Go to file
Paolo Valente aee69d78de block, bfq: introduce the BFQ-v0 I/O scheduler as an extra scheduler
We tag as v0 the version of BFQ containing only BFQ's engine plus
hierarchical support. BFQ's engine is introduced by this commit, while
hierarchical support is added by next commit. We use the v0 tag to
distinguish this minimal version of BFQ from the versions containing
also the features and the improvements added by next commits. BFQ-v0
coincides with the version of BFQ submitted a few years ago [1], apart
from the introduction of preemption, described below.

BFQ is a proportional-share I/O scheduler, whose general structure,
plus a lot of code, are borrowed from CFQ.

- Each process doing I/O on a device is associated with a weight and a
  (bfq_)queue.

- BFQ grants exclusive access to the device, for a while, to one queue
  (process) at a time, and implements this service model by
  associating every queue with a budget, measured in number of
  sectors.

  - After a queue is granted access to the device, the budget of the
    queue is decremented, on each request dispatch, by the size of the
    request.

  - The in-service queue is expired, i.e., its service is suspended,
    only if one of the following events occurs: 1) the queue finishes
    its budget, 2) the queue empties, 3) a "budget timeout" fires.

    - The budget timeout prevents processes doing random I/O from
      holding the device for too long and dramatically reducing
      throughput.

    - Actually, as in CFQ, a queue associated with a process issuing
      sync requests may not be expired immediately when it empties. In
      contrast, BFQ may idle the device for a short time interval,
      giving the process the chance to go on being served if it issues
      a new request in time. Device idling typically boosts the
      throughput on rotational devices, if processes do synchronous
      and sequential I/O. In addition, under BFQ, device idling is
      also instrumental in guaranteeing the desired throughput
      fraction to processes issuing sync requests (see [2] for
      details).

      - With respect to idling for service guarantees, if several
        processes are competing for the device at the same time, but
        all processes (and groups, after the following commit) have
        the same weight, then BFQ guarantees the expected throughput
        distribution without ever idling the device. Throughput is
        thus as high as possible in this common scenario.

  - Queues are scheduled according to a variant of WF2Q+, named
    B-WF2Q+, and implemented using an augmented rb-tree to preserve an
    O(log N) overall complexity.  See [2] for more details. B-WF2Q+ is
    also ready for hierarchical scheduling. However, for a cleaner
    logical breakdown, the code that enables and completes
    hierarchical support is provided in the next commit, which focuses
    exactly on this feature.

  - B-WF2Q+ guarantees a tight deviation with respect to an ideal,
    perfectly fair, and smooth service. In particular, B-WF2Q+
    guarantees that each queue receives a fraction of the device
    throughput proportional to its weight, even if the throughput
    fluctuates, and regardless of: the device parameters, the current
    workload and the budgets assigned to the queue.

  - The last, budget-independence, property (although probably
    counterintuitive in the first place) is definitely beneficial, for
    the following reasons:

    - First, with any proportional-share scheduler, the maximum
      deviation with respect to an ideal service is proportional to
      the maximum budget (slice) assigned to queues. As a consequence,
      BFQ can keep this deviation tight not only because of the
      accurate service of B-WF2Q+, but also because BFQ *does not*
      need to assign a larger budget to a queue to let the queue
      receive a higher fraction of the device throughput.

    - Second, BFQ is free to choose, for every process (queue), the
      budget that best fits the needs of the process, or best
      leverages the I/O pattern of the process. In particular, BFQ
      updates queue budgets with a simple feedback-loop algorithm that
      allows a high throughput to be achieved, while still providing
      tight latency guarantees to time-sensitive applications. When
      the in-service queue expires, this algorithm computes the next
      budget of the queue so as to:

      - Let large budgets be eventually assigned to the queues
        associated with I/O-bound applications performing sequential
        I/O: in fact, the longer these applications are served once
        got access to the device, the higher the throughput is.

      - Let small budgets be eventually assigned to the queues
        associated with time-sensitive applications (which typically
        perform sporadic and short I/O), because, the smaller the
        budget assigned to a queue waiting for service is, the sooner
        B-WF2Q+ will serve that queue (Subsec 3.3 in [2]).

- Weights can be assigned to processes only indirectly, through I/O
  priorities, and according to the relation:
  weight = 10 * (IOPRIO_BE_NR - ioprio).
  The next patch provides, instead, a cgroups interface through which
  weights can be assigned explicitly.

- If several processes are competing for the device at the same time,
  but all processes and groups have the same weight, then BFQ
  guarantees the expected throughput distribution without ever idling
  the device. It uses preemption instead. Throughput is then much
  higher in this common scenario.

- ioprio classes are served in strict priority order, i.e.,
  lower-priority queues are not served as long as there are
  higher-priority queues.  Among queues in the same class, the
  bandwidth is distributed in proportion to the weight of each
  queue. A very thin extra bandwidth is however guaranteed to the Idle
  class, to prevent it from starving.

- If the strict_guarantees parameter is set (default: unset), then BFQ
     - always performs idling when the in-service queue becomes empty;
     - forces the device to serve one I/O request at a time, by
       dispatching a new request only if there is no outstanding
       request.
  In the presence of differentiated weights or I/O-request sizes,
  both the above conditions are needed to guarantee that every
  queue receives its allotted share of the bandwidth (see
  Documentation/block/bfq-iosched.txt for more details). Setting
  strict_guarantees may evidently affect throughput.

[1] https://lkml.org/lkml/2008/4/1/234
    https://lkml.org/lkml/2008/11/11/148

[2] P. Valente and M. Andreolini, "Improving Application
    Responsiveness with the BFQ Disk I/O Scheduler", Proceedings of
    the 5th Annual International Systems and Storage Conference
    (SYSTOR '12), June 2012.
    Slightly extended version:
    http://algogroup.unimore.it/people/paolo/disk_sched/bfq-v1-suite-
							results.pdf

Signed-off-by: Fabio Checconi <fchecconi@gmail.com>
Signed-off-by: Paolo Valente <paolo.valente@linaro.org>
Signed-off-by: Arianna Avanzini <avanzini.arianna@gmail.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-19 08:29:02 -06:00
Documentation block, bfq: introduce the BFQ-v0 I/O scheduler as an extra scheduler 2017-04-19 08:29:02 -06:00
arch Merge branch 'regset' (PTRACE_SETREGSET data leakage) 2017-03-29 08:55:25 -07:00
block block, bfq: introduce the BFQ-v0 I/O scheduler as an extra scheduler 2017-04-19 08:29:02 -06:00
certs certs: Add a secondary system keyring that can be added to dynamically 2016-04-11 22:48:09 +01:00
crypto net: Work around lockdep limitation in sockets that use sockets 2017-03-09 18:23:27 -08:00
drivers nbd: set the max segment size to UINT_MAX 2017-04-19 08:16:06 -06:00
firmware WHENCE: use https://linuxtv.org for LinuxTV URLs 2015-12-04 10:35:11 -02:00
fs block_dev: use blkdev_issue_zerout for hole punches 2017-04-08 11:25:38 -06:00
include nbd: add a flag to destroy an nbd device on disconnect 2017-04-17 09:58:42 -06:00
init Change get_random_{int,log} to use the CRNG used by /dev/urandom and 2017-03-11 09:08:47 -08:00
ipc Merge branch 'WIP.sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip 2017-03-03 10:16:38 -08:00
kernel Merge branch 'stable-4.11' of git://git.infradead.org/users/pcmoore/audit 2017-03-25 15:13:55 -07:00
lib sbitmap: add sbitmap_get_shallow() operation 2017-04-14 14:06:52 -06:00
mm Merge branch 'for-linus' into for-4.12/block 2017-04-07 12:45:20 -06:00
net net: off by one in inet6_pton() 2017-04-14 14:08:54 -06:00
samples Merge branch 'rebased-statx' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs 2017-03-03 11:38:56 -08:00
scripts Merge branch 'akpm' (patches from Andrew) 2017-03-10 08:34:42 -08:00
security Merge branch 'WIP.sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip 2017-03-03 10:16:38 -08:00
sound ALSA: hda - Adding a group of pin definition to fix headset problem 2017-03-23 09:39:55 +01:00
tools Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net 2017-03-23 11:29:49 -07:00
usr kbuild: initramfs cleanup, set target from Kconfig 2017-01-05 09:40:16 -08:00
virt KVM: pci-assign: do not map smm memory slot pages in vt-d page tables 2017-03-28 10:08:54 +02:00
.cocciconfig scripts: add Linux .cocciconfig for coccinelle 2016-07-22 12:13:39 +02:00
.get_maintainer.ignore Add hch to .get_maintainer.ignore 2015-08-21 14:30:10 -07:00
.gitattributes .gitattributes: set git diff driver for C source code files 2016-10-07 18:46:30 -07:00
.gitignore Merge branch 'misc' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild 2016-08-02 16:48:52 -04:00
.mailmap mailmap: add codeaurora.org names for nameless email commits 2017-01-10 18:31:55 -08:00
COPYING
CREDITS MAINTAINERS: Remove old e-mail address 2017-02-13 12:24:56 -05:00
Kbuild scripts/gdb: provide linux constants 2016-05-23 17:04:14 -07:00
Kconfig
MAINTAINERS A new EDAC driver for the Pondicherry2 memory controller IP found in the 2017-03-27 11:09:00 -07:00
Makefile Linux 4.11-rc4 2017-03-26 14:15:16 -07:00
README README: add a new README file, pointing to the Documentation/ 2016-10-24 08:12:35 -02:00

README

Linux kernel
============

This file was moved to Documentation/admin-guide/README.rst

Please notice that there are several guides for kernel developers and users.
These guides can be rendered in a number of formats, like HTML and PDF.

In order to build the documentation, use ``make htmldocs`` or
``make pdfdocs``.

There are various text files in the Documentation/ subdirectory,
several of them using the Restructured Text markup notation.
See Documentation/00-INDEX for a list of what is contained in each file.

Please read the Documentation/process/changes.rst file, as it contains the
requirements for building and running the kernel, and information about
the problems which may result by upgrading your kernel.