linux/arch/arm/mach-vexpress/dcscb.c

238 lines
6.2 KiB
C

/*
* arch/arm/mach-vexpress/dcscb.c - Dual Cluster System Configuration Block
*
* Created by: Nicolas Pitre, May 2012
* Copyright: (C) 2012-2013 Linaro Limited
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/io.h>
#include <linux/spinlock.h>
#include <linux/errno.h>
#include <linux/of_address.h>
#include <linux/vexpress.h>
#include <linux/arm-cci.h>
#include <asm/mcpm.h>
#include <asm/proc-fns.h>
#include <asm/cacheflush.h>
#include <asm/cputype.h>
#include <asm/cp15.h>
#define RST_HOLD0 0x0
#define RST_HOLD1 0x4
#define SYS_SWRESET 0x8
#define RST_STAT0 0xc
#define RST_STAT1 0x10
#define EAG_CFG_R 0x20
#define EAG_CFG_W 0x24
#define KFC_CFG_R 0x28
#define KFC_CFG_W 0x2c
#define DCS_CFG_R 0x30
/*
* We can't use regular spinlocks. In the switcher case, it is possible
* for an outbound CPU to call power_down() while its inbound counterpart
* is already live using the same logical CPU number which trips lockdep
* debugging.
*/
static arch_spinlock_t dcscb_lock = __ARCH_SPIN_LOCK_UNLOCKED;
static void __iomem *dcscb_base;
static int dcscb_use_count[4][2];
static int dcscb_allcpus_mask[2];
static int dcscb_power_up(unsigned int cpu, unsigned int cluster)
{
unsigned int rst_hold, cpumask = (1 << cpu);
unsigned int all_mask;
pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
if (cpu >= 4 || cluster >= 2)
return -EINVAL;
all_mask = dcscb_allcpus_mask[cluster];
/*
* Since this is called with IRQs enabled, and no arch_spin_lock_irq
* variant exists, we need to disable IRQs manually here.
*/
local_irq_disable();
arch_spin_lock(&dcscb_lock);
dcscb_use_count[cpu][cluster]++;
if (dcscb_use_count[cpu][cluster] == 1) {
rst_hold = readl_relaxed(dcscb_base + RST_HOLD0 + cluster * 4);
if (rst_hold & (1 << 8)) {
/* remove cluster reset and add individual CPU's reset */
rst_hold &= ~(1 << 8);
rst_hold |= all_mask;
}
rst_hold &= ~(cpumask | (cpumask << 4));
writel_relaxed(rst_hold, dcscb_base + RST_HOLD0 + cluster * 4);
} else if (dcscb_use_count[cpu][cluster] != 2) {
/*
* The only possible values are:
* 0 = CPU down
* 1 = CPU (still) up
* 2 = CPU requested to be up before it had a chance
* to actually make itself down.
* Any other value is a bug.
*/
BUG();
}
arch_spin_unlock(&dcscb_lock);
local_irq_enable();
return 0;
}
static void dcscb_power_down(void)
{
unsigned int mpidr, cpu, cluster, rst_hold, cpumask, all_mask;
bool last_man = false, skip_wfi = false;
mpidr = read_cpuid_mpidr();
cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
cpumask = (1 << cpu);
pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
BUG_ON(cpu >= 4 || cluster >= 2);
all_mask = dcscb_allcpus_mask[cluster];
__mcpm_cpu_going_down(cpu, cluster);
arch_spin_lock(&dcscb_lock);
BUG_ON(__mcpm_cluster_state(cluster) != CLUSTER_UP);
dcscb_use_count[cpu][cluster]--;
if (dcscb_use_count[cpu][cluster] == 0) {
rst_hold = readl_relaxed(dcscb_base + RST_HOLD0 + cluster * 4);
rst_hold |= cpumask;
if (((rst_hold | (rst_hold >> 4)) & all_mask) == all_mask) {
rst_hold |= (1 << 8);
last_man = true;
}
writel_relaxed(rst_hold, dcscb_base + RST_HOLD0 + cluster * 4);
} else if (dcscb_use_count[cpu][cluster] == 1) {
/*
* A power_up request went ahead of us.
* Even if we do not want to shut this CPU down,
* the caller expects a certain state as if the WFI
* was aborted. So let's continue with cache cleaning.
*/
skip_wfi = true;
} else
BUG();
if (last_man && __mcpm_outbound_enter_critical(cpu, cluster)) {
arch_spin_unlock(&dcscb_lock);
/* Flush all cache levels for this cluster. */
v7_exit_coherency_flush(all);
/*
* A full outer cache flush could be needed at this point
* on platforms with such a cache, depending on where the
* outer cache sits. In some cases the notion of a "last
* cluster standing" would need to be implemented if the
* outer cache is shared across clusters. In any case, when
* the outer cache needs flushing, there is no concurrent
* access to the cache controller to worry about and no
* special locking besides what is already provided by the
* MCPM state machinery is needed.
*/
/*
* Disable cluster-level coherency by masking
* incoming snoops and DVM messages:
*/
cci_disable_port_by_cpu(mpidr);
__mcpm_outbound_leave_critical(cluster, CLUSTER_DOWN);
} else {
arch_spin_unlock(&dcscb_lock);
/* Disable and flush the local CPU cache. */
v7_exit_coherency_flush(louis);
}
__mcpm_cpu_down(cpu, cluster);
/* Now we are prepared for power-down, do it: */
dsb();
if (!skip_wfi)
wfi();
/* Not dead at this point? Let our caller cope. */
}
static const struct mcpm_platform_ops dcscb_power_ops = {
.power_up = dcscb_power_up,
.power_down = dcscb_power_down,
};
static void __init dcscb_usage_count_init(void)
{
unsigned int mpidr, cpu, cluster;
mpidr = read_cpuid_mpidr();
cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
BUG_ON(cpu >= 4 || cluster >= 2);
dcscb_use_count[cpu][cluster] = 1;
}
extern void dcscb_power_up_setup(unsigned int affinity_level);
static int __init dcscb_init(void)
{
struct device_node *node;
unsigned int cfg;
int ret;
if (!cci_probed())
return -ENODEV;
node = of_find_compatible_node(NULL, NULL, "arm,rtsm,dcscb");
if (!node)
return -ENODEV;
dcscb_base = of_iomap(node, 0);
if (!dcscb_base)
return -EADDRNOTAVAIL;
cfg = readl_relaxed(dcscb_base + DCS_CFG_R);
dcscb_allcpus_mask[0] = (1 << (((cfg >> 16) >> (0 << 2)) & 0xf)) - 1;
dcscb_allcpus_mask[1] = (1 << (((cfg >> 16) >> (1 << 2)) & 0xf)) - 1;
dcscb_usage_count_init();
ret = mcpm_platform_register(&dcscb_power_ops);
if (!ret)
ret = mcpm_sync_init(dcscb_power_up_setup);
if (ret) {
iounmap(dcscb_base);
return ret;
}
pr_info("VExpress DCSCB support installed\n");
/*
* Future entries into the kernel can now go
* through the cluster entry vectors.
*/
vexpress_flags_set(virt_to_phys(mcpm_entry_point));
return 0;
}
early_initcall(dcscb_init);