(trans, inode);
|
|
|
|
btrfs_i_size_write(inode, 0);
|
|
err = btrfs_update_inode(trans, root, inode);
|
|
if (err)
|
|
goto out_fail;
|
|
|
|
err = btrfs_add_link(trans, dentry->d_parent->d_inode,
|
|
inode, dentry->d_name.name,
|
|
dentry->d_name.len, 0, index);
|
|
if (err)
|
|
goto out_fail;
|
|
|
|
d_instantiate(dentry, inode);
|
|
drop_on_err = 0;
|
|
dir->i_sb->s_dirt = 1;
|
|
btrfs_update_inode_block_group(trans, inode);
|
|
btrfs_update_inode_block_group(trans, dir);
|
|
|
|
out_fail:
|
|
nr = trans->blocks_used;
|
|
btrfs_end_transaction_throttle(trans, root);
|
|
|
|
out_unlock:
|
|
if (drop_on_err)
|
|
iput(inode);
|
|
btrfs_btree_balance_dirty(root, nr);
|
|
return err;
|
|
}
|
|
|
|
/* helper for btfs_get_extent. Given an existing extent in the tree,
|
|
* and an extent that you want to insert, deal with overlap and insert
|
|
* the new extent into the tree.
|
|
*/
|
|
static int merge_extent_mapping(struct extent_map_tree *em_tree,
|
|
struct extent_map *existing,
|
|
struct extent_map *em,
|
|
u64 map_start, u64 map_len)
|
|
{
|
|
u64 start_diff;
|
|
|
|
BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
|
|
start_diff = map_start - em->start;
|
|
em->start = map_start;
|
|
em->len = map_len;
|
|
if (em->block_start < EXTENT_MAP_LAST_BYTE &&
|
|
!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
|
|
em->block_start += start_diff;
|
|
em->block_len -= start_diff;
|
|
}
|
|
return add_extent_mapping(em_tree, em);
|
|
}
|
|
|
|
static noinline int uncompress_inline(struct btrfs_path *path,
|
|
struct inode *inode, struct page *page,
|
|
size_t pg_offset, u64 extent_offset,
|
|
struct btrfs_file_extent_item *item)
|
|
{
|
|
int ret;
|
|
struct extent_buffer *leaf = path->nodes[0];
|
|
char *tmp;
|
|
size_t max_size;
|
|
unsigned long inline_size;
|
|
unsigned long ptr;
|
|
|
|
WARN_ON(pg_offset != 0);
|
|
max_size = btrfs_file_extent_ram_bytes(leaf, item);
|
|
inline_size = btrfs_file_extent_inline_item_len(leaf,
|
|
btrfs_item_nr(leaf, path->slots[0]));
|
|
tmp = kmalloc(inline_size, GFP_NOFS);
|
|
ptr = btrfs_file_extent_inline_start(item);
|
|
|
|
read_extent_buffer(leaf, tmp, ptr, inline_size);
|
|
|
|
max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
|
|
ret = btrfs_zlib_decompress(tmp, page, extent_offset,
|
|
inline_size, max_size);
|
|
if (ret) {
|
|
char *kaddr = kmap_atomic(page, KM_USER0);
|
|
unsigned long copy_size = min_t(u64,
|
|
PAGE_CACHE_SIZE - pg_offset,
|
|
max_size - extent_offset);
|
|
memset(kaddr + pg_offset, 0, copy_size);
|
|
kunmap_atomic(kaddr, KM_USER0);
|
|
}
|
|
kfree(tmp);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* a bit scary, this does extent mapping from logical file offset to the disk.
|
|
* the ugly parts come from merging extents from the disk with the in-ram
|
|
* representation. This gets more complex because of the data=ordered code,
|
|
* where the in-ram extents might be locked pending data=ordered completion.
|
|
*
|
|
* This also copies inline extents directly into the page.
|
|
*/
|
|
|
|
struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
|
|
size_t pg_offset, u64 start, u64 len,
|
|
int create)
|
|
{
|
|
int ret;
|
|
int err = 0;
|
|
u64 bytenr;
|
|
u64 extent_start = 0;
|
|
u64 extent_end = 0;
|
|
u64 objectid = inode->i_ino;
|
|
u32 found_type;
|
|
struct btrfs_path *path = NULL;
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_file_extent_item *item;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_key found_key;
|
|
struct extent_map *em = NULL;
|
|
struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
|
|
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
|
|
struct btrfs_trans_handle *trans = NULL;
|
|
int compressed;
|
|
|
|
again:
|
|
spin_lock(&em_tree->lock);
|
|
em = lookup_extent_mapping(em_tree, start, len);
|
|
if (em)
|
|
em->bdev = root->fs_info->fs_devices->latest_bdev;
|
|
spin_unlock(&em_tree->lock);
|
|
|
|
if (em) {
|
|
if (em->start > start || em->start + em->len <= start)
|
|
free_extent_map(em);
|
|
else if (em->block_start == EXTENT_MAP_INLINE && page)
|
|
free_extent_map(em);
|
|
else
|
|
goto out;
|
|
}
|
|
em = alloc_extent_map(GFP_NOFS);
|
|
if (!em) {
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
em->bdev = root->fs_info->fs_devices->latest_bdev;
|
|
em->start = EXTENT_MAP_HOLE;
|
|
em->orig_start = EXTENT_MAP_HOLE;
|
|
em->len = (u64)-1;
|
|
em->block_len = (u64)-1;
|
|
|
|
if (!path) {
|
|
path = btrfs_alloc_path();
|
|
BUG_ON(!path);
|
|
}
|
|
|
|
ret = btrfs_lookup_file_extent(trans, root, path,
|
|
objectid, start, trans != NULL);
|
|
if (ret < 0) {
|
|
err = ret;
|
|
goto out;
|
|
}
|
|
|
|
if (ret != 0) {
|
|
if (path->slots[0] == 0)
|
|
goto not_found;
|
|
path->slots[0]--;
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
item = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_file_extent_item);
|
|
/* are we inside the extent that was found? */
|
|
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
|
|
found_type = btrfs_key_type(&found_key);
|
|
if (found_key.objectid != objectid ||
|
|
found_type != BTRFS_EXTENT_DATA_KEY) {
|
|
goto not_found;
|
|
}
|
|
|
|
found_type = btrfs_file_extent_type(leaf, item);
|
|
extent_start = found_key.offset;
|
|
compressed = btrfs_file_extent_compression(leaf, item);
|
|
if (found_type == BTRFS_FILE_EXTENT_REG ||
|
|
found_type == BTRFS_FILE_EXTENT_PREALLOC) {
|
|
extent_end = extent_start +
|
|
btrfs_file_extent_num_bytes(leaf, item);
|
|
} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
|
|
size_t size;
|
|
size = btrfs_file_extent_inline_len(leaf, item);
|
|
extent_end = (extent_start + size + root->sectorsize - 1) &
|
|
~((u64)root->sectorsize - 1);
|
|
}
|
|
|
|
if (start >= extent_end) {
|
|
path->slots[0]++;
|
|
if (path->slots[0] >= btrfs_header_nritems(leaf)) {
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret < 0) {
|
|
err = ret;
|
|
goto out;
|
|
}
|
|
if (ret > 0)
|
|
goto not_found;
|
|
leaf = path->nodes[0];
|
|
}
|
|
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
|
|
if (found_key.objectid != objectid ||
|
|
found_key.type != BTRFS_EXTENT_DATA_KEY)
|
|
goto not_found;
|
|
if (start + len <= found_key.offset)
|
|
goto not_found;
|
|
em->start = start;
|
|
em->len = found_key.offset - start;
|
|
goto not_found_em;
|
|
}
|
|
|
|
if (found_type == BTRFS_FILE_EXTENT_REG ||
|
|
found_type == BTRFS_FILE_EXTENT_PREALLOC) {
|
|
em->start = extent_start;
|
|
em->len = extent_end - extent_start;
|
|
em->orig_start = extent_start -
|
|
btrfs_file_extent_offset(leaf, item);
|
|
bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
|
|
if (bytenr == 0) {
|
|
em->block_start = EXTENT_MAP_HOLE;
|
|
goto insert;
|
|
}
|
|
if (compressed) {
|
|
set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
|
|
em->block_start = bytenr;
|
|
em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
|
|
item);
|
|
} else {
|
|
bytenr += btrfs_file_extent_offset(leaf, item);
|
|
em->block_start = bytenr;
|
|
em->block_len = em->len;
|
|
if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
|
|
set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
|
|
}
|
|
goto insert;
|
|
} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
|
|
unsigned long ptr;
|
|
char *map;
|
|
size_t size;
|
|
size_t extent_offset;
|
|
size_t copy_size;
|
|
|
|
em->block_start = EXTENT_MAP_INLINE;
|
|
if (!page || create) {
|
|
em->start = extent_start;
|
|
em->len = extent_end - extent_start;
|
|
goto out;
|
|
}
|
|
|
|
size = btrfs_file_extent_inline_len(leaf, item);
|
|
extent_offset = page_offset(page) + pg_offset - extent_start;
|
|
copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
|
|
size - extent_offset);
|
|
em->start = extent_start + extent_offset;
|
|
em->len = (copy_size + root->sectorsize - 1) &
|
|
~((u64)root->sectorsize - 1);
|
|
em->orig_start = EXTENT_MAP_INLINE;
|
|
if (compressed)
|
|
set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
|
|
ptr = btrfs_file_extent_inline_start(item) + extent_offset;
|
|
if (create == 0 && !PageUptodate(page)) {
|
|
if (btrfs_file_extent_compression(leaf, item) ==
|
|
BTRFS_COMPRESS_ZLIB) {
|
|
ret = uncompress_inline(path, inode, page,
|
|
pg_offset,
|
|
extent_offset, item);
|
|
BUG_ON(ret);
|
|
} else {
|
|
map = kmap(page);
|
|
read_extent_buffer(leaf, map + pg_offset, ptr,
|
|
copy_size);
|
|
kunmap(page);
|
|
}
|
|
flush_dcache_page(page);
|
|
} else if (create && PageUptodate(page)) {
|
|
if (!trans) {
|
|
kunmap(page);
|
|
free_extent_map(em);
|
|
em = NULL;
|
|
btrfs_release_path(root, path);
|
|
trans = btrfs_join_transaction(root, 1);
|
|
goto again;
|
|
}
|
|
map = kmap(page);
|
|
write_extent_buffer(leaf, map + pg_offset, ptr,
|
|
copy_size);
|
|
kunmap(page);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
}
|
|
set_extent_uptodate(io_tree, em->start,
|
|
extent_map_end(em) - 1, GFP_NOFS);
|
|
goto insert;
|
|
} else {
|
|
printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
|
|
WARN_ON(1);
|
|
}
|
|
not_found:
|
|
em->start = start;
|
|
em->len = len;
|
|
not_found_em:
|
|
em->block_start = EXTENT_MAP_HOLE;
|
|
set_bit(EXTENT_FLAG_VACANCY, &em->flags);
|
|
insert:
|
|
btrfs_release_path(root, path);
|
|
if (em->start > start || extent_map_end(em) <= start) {
|
|
printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
|
|
"[%llu %llu]\n", (unsigned long long)em->start,
|
|
(unsigned long long)em->len,
|
|
(unsigned long long)start,
|
|
(unsigned long long)len);
|
|
err = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
err = 0;
|
|
spin_lock(&em_tree->lock);
|
|
ret = add_extent_mapping(em_tree, em);
|
|
/* it is possible that someone inserted the extent into the tree
|
|
* while we had the lock dropped. It is also possible that
|
|
* an overlapping map exists in the tree
|
|
*/
|
|
if (ret == -EEXIST) {
|
|
struct extent_map *existing;
|
|
|
|
ret = 0;
|
|
|
|
existing = lookup_extent_mapping(em_tree, start, len);
|
|
if (existing && (existing->start > start ||
|
|
existing->start + existing->len <= start)) {
|
|
free_extent_map(existing);
|
|
existing = NULL;
|
|
}
|
|
if (!existing) {
|
|
existing = lookup_extent_mapping(em_tree, em->start,
|
|
em->len);
|
|
if (existing) {
|
|
err = merge_extent_mapping(em_tree, existing,
|
|
em, start,
|
|
root->sectorsize);
|
|
free_extent_map(existing);
|
|
if (err) {
|
|
free_extent_map(em);
|
|
em = NULL;
|
|
}
|
|
} else {
|
|
err = -EIO;
|
|
free_extent_map(em);
|
|
em = NULL;
|
|
}
|
|
} else {
|
|
free_extent_map(em);
|
|
em = existing;
|
|
err = 0;
|
|
}
|
|
}
|
|
spin_unlock(&em_tree->lock);
|
|
out:
|
|
if (path)
|
|
btrfs_free_path(path);
|
|
if (trans) {
|
|
ret = btrfs_end_transaction(trans, root);
|
|
if (!err)
|
|
err = ret;
|
|
}
|
|
if (err) {
|
|
free_extent_map(em);
|
|
WARN_ON(1);
|
|
return ERR_PTR(err);
|
|
}
|
|
return em;
|
|
}
|
|
|
|
static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
|
|
const struct iovec *iov, loff_t offset,
|
|
unsigned long nr_segs)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
|
|
__u64 start, __u64 len)
|
|
{
|
|
return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
|
|
}
|
|
|
|
int btrfs_readpage(struct file *file, struct page *page)
|
|
{
|
|
struct extent_io_tree *tree;
|
|
tree = &BTRFS_I(page->mapping->host)->io_tree;
|
|
return extent_read_full_page(tree, page, btrfs_get_extent);
|
|
}
|
|
|
|
static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
|
|
{
|
|
struct extent_io_tree *tree;
|
|
|
|
|
|
if (current->flags & PF_MEMALLOC) {
|
|
redirty_page_for_writepage(wbc, page);
|
|
unlock_page(page);
|
|
return 0;
|
|
}
|
|
tree = &BTRFS_I(page->mapping->host)->io_tree;
|
|
return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
|
|
}
|
|
|
|
int btrfs_writepages(struct address_space *mapping,
|
|
struct writeback_control *wbc)
|
|
{
|
|
struct extent_io_tree *tree;
|
|
|
|
tree = &BTRFS_I(mapping->host)->io_tree;
|
|
return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
|
|
}
|
|
|
|
static int
|
|
btrfs_readpages(struct file *file, struct address_space *mapping,
|
|
struct list_head *pages, unsigned nr_pages)
|
|
{
|
|
struct extent_io_tree *tree;
|
|
tree = &BTRFS_I(mapping->host)->io_tree;
|
|
return extent_readpages(tree, mapping, pages, nr_pages,
|
|
btrfs_get_extent);
|
|
}
|
|
static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
|
|
{
|
|
struct extent_io_tree *tree;
|
|
struct extent_map_tree *map;
|
|
int ret;
|
|
|
|
tree = &BTRFS_I(page->mapping->host)->io_tree;
|
|
map = &BTRFS_I(page->mapping->host)->extent_tree;
|
|
ret = try_release_extent_mapping(map, tree, page, gfp_flags);
|
|
if (ret == 1) {
|
|
ClearPagePrivate(page);
|
|
set_page_private(page, 0);
|
|
page_cache_release(page);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
|
|
{
|
|
if (PageWriteback(page) || PageDirty(page))
|
|
return 0;
|
|
return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
|
|
}
|
|
|
|
static void btrfs_invalidatepage(struct page *page, unsigned long offset)
|
|
{
|
|
struct extent_io_tree *tree;
|
|
struct btrfs_ordered_extent *ordered;
|
|
u64 page_start = page_offset(page);
|
|
u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
|
|
|
|
wait_on_page_writeback(page);
|
|
tree = &BTRFS_I(page->mapping->host)->io_tree;
|
|
if (offset) {
|
|
btrfs_releasepage(page, GFP_NOFS);
|
|
return;
|
|
}
|
|
|
|
lock_extent(tree, page_start, page_end, GFP_NOFS);
|
|
ordered = btrfs_lookup_ordered_extent(page->mapping->host,
|
|
page_offset(page));
|
|
if (ordered) {
|
|
/*
|
|
* IO on this page will never be started, so we need
|
|
* to account for any ordered extents now
|
|
*/
|
|
clear_extent_bit(tree, page_start, page_end,
|
|
EXTENT_DIRTY | EXTENT_DELALLOC |
|
|
EXTENT_LOCKED, 1, 0, GFP_NOFS);
|
|
btrfs_finish_ordered_io(page->mapping->host,
|
|
page_start, page_end);
|
|
btrfs_put_ordered_extent(ordered);
|
|
lock_extent(tree, page_start, page_end, GFP_NOFS);
|
|
}
|
|
clear_extent_bit(tree, page_start, page_end,
|
|
EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
|
|
EXTENT_ORDERED,
|
|
1, 1, GFP_NOFS);
|
|
__btrfs_releasepage(page, GFP_NOFS);
|
|
|
|
ClearPageChecked(page);
|
|
if (PagePrivate(page)) {
|
|
ClearPagePrivate(page);
|
|
set_page_private(page, 0);
|
|
page_cache_release(page);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* btrfs_page_mkwrite() is not allowed to change the file size as it gets
|
|
* called from a page fault handler when a page is first dirtied. Hence we must
|
|
* be careful to check for EOF conditions here. We set the page up correctly
|
|
* for a written page which means we get ENOSPC checking when writing into
|
|
* holes and correct delalloc and unwritten extent mapping on filesystems that
|
|
* support these features.
|
|
*
|
|
* We are not allowed to take the i_mutex here so we have to play games to
|
|
* protect against truncate races as the page could now be beyond EOF. Because
|
|
* vmtruncate() writes the inode size before removing pages, once we have the
|
|
* page lock we can determine safely if the page is beyond EOF. If it is not
|
|
* beyond EOF, then the page is guaranteed safe against truncation until we
|
|
* unlock the page.
|
|
*/
|
|
int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
|
|
{
|
|
struct page *page = vmf->page;
|
|
struct inode *inode = fdentry(vma->vm_file)->d_inode;
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
|
|
struct btrfs_ordered_extent *ordered;
|
|
char *kaddr;
|
|
unsigned long zero_start;
|
|
loff_t size;
|
|
int ret;
|
|
u64 page_start;
|
|
u64 page_end;
|
|
|
|
ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
|
|
if (ret) {
|
|
if (ret == -ENOMEM)
|
|
ret = VM_FAULT_OOM;
|
|
else /* -ENOSPC, -EIO, etc */
|
|
ret = VM_FAULT_SIGBUS;
|
|
goto out;
|
|
}
|
|
|
|
ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
|
|
again:
|
|
lock_page(page);
|
|
size = i_size_read(inode);
|
|
page_start = page_offset(page);
|
|
page_end = page_start + PAGE_CACHE_SIZE - 1;
|
|
|
|
if ((page->mapping != inode->i_mapping) ||
|
|
(page_start >= size)) {
|
|
btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
|
|
/* page got truncated out from underneath us */
|
|
goto out_unlock;
|
|
}
|
|
wait_on_page_writeback(page);
|
|
|
|
lock_extent(io_tree, page_start, page_end, GFP_NOFS);
|
|
set_page_extent_mapped(page);
|
|
|
|
/*
|
|
* we can't set the delalloc bits if there are pending ordered
|
|
* extents. Drop our locks and wait for them to finish
|
|
*/
|
|
ordered = btrfs_lookup_ordered_extent(inode, page_start);
|
|
if (ordered) {
|
|
unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
|
|
unlock_page(page);
|
|
btrfs_start_ordered_extent(inode, ordered, 1);
|
|
btrfs_put_ordered_extent(ordered);
|
|
goto again;
|
|
}
|
|
|
|
btrfs_set_extent_delalloc(inode, page_start, page_end);
|
|
ret = 0;
|
|
|
|
/* page is wholly or partially inside EOF */
|
|
if (page_start + PAGE_CACHE_SIZE > size)
|
|
zero_start = size & ~PAGE_CACHE_MASK;
|
|
else
|
|
zero_start = PAGE_CACHE_SIZE;
|
|
|
|
if (zero_start != PAGE_CACHE_SIZE) {
|
|
kaddr = kmap(page);
|
|
memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
|
|
flush_dcache_page(page);
|
|
kunmap(page);
|
|
}
|
|
ClearPageChecked(page);
|
|
set_page_dirty(page);
|
|
|
|
BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
|
|
unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
|
|
|
|
out_unlock:
|
|
unlock_page(page);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static void btrfs_truncate(struct inode *inode)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
int ret;
|
|
struct btrfs_trans_handle *trans;
|
|
unsigned long nr;
|
|
u64 mask = root->sectorsize - 1;
|
|
|
|
if (!S_ISREG(inode->i_mode))
|
|
return;
|
|
if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
|
|
return;
|
|
|
|
btrfs_truncate_page(inode->i_mapping, inode->i_size);
|
|
btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
|
|
|
|
trans = btrfs_start_transaction(root, 1);
|
|
|
|
/*
|
|
* setattr is responsible for setting the ordered_data_close flag,
|
|
* but that is only tested during the last file release. That
|
|
* could happen well after the next commit, leaving a great big
|
|
* window where new writes may get lost if someone chooses to write
|
|
* to this file after truncating to zero
|
|
*
|
|
* The inode doesn't have any dirty data here, and so if we commit
|
|
* this is a noop. If someone immediately starts writing to the inode
|
|
* it is very likely we'll catch some of their writes in this
|
|
* transaction, and the commit will find this file on the ordered
|
|
* data list with good things to send down.
|
|
*
|
|
* This is a best effort solution, there is still a window where
|
|
* using truncate to replace the contents of the file will
|
|
* end up with a zero length file after a crash.
|
|
*/
|
|
if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
|
|
btrfs_add_ordered_operation(trans, root, inode);
|
|
|
|
btrfs_set_trans_block_group(trans, inode);
|
|
btrfs_i_size_write(inode, inode->i_size);
|
|
|
|
ret = btrfs_orphan_add(trans, inode);
|
|
if (ret)
|
|
goto out;
|
|
/* FIXME, add redo link to tree so we don't leak on crash */
|
|
ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
|
|
BTRFS_EXTENT_DATA_KEY);
|
|
btrfs_update_inode(trans, root, inode);
|
|
|
|
ret = btrfs_orphan_del(trans, inode);
|
|
BUG_ON(ret);
|
|
|
|
out:
|
|
nr = trans->blocks_used;
|
|
ret = btrfs_end_transaction_throttle(trans, root);
|
|
BUG_ON(ret);
|
|
btrfs_btree_balance_dirty(root, nr);
|
|
}
|
|
|
|
/*
|
|
* create a new subvolume directory/inode (helper for the ioctl).
|
|
*/
|
|
int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *new_root, struct dentry *dentry,
|
|
u64 new_dirid, u64 alloc_hint)
|
|
{
|
|
struct inode *inode;
|
|
int error;
|
|
u64 index = 0;
|
|
|
|
inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
|
|
new_dirid, alloc_hint, S_IFDIR | 0700, &index);
|
|
if (IS_ERR(inode))
|
|
return PTR_ERR(inode);
|
|
inode->i_op = &btrfs_dir_inode_operations;
|
|
inode->i_fop = &btrfs_dir_file_operations;
|
|
|
|
inode->i_nlink = 1;
|
|
btrfs_i_size_write(inode, 0);
|
|
|
|
error = btrfs_update_inode(trans, new_root, inode);
|
|
if (error)
|
|
return error;
|
|
|
|
d_instantiate(dentry, inode);
|
|
return 0;
|
|
}
|
|
|
|
/* helper function for file defrag and space balancing. This
|
|
* forces readahead on a given range of bytes in an inode
|
|
*/
|
|
unsigned long btrfs_force_ra(struct address_space *mapping,
|
|
struct file_ra_state *ra, struct file *file,
|
|
pgoff_t offset, pgoff_t last_index)
|
|
{
|
|
pgoff_t req_size = last_index - offset + 1;
|
|
|
|
page_cache_sync_readahead(mapping, ra, file, offset, req_size);
|
|
return offset + req_size;
|
|
}
|
|
|
|
struct inode *btrfs_alloc_inode(struct super_block *sb)
|
|
{
|
|
struct btrfs_inode *ei;
|
|
|
|
ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
|
|
if (!ei)
|
|
return NULL;
|
|
ei->last_trans = 0;
|
|
ei->logged_trans = 0;
|
|
btrfs_ordered_inode_tree_init(&ei->ordered_tree);
|
|
ei->i_acl = BTRFS_ACL_NOT_CACHED;
|
|
ei->i_default_acl = BTRFS_ACL_NOT_CACHED;
|
|
INIT_LIST_HEAD(&ei->i_orphan);
|
|
INIT_LIST_HEAD(&ei->ordered_operations);
|
|
return &ei->vfs_inode;
|
|
}
|
|
|
|
void btrfs_destroy_inode(struct inode *inode)
|
|
{
|
|
struct btrfs_ordered_extent *ordered;
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
|
|
WARN_ON(!list_empty(&inode->i_dentry));
|
|
WARN_ON(inode->i_data.nrpages);
|
|
|
|
if (BTRFS_I(inode)->i_acl &&
|
|
BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED)
|
|
posix_acl_release(BTRFS_I(inode)->i_acl);
|
|
if (BTRFS_I(inode)->i_default_acl &&
|
|
BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED)
|
|
posix_acl_release(BTRFS_I(inode)->i_default_acl);
|
|
|
|
/*
|
|
* Make sure we're properly removed from the ordered operation
|
|
* lists.
|
|
*/
|
|
smp_mb();
|
|
if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
|
|
spin_lock(&root->fs_info->ordered_extent_lock);
|
|
list_del_init(&BTRFS_I(inode)->ordered_operations);
|
|
spin_unlock(&root->fs_info->ordered_extent_lock);
|
|
}
|
|
|
|
spin_lock(&root->list_lock);
|
|
if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
|
|
printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
|
|
" list\n", inode->i_ino);
|
|
dump_stack();
|
|
}
|
|
spin_unlock(&root->list_lock);
|
|
|
|
while (1) {
|
|
ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
|
|
if (!ordered)
|
|
break;
|
|
else {
|
|
printk(KERN_ERR "btrfs found ordered "
|
|
"extent %llu %llu on inode cleanup\n",
|
|
(unsigned long long)ordered->file_offset,
|
|
(unsigned long long)ordered->len);
|
|
btrfs_remove_ordered_extent(inode, ordered);
|
|
btrfs_put_ordered_extent(ordered);
|
|
btrfs_put_ordered_extent(ordered);
|
|
}
|
|
}
|
|
btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
|
|
kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
|
|
}
|
|
|
|
static void init_once(void *foo)
|
|
{
|
|
struct btrfs_inode *ei = (struct btrfs_inode *) foo;
|
|
|
|
inode_init_once(&ei->vfs_inode);
|
|
}
|
|
|
|
void btrfs_destroy_cachep(void)
|
|
{
|
|
if (btrfs_inode_cachep)
|
|
kmem_cache_destroy(btrfs_inode_cachep);
|
|
if (btrfs_trans_handle_cachep)
|
|
kmem_cache_destroy(btrfs_trans_handle_cachep);
|
|
if (btrfs_transaction_cachep)
|
|
kmem_cache_destroy(btrfs_transaction_cachep);
|
|
if (btrfs_bit_radix_cachep)
|
|
kmem_cache_destroy(btrfs_bit_radix_cachep);
|
|
if (btrfs_path_cachep)
|
|
kmem_cache_destroy(btrfs_path_cachep);
|
|
}
|
|
|
|
struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
|
|
unsigned long extra_flags,
|
|
void (*ctor)(void *))
|
|
{
|
|
return kmem_cache_create(name, size, 0, (SLAB_RECLAIM_ACCOUNT |
|
|
SLAB_MEM_SPREAD | extra_flags), ctor);
|
|
}
|
|
|
|
int btrfs_init_cachep(void)
|
|
{
|
|
btrfs_inode_cachep = btrfs_cache_create("btrfs_inode_cache",
|
|
sizeof(struct btrfs_inode),
|
|
0, init_once);
|
|
if (!btrfs_inode_cachep)
|
|
goto fail;
|
|
btrfs_trans_handle_cachep =
|
|
btrfs_cache_create("btrfs_trans_handle_cache",
|
|
sizeof(struct btrfs_trans_handle),
|
|
0, NULL);
|
|
if (!btrfs_trans_handle_cachep)
|
|
goto fail;
|
|
btrfs_transaction_cachep = btrfs_cache_create("btrfs_transaction_cache",
|
|
sizeof(struct btrfs_transaction),
|
|
0, NULL);
|
|
if (!btrfs_transaction_cachep)
|
|
goto fail;
|
|
btrfs_path_cachep = btrfs_cache_create("btrfs_path_cache",
|
|
sizeof(struct btrfs_path),
|
|
0, NULL);
|
|
if (!btrfs_path_cachep)
|
|
goto fail;
|
|
btrfs_bit_radix_cachep = btrfs_cache_create("btrfs_radix", 256,
|
|
SLAB_DESTROY_BY_RCU, NULL);
|
|
if (!btrfs_bit_radix_cachep)
|
|
goto fail;
|
|
return 0;
|
|
fail:
|
|
btrfs_destroy_cachep();
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static int btrfs_getattr(struct vfsmount *mnt,
|
|
struct dentry *dentry, struct kstat *stat)
|
|
{
|
|
struct inode *inode = dentry->d_inode;
|
|
generic_fillattr(inode, stat);
|
|
stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
|
|
stat->blksize = PAGE_CACHE_SIZE;
|
|
stat->blocks = (inode_get_bytes(inode) +
|
|
BTRFS_I(inode)->delalloc_bytes) >> 9;
|
|
return 0;
|
|
}
|
|
|
|
static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
|
|
struct inode *new_dir, struct dentry *new_dentry)
|
|
{
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_root *root = BTRFS_I(old_dir)->root;
|
|
struct inode *new_inode = new_dentry->d_inode;
|
|
struct inode *old_inode = old_dentry->d_inode;
|
|
struct timespec ctime = CURRENT_TIME;
|
|
u64 index = 0;
|
|
int ret;
|
|
|
|
/* we're not allowed to rename between subvolumes */
|
|
if (BTRFS_I(old_inode)->root->root_key.objectid !=
|
|
BTRFS_I(new_dir)->root->root_key.objectid)
|
|
return -EXDEV;
|
|
|
|
if (S_ISDIR(old_inode->i_mode) && new_inode &&
|
|
new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
|
|
return -ENOTEMPTY;
|
|
}
|
|
|
|
/* to rename a snapshot or subvolume, we need to juggle the
|
|
* backrefs. This isn't coded yet
|
|
*/
|
|
if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
|
|
return -EXDEV;
|
|
|
|
ret = btrfs_check_metadata_free_space(root);
|
|
if (ret)
|
|
goto out_unlock;
|
|
|
|
/*
|
|
* we're using rename to replace one file with another.
|
|
* and the replacement file is large. Start IO on it now so
|
|
* we don't add too much work to the end of the transaction
|
|
*/
|
|
if (new_inode && old_inode && S_ISREG(old_inode->i_mode) &&
|
|
new_inode->i_size &&
|
|
old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
|
|
filemap_flush(old_inode->i_mapping);
|
|
|
|
trans = btrfs_start_transaction(root, 1);
|
|
|
|
/*
|
|
* make sure the inode gets flushed if it is replacing
|
|
* something.
|
|
*/
|
|
if (new_inode && new_inode->i_size &&
|
|
old_inode && S_ISREG(old_inode->i_mode)) {
|
|
btrfs_add_ordered_operation(trans, root, old_inode);
|
|
}
|
|
|
|
/*
|
|
* this is an ugly little race, but the rename is required to make
|
|
* sure that if we crash, the inode is either at the old name
|
|
* or the new one. pinning the log transaction lets us make sure
|
|
* we don't allow a log commit to come in after we unlink the
|
|
* name but before we add the new name back in.
|
|
*/
|
|
btrfs_pin_log_trans(root);
|
|
|
|
btrfs_set_trans_block_group(trans, new_dir);
|
|
|
|
btrfs_inc_nlink(old_dentry->d_inode);
|
|
old_dir->i_ctime = old_dir->i_mtime = ctime;
|
|
new_dir->i_ctime = new_dir->i_mtime = ctime;
|
|
old_inode->i_ctime = ctime;
|
|
|
|
if (old_dentry->d_parent != new_dentry->d_parent)
|
|
btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
|
|
|
|
ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode,
|
|
old_dentry->d_name.name,
|
|
old_dentry->d_name.len);
|
|
if (ret)
|
|
goto out_fail;
|
|
|
|
if (new_inode) {
|
|
new_inode->i_ctime = CURRENT_TIME;
|
|
ret = btrfs_unlink_inode(trans, root, new_dir,
|
|
new_dentry->d_inode,
|
|
new_dentry->d_name.name,
|
|
new_dentry->d_name.len);
|
|
if (ret)
|
|
goto out_fail;
|
|
if (new_inode->i_nlink == 0) {
|
|
ret = btrfs_orphan_add(trans, new_dentry->d_inode);
|
|
if (ret)
|
|
goto out_fail;
|
|
}
|
|
|
|
}
|
|
ret = btrfs_set_inode_index(new_dir, &index);
|
|
if (ret)
|
|
goto out_fail;
|
|
|
|
ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode,
|
|
old_inode, new_dentry->d_name.name,
|
|
new_dentry->d_name.len, 1, index);
|
|
if (ret)
|
|
goto out_fail;
|
|
|
|
btrfs_log_new_name(trans, old_inode, old_dir,
|
|
new_dentry->d_parent);
|
|
out_fail:
|
|
|
|
/* this btrfs_end_log_trans just allows the current
|
|
* log-sub transaction to complete
|
|
*/
|
|
btrfs_end_log_trans(root);
|
|
btrfs_end_transaction_throttle(trans, root);
|
|
out_unlock:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* some fairly slow code that needs optimization. This walks the list
|
|
* of all the inodes with pending delalloc and forces them to disk.
|
|
*/
|
|
int btrfs_start_delalloc_inodes(struct btrfs_root *root)
|
|
{
|
|
struct list_head *head = &root->fs_info->delalloc_inodes;
|
|
struct btrfs_inode *binode;
|
|
struct inode *inode;
|
|
|
|
if (root->fs_info->sb->s_flags & MS_RDONLY)
|
|
return -EROFS;
|
|
|
|
spin_lock(&root->fs_info->delalloc_lock);
|
|
while (!list_empty(head)) {
|
|
binode = list_entry(head->next, struct btrfs_inode,
|
|
delalloc_inodes);
|
|
inode = igrab(&binode->vfs_inode);
|
|
if (!inode)
|
|
list_del_init(&binode->delalloc_inodes);
|
|
spin_unlock(&root->fs_info->delalloc_lock);
|
|
if (inode) {
|
|
filemap_flush(inode->i_mapping);
|
|
iput(inode);
|
|
}
|
|
cond_resched();
|
|
spin_lock(&root->fs_info->delalloc_lock);
|
|
}
|
|
spin_unlock(&root->fs_info->delalloc_lock);
|
|
|
|
/* the filemap_flush will queue IO into the worker threads, but
|
|
* we have to make sure the IO is actually started and that
|
|
* ordered extents get created before we return
|
|
*/
|
|
atomic_inc(&root->fs_info->async_submit_draining);
|
|
while (atomic_read(&root->fs_info->nr_async_submits) ||
|
|
atomic_read(&root->fs_info->async_delalloc_pages)) {
|
|
wait_event(root->fs_info->async_submit_wait,
|
|
(atomic_read(&root->fs_info->nr_async_submits) == 0 &&
|
|
atomic_read(&root->fs_info->async_delalloc_pages) == 0));
|
|
}
|
|
atomic_dec(&root->fs_info->async_submit_draining);
|
|
return 0;
|
|
}
|
|
|
|
static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
|
|
const char *symname)
|
|
{
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_root *root = BTRFS_I(dir)->root;
|
|
struct btrfs_path *path;
|
|
struct btrfs_key key;
|
|
struct inode *inode = NULL;
|
|
int err;
|
|
int drop_inode = 0;
|
|
u64 objectid;
|
|
u64 index = 0 ;
|
|
int name_len;
|
|
int datasize;
|
|
unsigned long ptr;
|
|
struct btrfs_file_extent_item *ei;
|
|
struct extent_buffer *leaf;
|
|
unsigned long nr = 0;
|
|
|
|
name_len = strlen(symname) + 1;
|
|
if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
|
|
return -ENAMETOOLONG;
|
|
|
|
err = btrfs_check_metadata_free_space(root);
|
|
if (err)
|
|
goto out_fail;
|
|
|
|
trans = btrfs_start_transaction(root, 1);
|
|
btrfs_set_trans_block_group(trans, dir);
|
|
|
|
err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
|
|
if (err) {
|
|
err = -ENOSPC;
|
|
goto out_unlock;
|
|
}
|
|
|
|
inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
|
|
dentry->d_name.len,
|
|
dentry->d_parent->d_inode->i_ino, objectid,
|
|
BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
|
|
&index);
|
|
err = PTR_ERR(inode);
|
|
if (IS_ERR(inode))
|
|
goto out_unlock;
|
|
|
|
err = btrfs_init_inode_security(inode, dir);
|
|
if (err) {
|
|
drop_inode = 1;
|
|
goto out_unlock;
|
|
}
|
|
|
|
btrfs_set_trans_block_group(trans, inode);
|
|
err = btrfs_add_nondir(trans, dentry, inode, 0, index);
|
|
if (err)
|
|
drop_inode = 1;
|
|
else {
|
|
inode->i_mapping->a_ops = &btrfs_aops;
|
|
inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
|
|
inode->i_fop = &btrfs_file_operations;
|
|
inode->i_op = &btrfs_file_inode_operations;
|
|
BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
|
|
}
|
|
dir->i_sb->s_dirt = 1;
|
|
btrfs_update_inode_block_group(trans, inode);
|
|
btrfs_update_inode_block_group(trans, dir);
|
|
if (drop_inode)
|
|
goto out_unlock;
|
|
|
|
path = btrfs_alloc_path();
|
|
BUG_ON(!path);
|
|
key.objectid = inode->i_ino;
|
|
key.offset = 0;
|
|
btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
|
|
datasize = btrfs_file_extent_calc_inline_size(name_len);
|
|
err = btrfs_insert_empty_item(trans, root, path, &key,
|
|
datasize);
|
|
if (err) {
|
|
drop_inode = 1;
|
|
goto out_unlock;
|
|
}
|
|
leaf = path->nodes[0];
|
|
ei = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_file_extent_item);
|
|
btrfs_set_file_extent_generation(leaf, ei, trans->transid);
|
|
btrfs_set_file_extent_type(leaf, ei,
|
|
BTRFS_FILE_EXTENT_INLINE);
|
|
btrfs_set_file_extent_encryption(leaf, ei, 0);
|
|
btrfs_set_file_extent_compression(leaf, ei, 0);
|
|
btrfs_set_file_extent_other_encoding(leaf, ei, 0);
|
|
btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
|
|
|
|
ptr = btrfs_file_extent_inline_start(ei);
|
|
write_extent_buffer(leaf, symname, ptr, name_len);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
btrfs_free_path(path);
|
|
|
|
inode->i_op = &btrfs_symlink_inode_operations;
|
|
inode->i_mapping->a_ops = &btrfs_symlink_aops;
|
|
inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
|
|
inode_set_bytes(inode, name_len);
|
|
btrfs_i_size_write(inode, name_len - 1);
|
|
err = btrfs_update_inode(trans, root, inode);
|
|
if (err)
|
|
drop_inode = 1;
|
|
|
|
out_unlock:
|
|
nr = trans->blocks_used;
|
|
btrfs_end_transaction_throttle(trans, root);
|
|
out_fail:
|
|
if (drop_inode) {
|
|
inode_dec_link_count(inode);
|
|
iput(inode);
|
|
}
|
|
btrfs_btree_balance_dirty(root, nr);
|
|
return err;
|
|
}
|
|
|
|
static int prealloc_file_range(struct inode *inode, u64 start, u64 end,
|
|
u64 alloc_hint, int mode)
|
|
{
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_key ins;
|
|
u64 alloc_size;
|
|
u64 cur_offset = start;
|
|
u64 num_bytes = end - start;
|
|
int ret = 0;
|
|
|
|
trans = btrfs_join_transaction(root, 1);
|
|
BUG_ON(!trans);
|
|
btrfs_set_trans_block_group(trans, inode);
|
|
|
|
while (num_bytes > 0) {
|
|
alloc_size = min(num_bytes, root->fs_info->max_extent);
|
|
ret = btrfs_reserve_extent(trans, root, alloc_size,
|
|
root->sectorsize, 0, alloc_hint,
|
|
(u64)-1, &ins, 1);
|
|
if (ret) {
|
|
WARN_ON(1);
|
|
goto out;
|
|
}
|
|
ret = insert_reserved_file_extent(trans, inode,
|
|
cur_offset, ins.objectid,
|
|
ins.offset, ins.offset,
|
|
ins.offset, 0, 0, 0,
|
|
BTRFS_FILE_EXTENT_PREALLOC);
|
|
BUG_ON(ret);
|
|
num_bytes -= ins.offset;
|
|
cur_offset += ins.offset;
|
|
alloc_hint = ins.objectid + ins.offset;
|
|
}
|
|
out:
|
|
if (cur_offset > start) {
|
|
inode->i_ctime = CURRENT_TIME;
|
|
btrfs_set_flag(inode, PREALLOC);
|
|
if (!(mode & FALLOC_FL_KEEP_SIZE) &&
|
|
cur_offset > i_size_read(inode))
|
|
btrfs_i_size_write(inode, cur_offset);
|
|
ret = btrfs_update_inode(trans, root, inode);
|
|
BUG_ON(ret);
|
|
}
|
|
|
|
btrfs_end_transaction(trans, root);
|
|
return ret;
|
|
}
|
|
|
|
static long btrfs_fallocate(struct inode *inode, int mode,
|
|
loff_t offset, loff_t len)
|
|
{
|
|
u64 cur_offset;
|
|
u64 last_byte;
|
|
u64 alloc_start;
|
|
u64 alloc_end;
|
|
u64 alloc_hint = 0;
|
|
u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
|
|
struct extent_map *em;
|
|
int ret;
|
|
|
|
alloc_start = offset & ~mask;
|
|
alloc_end = (offset + len + mask) & ~mask;
|
|
|
|
mutex_lock(&inode->i_mutex);
|
|
if (alloc_start > inode->i_size) {
|
|
ret = btrfs_cont_expand(inode, alloc_start);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
while (1) {
|
|
struct btrfs_ordered_extent *ordered;
|
|
lock_extent(&BTRFS_I(inode)->io_tree, alloc_start,
|
|
alloc_end - 1, GFP_NOFS);
|
|
ordered = btrfs_lookup_first_ordered_extent(inode,
|
|
alloc_end - 1);
|
|
if (ordered &&
|
|
ordered->file_offset + ordered->len > alloc_start &&
|
|
ordered->file_offset < alloc_end) {
|
|
btrfs_put_ordered_extent(ordered);
|
|
unlock_extent(&BTRFS_I(inode)->io_tree,
|
|
alloc_start, alloc_end - 1, GFP_NOFS);
|
|
btrfs_wait_ordered_range(inode, alloc_start,
|
|
alloc_end - alloc_start);
|
|
} else {
|
|
if (ordered)
|
|
btrfs_put_ordered_extent(ordered);
|
|
break;
|
|
}
|
|
}
|
|
|
|
cur_offset = alloc_start;
|
|
while (1) {
|
|
em = btrfs_get_extent(inode, NULL, 0, cur_offset,
|
|
alloc_end - cur_offset, 0);
|
|
BUG_ON(IS_ERR(em) || !em);
|
|
last_byte = min(extent_map_end(em), alloc_end);
|
|
last_byte = (last_byte + mask) & ~mask;
|
|
if (em->block_start == EXTENT_MAP_HOLE) {
|
|
ret = prealloc_file_range(inode, cur_offset,
|
|
last_byte, alloc_hint, mode);
|
|
if (ret < 0) {
|
|
free_extent_map(em);
|
|
break;
|
|
}
|
|
}
|
|
if (em->block_start <= EXTENT_MAP_LAST_BYTE)
|
|
alloc_hint = em->block_start;
|
|
free_extent_map(em);
|
|
|
|
cur_offset = last_byte;
|
|
if (cur_offset >= alloc_end) {
|
|
ret = 0;
|
|
break;
|
|
}
|
|
}
|
|
unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, alloc_end - 1,
|
|
GFP_NOFS);
|
|
out:
|
|
mutex_unlock(&inode->i_mutex);
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_set_page_dirty(struct page *page)
|
|
{
|
|
return __set_page_dirty_nobuffers(page);
|
|
}
|
|
|
|
static int btrfs_permission(struct inode *inode, int mask)
|
|
{
|
|
if (btrfs_test_flag(inode, READONLY) && (mask & MAY_WRITE))
|
|
return -EACCES;
|
|
return generic_permission(inode, mask, btrfs_check_acl);
|
|
}
|
|
|
|
static struct inode_operations btrfs_dir_inode_operations = {
|
|
.getattr = btrfs_getattr,
|
|
.lookup = btrfs_lookup,
|
|
.create = btrfs_create,
|
|
.unlink = btrfs_unlink,
|
|
.link = btrfs_link,
|
|
.mkdir = btrfs_mkdir,
|
|
.rmdir = btrfs_rmdir,
|
|
.rename = btrfs_rename,
|
|
.symlink = btrfs_symlink,
|
|
.setattr = btrfs_setattr,
|
|
.mknod = btrfs_mknod,
|
|
.setxattr = btrfs_setxattr,
|
|
.getxattr = btrfs_getxattr,
|
|
.listxattr = btrfs_listxattr,
|
|
.removexattr = btrfs_removexattr,
|
|
.permission = btrfs_permission,
|
|
};
|
|
static struct inode_operations btrfs_dir_ro_inode_operations = {
|
|
.lookup = btrfs_lookup,
|
|
.permission = btrfs_permission,
|
|
};
|
|
static struct file_operations btrfs_dir_file_operations = {
|
|
.llseek = generic_file_llseek,
|
|
.read = generic_read_dir,
|
|
.readdir = btrfs_real_readdir,
|
|
.unlocked_ioctl = btrfs_ioctl,
|
|
#ifdef CONFIG_COMPAT
|
|
.compat_ioctl = btrfs_ioctl,
|
|
#endif
|
|
.release = btrfs_release_file,
|
|
.fsync = btrfs_sync_file,
|
|
};
|
|
|
|
static struct extent_io_ops btrfs_extent_io_ops = {
|
|
.fill_delalloc = run_delalloc_range,
|
|
.submit_bio_hook = btrfs_submit_bio_hook,
|
|
.merge_bio_hook = btrfs_merge_bio_hook,
|
|
.readpage_end_io_hook = btrfs_readpage_end_io_hook,
|
|
.writepage_end_io_hook = btrfs_writepage_end_io_hook,
|
|
.writepage_start_hook = btrfs_writepage_start_hook,
|
|
.readpage_io_failed_hook = btrfs_io_failed_hook,
|
|
.set_bit_hook = btrfs_set_bit_hook,
|
|
.clear_bit_hook = btrfs_clear_bit_hook,
|
|
};
|
|
|
|
/*
|
|
* btrfs doesn't support the bmap operation because swapfiles
|
|
* use bmap to make a mapping of extents in the file. They assume
|
|
* these extents won't change over the life of the file and they
|
|
* use the bmap result to do IO directly to the drive.
|
|
*
|
|
* the btrfs bmap call would return logical addresses that aren't
|
|
* suitable for IO and they also will change frequently as COW
|
|
* operations happen. So, swapfile + btrfs == corruption.
|
|
*
|
|
* For now we're avoiding this by dropping bmap.
|
|
*/
|
|
static struct address_space_operations btrfs_aops = {
|
|
.readpage = btrfs_readpage,
|
|
.writepage = btrfs_writepage,
|
|
.writepages = btrfs_writepages,
|
|
.readpages = btrfs_readpages,
|
|
.sync_page = block_sync_page,
|
|
.direct_IO = btrfs_direct_IO,
|
|
.invalidatepage = btrfs_invalidatepage,
|
|
.releasepage = btrfs_releasepage,
|
|
.set_page_dirty = btrfs_set_page_dirty,
|
|
};
|
|
|
|
static struct address_space_operations btrfs_symlink_aops = {
|
|
.readpage = btrfs_readpage,
|
|
.writepage = btrfs_writepage,
|
|
.invalidatepage = btrfs_invalidatepage,
|
|
.releasepage = btrfs_releasepage,
|
|
};
|
|
|
|
static struct inode_operations btrfs_file_inode_operations = {
|
|
.truncate = btrfs_truncate,
|
|
.getattr = btrfs_getattr,
|
|
.setattr = btrfs_setattr,
|
|
.setxattr = btrfs_setxattr,
|
|
.getxattr = btrfs_getxattr,
|
|
.listxattr = btrfs_listxattr,
|
|
.removexattr = btrfs_removexattr,
|
|
.permission = btrfs_permission,
|
|
.fallocate = btrfs_fallocate,
|
|
.fiemap = btrfs_fiemap,
|
|
};
|
|
static struct inode_operations btrfs_special_inode_operations = {
|
|
.getattr = btrfs_getattr,
|
|
.setattr = btrfs_setattr,
|
|
.permission = btrfs_permission,
|
|
.setxattr = btrfs_setxattr,
|
|
.getxattr = btrfs_getxattr,
|
|
.listxattr = btrfs_listxattr,
|
|
.removexattr = btrfs_removexattr,
|
|
};
|
|
static struct inode_operations btrfs_symlink_inode_operations = {
|
|
.readlink = generic_readlink,
|
|
.follow_link = page_follow_link_light,
|
|
.put_link = page_put_link,
|
|
.permission = btrfs_permission,
|
|
.setxattr = btrfs_setxattr,
|
|
.getxattr = btrfs_getxattr,
|
|
.listxattr = btrfs_listxattr,
|
|
.removexattr = btrfs_removexattr,
|
|
};
|