linux/drivers/net/macb.c

1350 lines
32 KiB
C

/*
* Atmel MACB Ethernet Controller driver
*
* Copyright (C) 2004-2006 Atmel Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/clk.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/dma-mapping.h>
#include <linux/platform_device.h>
#include <linux/phy.h>
#include <mach/board.h>
#include <mach/cpu.h>
#include "macb.h"
#define RX_BUFFER_SIZE 128
#define RX_RING_SIZE 512
#define RX_RING_BYTES (sizeof(struct dma_desc) * RX_RING_SIZE)
/* Make the IP header word-aligned (the ethernet header is 14 bytes) */
#define RX_OFFSET 2
#define TX_RING_SIZE 128
#define DEF_TX_RING_PENDING (TX_RING_SIZE - 1)
#define TX_RING_BYTES (sizeof(struct dma_desc) * TX_RING_SIZE)
#define TX_RING_GAP(bp) \
(TX_RING_SIZE - (bp)->tx_pending)
#define TX_BUFFS_AVAIL(bp) \
(((bp)->tx_tail <= (bp)->tx_head) ? \
(bp)->tx_tail + (bp)->tx_pending - (bp)->tx_head : \
(bp)->tx_tail - (bp)->tx_head - TX_RING_GAP(bp))
#define NEXT_TX(n) (((n) + 1) & (TX_RING_SIZE - 1))
#define NEXT_RX(n) (((n) + 1) & (RX_RING_SIZE - 1))
/* minimum number of free TX descriptors before waking up TX process */
#define MACB_TX_WAKEUP_THRESH (TX_RING_SIZE / 4)
#define MACB_RX_INT_FLAGS (MACB_BIT(RCOMP) | MACB_BIT(RXUBR) \
| MACB_BIT(ISR_ROVR))
static void __macb_set_hwaddr(struct macb *bp)
{
u32 bottom;
u16 top;
bottom = cpu_to_le32(*((u32 *)bp->dev->dev_addr));
macb_writel(bp, SA1B, bottom);
top = cpu_to_le16(*((u16 *)(bp->dev->dev_addr + 4)));
macb_writel(bp, SA1T, top);
}
static void __init macb_get_hwaddr(struct macb *bp)
{
u32 bottom;
u16 top;
u8 addr[6];
bottom = macb_readl(bp, SA1B);
top = macb_readl(bp, SA1T);
addr[0] = bottom & 0xff;
addr[1] = (bottom >> 8) & 0xff;
addr[2] = (bottom >> 16) & 0xff;
addr[3] = (bottom >> 24) & 0xff;
addr[4] = top & 0xff;
addr[5] = (top >> 8) & 0xff;
if (is_valid_ether_addr(addr)) {
memcpy(bp->dev->dev_addr, addr, sizeof(addr));
} else {
dev_info(&bp->pdev->dev, "invalid hw address, using random\n");
random_ether_addr(bp->dev->dev_addr);
}
}
static int macb_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
{
struct macb *bp = bus->priv;
int value;
macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_SOF)
| MACB_BF(RW, MACB_MAN_READ)
| MACB_BF(PHYA, mii_id)
| MACB_BF(REGA, regnum)
| MACB_BF(CODE, MACB_MAN_CODE)));
/* wait for end of transfer */
while (!MACB_BFEXT(IDLE, macb_readl(bp, NSR)))
cpu_relax();
value = MACB_BFEXT(DATA, macb_readl(bp, MAN));
return value;
}
static int macb_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
u16 value)
{
struct macb *bp = bus->priv;
macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_SOF)
| MACB_BF(RW, MACB_MAN_WRITE)
| MACB_BF(PHYA, mii_id)
| MACB_BF(REGA, regnum)
| MACB_BF(CODE, MACB_MAN_CODE)
| MACB_BF(DATA, value)));
/* wait for end of transfer */
while (!MACB_BFEXT(IDLE, macb_readl(bp, NSR)))
cpu_relax();
return 0;
}
static int macb_mdio_reset(struct mii_bus *bus)
{
return 0;
}
static void macb_handle_link_change(struct net_device *dev)
{
struct macb *bp = netdev_priv(dev);
struct phy_device *phydev = bp->phy_dev;
unsigned long flags;
int status_change = 0;
spin_lock_irqsave(&bp->lock, flags);
if (phydev->link) {
if ((bp->speed != phydev->speed) ||
(bp->duplex != phydev->duplex)) {
u32 reg;
reg = macb_readl(bp, NCFGR);
reg &= ~(MACB_BIT(SPD) | MACB_BIT(FD));
if (phydev->duplex)
reg |= MACB_BIT(FD);
if (phydev->speed == SPEED_100)
reg |= MACB_BIT(SPD);
macb_writel(bp, NCFGR, reg);
bp->speed = phydev->speed;
bp->duplex = phydev->duplex;
status_change = 1;
}
}
if (phydev->link != bp->link) {
if (!phydev->link) {
bp->speed = 0;
bp->duplex = -1;
}
bp->link = phydev->link;
status_change = 1;
}
spin_unlock_irqrestore(&bp->lock, flags);
if (status_change) {
if (phydev->link)
printk(KERN_INFO "%s: link up (%d/%s)\n",
dev->name, phydev->speed,
DUPLEX_FULL == phydev->duplex ? "Full":"Half");
else
printk(KERN_INFO "%s: link down\n", dev->name);
}
}
/* based on au1000_eth. c*/
static int macb_mii_probe(struct net_device *dev)
{
struct macb *bp = netdev_priv(dev);
struct phy_device *phydev = NULL;
struct eth_platform_data *pdata;
int phy_addr;
/* find the first phy */
for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
if (bp->mii_bus->phy_map[phy_addr]) {
phydev = bp->mii_bus->phy_map[phy_addr];
break;
}
}
if (!phydev) {
printk (KERN_ERR "%s: no PHY found\n", dev->name);
return -1;
}
pdata = bp->pdev->dev.platform_data;
/* TODO : add pin_irq */
/* attach the mac to the phy */
if (pdata && pdata->is_rmii) {
phydev = phy_connect(dev, phydev->dev.bus_id,
&macb_handle_link_change, 0, PHY_INTERFACE_MODE_RMII);
} else {
phydev = phy_connect(dev, phydev->dev.bus_id,
&macb_handle_link_change, 0, PHY_INTERFACE_MODE_MII);
}
if (IS_ERR(phydev)) {
printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
return PTR_ERR(phydev);
}
/* mask with MAC supported features */
phydev->supported &= PHY_BASIC_FEATURES;
phydev->advertising = phydev->supported;
bp->link = 0;
bp->speed = 0;
bp->duplex = -1;
bp->phy_dev = phydev;
return 0;
}
static int macb_mii_init(struct macb *bp)
{
struct eth_platform_data *pdata;
int err = -ENXIO, i;
/* Enable managment port */
macb_writel(bp, NCR, MACB_BIT(MPE));
bp->mii_bus = mdiobus_alloc();
if (bp->mii_bus == NULL) {
err = -ENOMEM;
goto err_out;
}
bp->mii_bus->name = "MACB_mii_bus";
bp->mii_bus->read = &macb_mdio_read;
bp->mii_bus->write = &macb_mdio_write;
bp->mii_bus->reset = &macb_mdio_reset;
snprintf(bp->mii_bus->id, MII_BUS_ID_SIZE, "%x", bp->pdev->id);
bp->mii_bus->priv = bp;
bp->mii_bus->parent = &bp->dev->dev;
pdata = bp->pdev->dev.platform_data;
if (pdata)
bp->mii_bus->phy_mask = pdata->phy_mask;
bp->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
if (!bp->mii_bus->irq) {
err = -ENOMEM;
goto err_out_free_mdiobus;
}
for (i = 0; i < PHY_MAX_ADDR; i++)
bp->mii_bus->irq[i] = PHY_POLL;
platform_set_drvdata(bp->dev, bp->mii_bus);
if (mdiobus_register(bp->mii_bus))
goto err_out_free_mdio_irq;
if (macb_mii_probe(bp->dev) != 0) {
goto err_out_unregister_bus;
}
return 0;
err_out_unregister_bus:
mdiobus_unregister(bp->mii_bus);
err_out_free_mdio_irq:
kfree(bp->mii_bus->irq);
err_out_free_mdiobus:
mdiobus_free(bp->mii_bus);
err_out:
return err;
}
static void macb_update_stats(struct macb *bp)
{
u32 __iomem *reg = bp->regs + MACB_PFR;
u32 *p = &bp->hw_stats.rx_pause_frames;
u32 *end = &bp->hw_stats.tx_pause_frames + 1;
WARN_ON((unsigned long)(end - p - 1) != (MACB_TPF - MACB_PFR) / 4);
for(; p < end; p++, reg++)
*p += __raw_readl(reg);
}
static void macb_tx(struct macb *bp)
{
unsigned int tail;
unsigned int head;
u32 status;
status = macb_readl(bp, TSR);
macb_writel(bp, TSR, status);
dev_dbg(&bp->pdev->dev, "macb_tx status = %02lx\n",
(unsigned long)status);
if (status & MACB_BIT(UND)) {
int i;
printk(KERN_ERR "%s: TX underrun, resetting buffers\n",
bp->dev->name);
head = bp->tx_head;
/*Mark all the buffer as used to avoid sending a lost buffer*/
for (i = 0; i < TX_RING_SIZE; i++)
bp->tx_ring[i].ctrl = MACB_BIT(TX_USED);
/* free transmit buffer in upper layer*/
for (tail = bp->tx_tail; tail != head; tail = NEXT_TX(tail)) {
struct ring_info *rp = &bp->tx_skb[tail];
struct sk_buff *skb = rp->skb;
BUG_ON(skb == NULL);
rmb();
dma_unmap_single(&bp->pdev->dev, rp->mapping, skb->len,
DMA_TO_DEVICE);
rp->skb = NULL;
dev_kfree_skb_irq(skb);
}
bp->tx_head = bp->tx_tail = 0;
}
if (!(status & MACB_BIT(COMP)))
/*
* This may happen when a buffer becomes complete
* between reading the ISR and scanning the
* descriptors. Nothing to worry about.
*/
return;
head = bp->tx_head;
for (tail = bp->tx_tail; tail != head; tail = NEXT_TX(tail)) {
struct ring_info *rp = &bp->tx_skb[tail];
struct sk_buff *skb = rp->skb;
u32 bufstat;
BUG_ON(skb == NULL);
rmb();
bufstat = bp->tx_ring[tail].ctrl;
if (!(bufstat & MACB_BIT(TX_USED)))
break;
dev_dbg(&bp->pdev->dev, "skb %u (data %p) TX complete\n",
tail, skb->data);
dma_unmap_single(&bp->pdev->dev, rp->mapping, skb->len,
DMA_TO_DEVICE);
bp->stats.tx_packets++;
bp->stats.tx_bytes += skb->len;
rp->skb = NULL;
dev_kfree_skb_irq(skb);
}
bp->tx_tail = tail;
if (netif_queue_stopped(bp->dev) &&
TX_BUFFS_AVAIL(bp) > MACB_TX_WAKEUP_THRESH)
netif_wake_queue(bp->dev);
}
static int macb_rx_frame(struct macb *bp, unsigned int first_frag,
unsigned int last_frag)
{
unsigned int len;
unsigned int frag;
unsigned int offset = 0;
struct sk_buff *skb;
len = MACB_BFEXT(RX_FRMLEN, bp->rx_ring[last_frag].ctrl);
dev_dbg(&bp->pdev->dev, "macb_rx_frame frags %u - %u (len %u)\n",
first_frag, last_frag, len);
skb = dev_alloc_skb(len + RX_OFFSET);
if (!skb) {
bp->stats.rx_dropped++;
for (frag = first_frag; ; frag = NEXT_RX(frag)) {
bp->rx_ring[frag].addr &= ~MACB_BIT(RX_USED);
if (frag == last_frag)
break;
}
wmb();
return 1;
}
skb_reserve(skb, RX_OFFSET);
skb->ip_summed = CHECKSUM_NONE;
skb_put(skb, len);
for (frag = first_frag; ; frag = NEXT_RX(frag)) {
unsigned int frag_len = RX_BUFFER_SIZE;
if (offset + frag_len > len) {
BUG_ON(frag != last_frag);
frag_len = len - offset;
}
skb_copy_to_linear_data_offset(skb, offset,
(bp->rx_buffers +
(RX_BUFFER_SIZE * frag)),
frag_len);
offset += RX_BUFFER_SIZE;
bp->rx_ring[frag].addr &= ~MACB_BIT(RX_USED);
wmb();
if (frag == last_frag)
break;
}
skb->protocol = eth_type_trans(skb, bp->dev);
bp->stats.rx_packets++;
bp->stats.rx_bytes += len;
bp->dev->last_rx = jiffies;
dev_dbg(&bp->pdev->dev, "received skb of length %u, csum: %08x\n",
skb->len, skb->csum);
netif_receive_skb(skb);
return 0;
}
/* Mark DMA descriptors from begin up to and not including end as unused */
static void discard_partial_frame(struct macb *bp, unsigned int begin,
unsigned int end)
{
unsigned int frag;
for (frag = begin; frag != end; frag = NEXT_RX(frag))
bp->rx_ring[frag].addr &= ~MACB_BIT(RX_USED);
wmb();
/*
* When this happens, the hardware stats registers for
* whatever caused this is updated, so we don't have to record
* anything.
*/
}
static int macb_rx(struct macb *bp, int budget)
{
int received = 0;
unsigned int tail = bp->rx_tail;
int first_frag = -1;
for (; budget > 0; tail = NEXT_RX(tail)) {
u32 addr, ctrl;
rmb();
addr = bp->rx_ring[tail].addr;
ctrl = bp->rx_ring[tail].ctrl;
if (!(addr & MACB_BIT(RX_USED)))
break;
if (ctrl & MACB_BIT(RX_SOF)) {
if (first_frag != -1)
discard_partial_frame(bp, first_frag, tail);
first_frag = tail;
}
if (ctrl & MACB_BIT(RX_EOF)) {
int dropped;
BUG_ON(first_frag == -1);
dropped = macb_rx_frame(bp, first_frag, tail);
first_frag = -1;
if (!dropped) {
received++;
budget--;
}
}
}
if (first_frag != -1)
bp->rx_tail = first_frag;
else
bp->rx_tail = tail;
return received;
}
static int macb_poll(struct napi_struct *napi, int budget)
{
struct macb *bp = container_of(napi, struct macb, napi);
struct net_device *dev = bp->dev;
int work_done;
u32 status;
status = macb_readl(bp, RSR);
macb_writel(bp, RSR, status);
work_done = 0;
if (!status) {
/*
* This may happen if an interrupt was pending before
* this function was called last time, and no packets
* have been received since.
*/
netif_rx_complete(dev, napi);
goto out;
}
dev_dbg(&bp->pdev->dev, "poll: status = %08lx, budget = %d\n",
(unsigned long)status, budget);
if (!(status & MACB_BIT(REC))) {
dev_warn(&bp->pdev->dev,
"No RX buffers complete, status = %02lx\n",
(unsigned long)status);
netif_rx_complete(dev, napi);
goto out;
}
work_done = macb_rx(bp, budget);
if (work_done < budget)
netif_rx_complete(dev, napi);
/*
* We've done what we can to clean the buffers. Make sure we
* get notified when new packets arrive.
*/
out:
macb_writel(bp, IER, MACB_RX_INT_FLAGS);
/* TODO: Handle errors */
return work_done;
}
static irqreturn_t macb_interrupt(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct macb *bp = netdev_priv(dev);
u32 status;
status = macb_readl(bp, ISR);
if (unlikely(!status))
return IRQ_NONE;
spin_lock(&bp->lock);
while (status) {
/* close possible race with dev_close */
if (unlikely(!netif_running(dev))) {
macb_writel(bp, IDR, ~0UL);
break;
}
if (status & MACB_RX_INT_FLAGS) {
if (netif_rx_schedule_prep(dev, &bp->napi)) {
/*
* There's no point taking any more interrupts
* until we have processed the buffers
*/
macb_writel(bp, IDR, MACB_RX_INT_FLAGS);
dev_dbg(&bp->pdev->dev,
"scheduling RX softirq\n");
__netif_rx_schedule(dev, &bp->napi);
}
}
if (status & (MACB_BIT(TCOMP) | MACB_BIT(ISR_TUND)))
macb_tx(bp);
/*
* Link change detection isn't possible with RMII, so we'll
* add that if/when we get our hands on a full-blown MII PHY.
*/
if (status & MACB_BIT(HRESP)) {
/*
* TODO: Reset the hardware, and maybe move the printk
* to a lower-priority context as well (work queue?)
*/
printk(KERN_ERR "%s: DMA bus error: HRESP not OK\n",
dev->name);
}
status = macb_readl(bp, ISR);
}
spin_unlock(&bp->lock);
return IRQ_HANDLED;
}
static int macb_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct macb *bp = netdev_priv(dev);
dma_addr_t mapping;
unsigned int len, entry;
u32 ctrl;
#ifdef DEBUG
int i;
dev_dbg(&bp->pdev->dev,
"start_xmit: len %u head %p data %p tail %p end %p\n",
skb->len, skb->head, skb->data,
skb_tail_pointer(skb), skb_end_pointer(skb));
dev_dbg(&bp->pdev->dev,
"data:");
for (i = 0; i < 16; i++)
printk(" %02x", (unsigned int)skb->data[i]);
printk("\n");
#endif
len = skb->len;
spin_lock_irq(&bp->lock);
/* This is a hard error, log it. */
if (TX_BUFFS_AVAIL(bp) < 1) {
netif_stop_queue(dev);
spin_unlock_irq(&bp->lock);
dev_err(&bp->pdev->dev,
"BUG! Tx Ring full when queue awake!\n");
dev_dbg(&bp->pdev->dev, "tx_head = %u, tx_tail = %u\n",
bp->tx_head, bp->tx_tail);
return 1;
}
entry = bp->tx_head;
dev_dbg(&bp->pdev->dev, "Allocated ring entry %u\n", entry);
mapping = dma_map_single(&bp->pdev->dev, skb->data,
len, DMA_TO_DEVICE);
bp->tx_skb[entry].skb = skb;
bp->tx_skb[entry].mapping = mapping;
dev_dbg(&bp->pdev->dev, "Mapped skb data %p to DMA addr %08lx\n",
skb->data, (unsigned long)mapping);
ctrl = MACB_BF(TX_FRMLEN, len);
ctrl |= MACB_BIT(TX_LAST);
if (entry == (TX_RING_SIZE - 1))
ctrl |= MACB_BIT(TX_WRAP);
bp->tx_ring[entry].addr = mapping;
bp->tx_ring[entry].ctrl = ctrl;
wmb();
entry = NEXT_TX(entry);
bp->tx_head = entry;
macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TSTART));
if (TX_BUFFS_AVAIL(bp) < 1)
netif_stop_queue(dev);
spin_unlock_irq(&bp->lock);
dev->trans_start = jiffies;
return 0;
}
static void macb_free_consistent(struct macb *bp)
{
if (bp->tx_skb) {
kfree(bp->tx_skb);
bp->tx_skb = NULL;
}
if (bp->rx_ring) {
dma_free_coherent(&bp->pdev->dev, RX_RING_BYTES,
bp->rx_ring, bp->rx_ring_dma);
bp->rx_ring = NULL;
}
if (bp->tx_ring) {
dma_free_coherent(&bp->pdev->dev, TX_RING_BYTES,
bp->tx_ring, bp->tx_ring_dma);
bp->tx_ring = NULL;
}
if (bp->rx_buffers) {
dma_free_coherent(&bp->pdev->dev,
RX_RING_SIZE * RX_BUFFER_SIZE,
bp->rx_buffers, bp->rx_buffers_dma);
bp->rx_buffers = NULL;
}
}
static int macb_alloc_consistent(struct macb *bp)
{
int size;
size = TX_RING_SIZE * sizeof(struct ring_info);
bp->tx_skb = kmalloc(size, GFP_KERNEL);
if (!bp->tx_skb)
goto out_err;
size = RX_RING_BYTES;
bp->rx_ring = dma_alloc_coherent(&bp->pdev->dev, size,
&bp->rx_ring_dma, GFP_KERNEL);
if (!bp->rx_ring)
goto out_err;
dev_dbg(&bp->pdev->dev,
"Allocated RX ring of %d bytes at %08lx (mapped %p)\n",
size, (unsigned long)bp->rx_ring_dma, bp->rx_ring);
size = TX_RING_BYTES;
bp->tx_ring = dma_alloc_coherent(&bp->pdev->dev, size,
&bp->tx_ring_dma, GFP_KERNEL);
if (!bp->tx_ring)
goto out_err;
dev_dbg(&bp->pdev->dev,
"Allocated TX ring of %d bytes at %08lx (mapped %p)\n",
size, (unsigned long)bp->tx_ring_dma, bp->tx_ring);
size = RX_RING_SIZE * RX_BUFFER_SIZE;
bp->rx_buffers = dma_alloc_coherent(&bp->pdev->dev, size,
&bp->rx_buffers_dma, GFP_KERNEL);
if (!bp->rx_buffers)
goto out_err;
dev_dbg(&bp->pdev->dev,
"Allocated RX buffers of %d bytes at %08lx (mapped %p)\n",
size, (unsigned long)bp->rx_buffers_dma, bp->rx_buffers);
return 0;
out_err:
macb_free_consistent(bp);
return -ENOMEM;
}
static void macb_init_rings(struct macb *bp)
{
int i;
dma_addr_t addr;
addr = bp->rx_buffers_dma;
for (i = 0; i < RX_RING_SIZE; i++) {
bp->rx_ring[i].addr = addr;
bp->rx_ring[i].ctrl = 0;
addr += RX_BUFFER_SIZE;
}
bp->rx_ring[RX_RING_SIZE - 1].addr |= MACB_BIT(RX_WRAP);
for (i = 0; i < TX_RING_SIZE; i++) {
bp->tx_ring[i].addr = 0;
bp->tx_ring[i].ctrl = MACB_BIT(TX_USED);
}
bp->tx_ring[TX_RING_SIZE - 1].ctrl |= MACB_BIT(TX_WRAP);
bp->rx_tail = bp->tx_head = bp->tx_tail = 0;
}
static void macb_reset_hw(struct macb *bp)
{
/* Make sure we have the write buffer for ourselves */
wmb();
/*
* Disable RX and TX (XXX: Should we halt the transmission
* more gracefully?)
*/
macb_writel(bp, NCR, 0);
/* Clear the stats registers (XXX: Update stats first?) */
macb_writel(bp, NCR, MACB_BIT(CLRSTAT));
/* Clear all status flags */
macb_writel(bp, TSR, ~0UL);
macb_writel(bp, RSR, ~0UL);
/* Disable all interrupts */
macb_writel(bp, IDR, ~0UL);
macb_readl(bp, ISR);
}
static void macb_init_hw(struct macb *bp)
{
u32 config;
macb_reset_hw(bp);
__macb_set_hwaddr(bp);
config = macb_readl(bp, NCFGR) & MACB_BF(CLK, -1L);
config |= MACB_BIT(PAE); /* PAuse Enable */
config |= MACB_BIT(DRFCS); /* Discard Rx FCS */
if (bp->dev->flags & IFF_PROMISC)
config |= MACB_BIT(CAF); /* Copy All Frames */
if (!(bp->dev->flags & IFF_BROADCAST))
config |= MACB_BIT(NBC); /* No BroadCast */
macb_writel(bp, NCFGR, config);
/* Initialize TX and RX buffers */
macb_writel(bp, RBQP, bp->rx_ring_dma);
macb_writel(bp, TBQP, bp->tx_ring_dma);
/* Enable TX and RX */
macb_writel(bp, NCR, MACB_BIT(RE) | MACB_BIT(TE) | MACB_BIT(MPE));
/* Enable interrupts */
macb_writel(bp, IER, (MACB_BIT(RCOMP)
| MACB_BIT(RXUBR)
| MACB_BIT(ISR_TUND)
| MACB_BIT(ISR_RLE)
| MACB_BIT(TXERR)
| MACB_BIT(TCOMP)
| MACB_BIT(ISR_ROVR)
| MACB_BIT(HRESP)));
}
/*
* The hash address register is 64 bits long and takes up two
* locations in the memory map. The least significant bits are stored
* in EMAC_HSL and the most significant bits in EMAC_HSH.
*
* The unicast hash enable and the multicast hash enable bits in the
* network configuration register enable the reception of hash matched
* frames. The destination address is reduced to a 6 bit index into
* the 64 bit hash register using the following hash function. The
* hash function is an exclusive or of every sixth bit of the
* destination address.
*
* hi[5] = da[5] ^ da[11] ^ da[17] ^ da[23] ^ da[29] ^ da[35] ^ da[41] ^ da[47]
* hi[4] = da[4] ^ da[10] ^ da[16] ^ da[22] ^ da[28] ^ da[34] ^ da[40] ^ da[46]
* hi[3] = da[3] ^ da[09] ^ da[15] ^ da[21] ^ da[27] ^ da[33] ^ da[39] ^ da[45]
* hi[2] = da[2] ^ da[08] ^ da[14] ^ da[20] ^ da[26] ^ da[32] ^ da[38] ^ da[44]
* hi[1] = da[1] ^ da[07] ^ da[13] ^ da[19] ^ da[25] ^ da[31] ^ da[37] ^ da[43]
* hi[0] = da[0] ^ da[06] ^ da[12] ^ da[18] ^ da[24] ^ da[30] ^ da[36] ^ da[42]
*
* da[0] represents the least significant bit of the first byte
* received, that is, the multicast/unicast indicator, and da[47]
* represents the most significant bit of the last byte received. If
* the hash index, hi[n], points to a bit that is set in the hash
* register then the frame will be matched according to whether the
* frame is multicast or unicast. A multicast match will be signalled
* if the multicast hash enable bit is set, da[0] is 1 and the hash
* index points to a bit set in the hash register. A unicast match
* will be signalled if the unicast hash enable bit is set, da[0] is 0
* and the hash index points to a bit set in the hash register. To
* receive all multicast frames, the hash register should be set with
* all ones and the multicast hash enable bit should be set in the
* network configuration register.
*/
static inline int hash_bit_value(int bitnr, __u8 *addr)
{
if (addr[bitnr / 8] & (1 << (bitnr % 8)))
return 1;
return 0;
}
/*
* Return the hash index value for the specified address.
*/
static int hash_get_index(__u8 *addr)
{
int i, j, bitval;
int hash_index = 0;
for (j = 0; j < 6; j++) {
for (i = 0, bitval = 0; i < 8; i++)
bitval ^= hash_bit_value(i*6 + j, addr);
hash_index |= (bitval << j);
}
return hash_index;
}
/*
* Add multicast addresses to the internal multicast-hash table.
*/
static void macb_sethashtable(struct net_device *dev)
{
struct dev_mc_list *curr;
unsigned long mc_filter[2];
unsigned int i, bitnr;
struct macb *bp = netdev_priv(dev);
mc_filter[0] = mc_filter[1] = 0;
curr = dev->mc_list;
for (i = 0; i < dev->mc_count; i++, curr = curr->next) {
if (!curr) break; /* unexpected end of list */
bitnr = hash_get_index(curr->dmi_addr);
mc_filter[bitnr >> 5] |= 1 << (bitnr & 31);
}
macb_writel(bp, HRB, mc_filter[0]);
macb_writel(bp, HRT, mc_filter[1]);
}
/*
* Enable/Disable promiscuous and multicast modes.
*/
static void macb_set_rx_mode(struct net_device *dev)
{
unsigned long cfg;
struct macb *bp = netdev_priv(dev);
cfg = macb_readl(bp, NCFGR);
if (dev->flags & IFF_PROMISC)
/* Enable promiscuous mode */
cfg |= MACB_BIT(CAF);
else if (dev->flags & (~IFF_PROMISC))
/* Disable promiscuous mode */
cfg &= ~MACB_BIT(CAF);
if (dev->flags & IFF_ALLMULTI) {
/* Enable all multicast mode */
macb_writel(bp, HRB, -1);
macb_writel(bp, HRT, -1);
cfg |= MACB_BIT(NCFGR_MTI);
} else if (dev->mc_count > 0) {
/* Enable specific multicasts */
macb_sethashtable(dev);
cfg |= MACB_BIT(NCFGR_MTI);
} else if (dev->flags & (~IFF_ALLMULTI)) {
/* Disable all multicast mode */
macb_writel(bp, HRB, 0);
macb_writel(bp, HRT, 0);
cfg &= ~MACB_BIT(NCFGR_MTI);
}
macb_writel(bp, NCFGR, cfg);
}
static int macb_open(struct net_device *dev)
{
struct macb *bp = netdev_priv(dev);
int err;
dev_dbg(&bp->pdev->dev, "open\n");
/* if the phy is not yet register, retry later*/
if (!bp->phy_dev)
return -EAGAIN;
if (!is_valid_ether_addr(dev->dev_addr))
return -EADDRNOTAVAIL;
err = macb_alloc_consistent(bp);
if (err) {
printk(KERN_ERR
"%s: Unable to allocate DMA memory (error %d)\n",
dev->name, err);
return err;
}
napi_enable(&bp->napi);
macb_init_rings(bp);
macb_init_hw(bp);
/* schedule a link state check */
phy_start(bp->phy_dev);
netif_start_queue(dev);
return 0;
}
static int macb_close(struct net_device *dev)
{
struct macb *bp = netdev_priv(dev);
unsigned long flags;
netif_stop_queue(dev);
napi_disable(&bp->napi);
if (bp->phy_dev)
phy_stop(bp->phy_dev);
spin_lock_irqsave(&bp->lock, flags);
macb_reset_hw(bp);
netif_carrier_off(dev);
spin_unlock_irqrestore(&bp->lock, flags);
macb_free_consistent(bp);
return 0;
}
static struct net_device_stats *macb_get_stats(struct net_device *dev)
{
struct macb *bp = netdev_priv(dev);
struct net_device_stats *nstat = &bp->stats;
struct macb_stats *hwstat = &bp->hw_stats;
/* read stats from hardware */
macb_update_stats(bp);
/* Convert HW stats into netdevice stats */
nstat->rx_errors = (hwstat->rx_fcs_errors +
hwstat->rx_align_errors +
hwstat->rx_resource_errors +
hwstat->rx_overruns +
hwstat->rx_oversize_pkts +
hwstat->rx_jabbers +
hwstat->rx_undersize_pkts +
hwstat->sqe_test_errors +
hwstat->rx_length_mismatch);
nstat->tx_errors = (hwstat->tx_late_cols +
hwstat->tx_excessive_cols +
hwstat->tx_underruns +
hwstat->tx_carrier_errors);
nstat->collisions = (hwstat->tx_single_cols +
hwstat->tx_multiple_cols +
hwstat->tx_excessive_cols);
nstat->rx_length_errors = (hwstat->rx_oversize_pkts +
hwstat->rx_jabbers +
hwstat->rx_undersize_pkts +
hwstat->rx_length_mismatch);
nstat->rx_over_errors = hwstat->rx_resource_errors;
nstat->rx_crc_errors = hwstat->rx_fcs_errors;
nstat->rx_frame_errors = hwstat->rx_align_errors;
nstat->rx_fifo_errors = hwstat->rx_overruns;
/* XXX: What does "missed" mean? */
nstat->tx_aborted_errors = hwstat->tx_excessive_cols;
nstat->tx_carrier_errors = hwstat->tx_carrier_errors;
nstat->tx_fifo_errors = hwstat->tx_underruns;
/* Don't know about heartbeat or window errors... */
return nstat;
}
static int macb_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct macb *bp = netdev_priv(dev);
struct phy_device *phydev = bp->phy_dev;
if (!phydev)
return -ENODEV;
return phy_ethtool_gset(phydev, cmd);
}
static int macb_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct macb *bp = netdev_priv(dev);
struct phy_device *phydev = bp->phy_dev;
if (!phydev)
return -ENODEV;
return phy_ethtool_sset(phydev, cmd);
}
static void macb_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
struct macb *bp = netdev_priv(dev);
strcpy(info->driver, bp->pdev->dev.driver->name);
strcpy(info->version, "$Revision: 1.14 $");
strcpy(info->bus_info, bp->pdev->dev.bus_id);
}
static struct ethtool_ops macb_ethtool_ops = {
.get_settings = macb_get_settings,
.set_settings = macb_set_settings,
.get_drvinfo = macb_get_drvinfo,
.get_link = ethtool_op_get_link,
};
static int macb_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
struct macb *bp = netdev_priv(dev);
struct phy_device *phydev = bp->phy_dev;
if (!netif_running(dev))
return -EINVAL;
if (!phydev)
return -ENODEV;
return phy_mii_ioctl(phydev, if_mii(rq), cmd);
}
static int __init macb_probe(struct platform_device *pdev)
{
struct eth_platform_data *pdata;
struct resource *regs;
struct net_device *dev;
struct macb *bp;
struct phy_device *phydev;
unsigned long pclk_hz;
u32 config;
int err = -ENXIO;
regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!regs) {
dev_err(&pdev->dev, "no mmio resource defined\n");
goto err_out;
}
err = -ENOMEM;
dev = alloc_etherdev(sizeof(*bp));
if (!dev) {
dev_err(&pdev->dev, "etherdev alloc failed, aborting.\n");
goto err_out;
}
SET_NETDEV_DEV(dev, &pdev->dev);
/* TODO: Actually, we have some interesting features... */
dev->features |= 0;
bp = netdev_priv(dev);
bp->pdev = pdev;
bp->dev = dev;
spin_lock_init(&bp->lock);
#if defined(CONFIG_ARCH_AT91)
bp->pclk = clk_get(&pdev->dev, "macb_clk");
if (IS_ERR(bp->pclk)) {
dev_err(&pdev->dev, "failed to get macb_clk\n");
goto err_out_free_dev;
}
clk_enable(bp->pclk);
#else
bp->pclk = clk_get(&pdev->dev, "pclk");
if (IS_ERR(bp->pclk)) {
dev_err(&pdev->dev, "failed to get pclk\n");
goto err_out_free_dev;
}
bp->hclk = clk_get(&pdev->dev, "hclk");
if (IS_ERR(bp->hclk)) {
dev_err(&pdev->dev, "failed to get hclk\n");
goto err_out_put_pclk;
}
clk_enable(bp->pclk);
clk_enable(bp->hclk);
#endif
bp->regs = ioremap(regs->start, regs->end - regs->start + 1);
if (!bp->regs) {
dev_err(&pdev->dev, "failed to map registers, aborting.\n");
err = -ENOMEM;
goto err_out_disable_clocks;
}
dev->irq = platform_get_irq(pdev, 0);
err = request_irq(dev->irq, macb_interrupt, IRQF_SAMPLE_RANDOM,
dev->name, dev);
if (err) {
printk(KERN_ERR
"%s: Unable to request IRQ %d (error %d)\n",
dev->name, dev->irq, err);
goto err_out_iounmap;
}
dev->open = macb_open;
dev->stop = macb_close;
dev->hard_start_xmit = macb_start_xmit;
dev->get_stats = macb_get_stats;
dev->set_multicast_list = macb_set_rx_mode;
dev->do_ioctl = macb_ioctl;
netif_napi_add(dev, &bp->napi, macb_poll, 64);
dev->ethtool_ops = &macb_ethtool_ops;
dev->base_addr = regs->start;
/* Set MII management clock divider */
pclk_hz = clk_get_rate(bp->pclk);
if (pclk_hz <= 20000000)
config = MACB_BF(CLK, MACB_CLK_DIV8);
else if (pclk_hz <= 40000000)
config = MACB_BF(CLK, MACB_CLK_DIV16);
else if (pclk_hz <= 80000000)
config = MACB_BF(CLK, MACB_CLK_DIV32);
else
config = MACB_BF(CLK, MACB_CLK_DIV64);
macb_writel(bp, NCFGR, config);
macb_get_hwaddr(bp);
pdata = pdev->dev.platform_data;
if (pdata && pdata->is_rmii)
#if defined(CONFIG_ARCH_AT91)
macb_writel(bp, USRIO, (MACB_BIT(RMII) | MACB_BIT(CLKEN)) );
#else
macb_writel(bp, USRIO, 0);
#endif
else
#if defined(CONFIG_ARCH_AT91)
macb_writel(bp, USRIO, MACB_BIT(CLKEN));
#else
macb_writel(bp, USRIO, MACB_BIT(MII));
#endif
bp->tx_pending = DEF_TX_RING_PENDING;
err = register_netdev(dev);
if (err) {
dev_err(&pdev->dev, "Cannot register net device, aborting.\n");
goto err_out_free_irq;
}
if (macb_mii_init(bp) != 0) {
goto err_out_unregister_netdev;
}
platform_set_drvdata(pdev, dev);
printk(KERN_INFO "%s: Atmel MACB at 0x%08lx irq %d (%pM)\n",
dev->name, dev->base_addr, dev->irq, dev->dev_addr);
phydev = bp->phy_dev;
printk(KERN_INFO "%s: attached PHY driver [%s] "
"(mii_bus:phy_addr=%s, irq=%d)\n",
dev->name, phydev->drv->name, phydev->dev.bus_id, phydev->irq);
return 0;
err_out_unregister_netdev:
unregister_netdev(dev);
err_out_free_irq:
free_irq(dev->irq, dev);
err_out_iounmap:
iounmap(bp->regs);
err_out_disable_clocks:
#ifndef CONFIG_ARCH_AT91
clk_disable(bp->hclk);
clk_put(bp->hclk);
#endif
clk_disable(bp->pclk);
#ifndef CONFIG_ARCH_AT91
err_out_put_pclk:
#endif
clk_put(bp->pclk);
err_out_free_dev:
free_netdev(dev);
err_out:
platform_set_drvdata(pdev, NULL);
return err;
}
static int __exit macb_remove(struct platform_device *pdev)
{
struct net_device *dev;
struct macb *bp;
dev = platform_get_drvdata(pdev);
if (dev) {
bp = netdev_priv(dev);
if (bp->phy_dev)
phy_disconnect(bp->phy_dev);
mdiobus_unregister(bp->mii_bus);
kfree(bp->mii_bus->irq);
mdiobus_free(bp->mii_bus);
unregister_netdev(dev);
free_irq(dev->irq, dev);
iounmap(bp->regs);
#ifndef CONFIG_ARCH_AT91
clk_disable(bp->hclk);
clk_put(bp->hclk);
#endif
clk_disable(bp->pclk);
clk_put(bp->pclk);
free_netdev(dev);
platform_set_drvdata(pdev, NULL);
}
return 0;
}
#ifdef CONFIG_PM
static int macb_suspend(struct platform_device *pdev, pm_message_t state)
{
struct net_device *netdev = platform_get_drvdata(pdev);
struct macb *bp = netdev_priv(netdev);
netif_device_detach(netdev);
#ifndef CONFIG_ARCH_AT91
clk_disable(bp->hclk);
#endif
clk_disable(bp->pclk);
return 0;
}
static int macb_resume(struct platform_device *pdev)
{
struct net_device *netdev = platform_get_drvdata(pdev);
struct macb *bp = netdev_priv(netdev);
clk_enable(bp->pclk);
#ifndef CONFIG_ARCH_AT91
clk_enable(bp->hclk);
#endif
netif_device_attach(netdev);
return 0;
}
#else
#define macb_suspend NULL
#define macb_resume NULL
#endif
static struct platform_driver macb_driver = {
.remove = __exit_p(macb_remove),
.suspend = macb_suspend,
.resume = macb_resume,
.driver = {
.name = "macb",
.owner = THIS_MODULE,
},
};
static int __init macb_init(void)
{
return platform_driver_probe(&macb_driver, macb_probe);
}
static void __exit macb_exit(void)
{
platform_driver_unregister(&macb_driver);
}
module_init(macb_init);
module_exit(macb_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Atmel MACB Ethernet driver");
MODULE_AUTHOR("Haavard Skinnemoen <hskinnemoen@atmel.com>");
MODULE_ALIAS("platform:macb");