linux/arch/sparc64/kernel/pci_sabre.c

869 lines
28 KiB
C

/* pci_sabre.c: Sabre specific PCI controller support.
*
* Copyright (C) 1997, 1998, 1999, 2007 David S. Miller (davem@davemloft.net)
* Copyright (C) 1998, 1999 Eddie C. Dost (ecd@skynet.be)
* Copyright (C) 1999 Jakub Jelinek (jakub@redhat.com)
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/of_device.h>
#include <asm/apb.h>
#include <asm/iommu.h>
#include <asm/irq.h>
#include <asm/smp.h>
#include <asm/oplib.h>
#include <asm/prom.h>
#include "pci_impl.h"
#include "iommu_common.h"
/* All SABRE registers are 64-bits. The following accessor
* routines are how they are accessed. The REG parameter
* is a physical address.
*/
#define sabre_read(__reg) \
({ u64 __ret; \
__asm__ __volatile__("ldxa [%1] %2, %0" \
: "=r" (__ret) \
: "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \
: "memory"); \
__ret; \
})
#define sabre_write(__reg, __val) \
__asm__ __volatile__("stxa %0, [%1] %2" \
: /* no outputs */ \
: "r" (__val), "r" (__reg), \
"i" (ASI_PHYS_BYPASS_EC_E) \
: "memory")
/* SABRE PCI controller register offsets and definitions. */
#define SABRE_UE_AFSR 0x0030UL
#define SABRE_UEAFSR_PDRD 0x4000000000000000UL /* Primary PCI DMA Read */
#define SABRE_UEAFSR_PDWR 0x2000000000000000UL /* Primary PCI DMA Write */
#define SABRE_UEAFSR_SDRD 0x0800000000000000UL /* Secondary PCI DMA Read */
#define SABRE_UEAFSR_SDWR 0x0400000000000000UL /* Secondary PCI DMA Write */
#define SABRE_UEAFSR_SDTE 0x0200000000000000UL /* Secondary DMA Translation Error */
#define SABRE_UEAFSR_PDTE 0x0100000000000000UL /* Primary DMA Translation Error */
#define SABRE_UEAFSR_BMSK 0x0000ffff00000000UL /* Bytemask */
#define SABRE_UEAFSR_OFF 0x00000000e0000000UL /* Offset (AFAR bits [5:3] */
#define SABRE_UEAFSR_BLK 0x0000000000800000UL /* Was block operation */
#define SABRE_UECE_AFAR 0x0038UL
#define SABRE_CE_AFSR 0x0040UL
#define SABRE_CEAFSR_PDRD 0x4000000000000000UL /* Primary PCI DMA Read */
#define SABRE_CEAFSR_PDWR 0x2000000000000000UL /* Primary PCI DMA Write */
#define SABRE_CEAFSR_SDRD 0x0800000000000000UL /* Secondary PCI DMA Read */
#define SABRE_CEAFSR_SDWR 0x0400000000000000UL /* Secondary PCI DMA Write */
#define SABRE_CEAFSR_ESYND 0x00ff000000000000UL /* ECC Syndrome */
#define SABRE_CEAFSR_BMSK 0x0000ffff00000000UL /* Bytemask */
#define SABRE_CEAFSR_OFF 0x00000000e0000000UL /* Offset */
#define SABRE_CEAFSR_BLK 0x0000000000800000UL /* Was block operation */
#define SABRE_UECE_AFAR_ALIAS 0x0048UL /* Aliases to 0x0038 */
#define SABRE_IOMMU_CONTROL 0x0200UL
#define SABRE_IOMMUCTRL_ERRSTS 0x0000000006000000UL /* Error status bits */
#define SABRE_IOMMUCTRL_ERR 0x0000000001000000UL /* Error present in IOTLB */
#define SABRE_IOMMUCTRL_LCKEN 0x0000000000800000UL /* IOTLB lock enable */
#define SABRE_IOMMUCTRL_LCKPTR 0x0000000000780000UL /* IOTLB lock pointer */
#define SABRE_IOMMUCTRL_TSBSZ 0x0000000000070000UL /* TSB Size */
#define SABRE_IOMMU_TSBSZ_1K 0x0000000000000000
#define SABRE_IOMMU_TSBSZ_2K 0x0000000000010000
#define SABRE_IOMMU_TSBSZ_4K 0x0000000000020000
#define SABRE_IOMMU_TSBSZ_8K 0x0000000000030000
#define SABRE_IOMMU_TSBSZ_16K 0x0000000000040000
#define SABRE_IOMMU_TSBSZ_32K 0x0000000000050000
#define SABRE_IOMMU_TSBSZ_64K 0x0000000000060000
#define SABRE_IOMMU_TSBSZ_128K 0x0000000000070000
#define SABRE_IOMMUCTRL_TBWSZ 0x0000000000000004UL /* TSB assumed page size */
#define SABRE_IOMMUCTRL_DENAB 0x0000000000000002UL /* Diagnostic Mode Enable */
#define SABRE_IOMMUCTRL_ENAB 0x0000000000000001UL /* IOMMU Enable */
#define SABRE_IOMMU_TSBBASE 0x0208UL
#define SABRE_IOMMU_FLUSH 0x0210UL
#define SABRE_IMAP_A_SLOT0 0x0c00UL
#define SABRE_IMAP_B_SLOT0 0x0c20UL
#define SABRE_IMAP_SCSI 0x1000UL
#define SABRE_IMAP_ETH 0x1008UL
#define SABRE_IMAP_BPP 0x1010UL
#define SABRE_IMAP_AU_REC 0x1018UL
#define SABRE_IMAP_AU_PLAY 0x1020UL
#define SABRE_IMAP_PFAIL 0x1028UL
#define SABRE_IMAP_KMS 0x1030UL
#define SABRE_IMAP_FLPY 0x1038UL
#define SABRE_IMAP_SHW 0x1040UL
#define SABRE_IMAP_KBD 0x1048UL
#define SABRE_IMAP_MS 0x1050UL
#define SABRE_IMAP_SER 0x1058UL
#define SABRE_IMAP_UE 0x1070UL
#define SABRE_IMAP_CE 0x1078UL
#define SABRE_IMAP_PCIERR 0x1080UL
#define SABRE_IMAP_GFX 0x1098UL
#define SABRE_IMAP_EUPA 0x10a0UL
#define SABRE_ICLR_A_SLOT0 0x1400UL
#define SABRE_ICLR_B_SLOT0 0x1480UL
#define SABRE_ICLR_SCSI 0x1800UL
#define SABRE_ICLR_ETH 0x1808UL
#define SABRE_ICLR_BPP 0x1810UL
#define SABRE_ICLR_AU_REC 0x1818UL
#define SABRE_ICLR_AU_PLAY 0x1820UL
#define SABRE_ICLR_PFAIL 0x1828UL
#define SABRE_ICLR_KMS 0x1830UL
#define SABRE_ICLR_FLPY 0x1838UL
#define SABRE_ICLR_SHW 0x1840UL
#define SABRE_ICLR_KBD 0x1848UL
#define SABRE_ICLR_MS 0x1850UL
#define SABRE_ICLR_SER 0x1858UL
#define SABRE_ICLR_UE 0x1870UL
#define SABRE_ICLR_CE 0x1878UL
#define SABRE_ICLR_PCIERR 0x1880UL
#define SABRE_WRSYNC 0x1c20UL
#define SABRE_PCICTRL 0x2000UL
#define SABRE_PCICTRL_MRLEN 0x0000001000000000UL /* Use MemoryReadLine for block loads/stores */
#define SABRE_PCICTRL_SERR 0x0000000400000000UL /* Set when SERR asserted on PCI bus */
#define SABRE_PCICTRL_ARBPARK 0x0000000000200000UL /* Bus Parking 0=Ultra-IIi 1=prev-bus-owner */
#define SABRE_PCICTRL_CPUPRIO 0x0000000000100000UL /* Ultra-IIi granted every other bus cycle */
#define SABRE_PCICTRL_ARBPRIO 0x00000000000f0000UL /* Slot which is granted every other bus cycle */
#define SABRE_PCICTRL_ERREN 0x0000000000000100UL /* PCI Error Interrupt Enable */
#define SABRE_PCICTRL_RTRYWE 0x0000000000000080UL /* DMA Flow Control 0=wait-if-possible 1=retry */
#define SABRE_PCICTRL_AEN 0x000000000000000fUL /* Slot PCI arbitration enables */
#define SABRE_PIOAFSR 0x2010UL
#define SABRE_PIOAFSR_PMA 0x8000000000000000UL /* Primary Master Abort */
#define SABRE_PIOAFSR_PTA 0x4000000000000000UL /* Primary Target Abort */
#define SABRE_PIOAFSR_PRTRY 0x2000000000000000UL /* Primary Excessive Retries */
#define SABRE_PIOAFSR_PPERR 0x1000000000000000UL /* Primary Parity Error */
#define SABRE_PIOAFSR_SMA 0x0800000000000000UL /* Secondary Master Abort */
#define SABRE_PIOAFSR_STA 0x0400000000000000UL /* Secondary Target Abort */
#define SABRE_PIOAFSR_SRTRY 0x0200000000000000UL /* Secondary Excessive Retries */
#define SABRE_PIOAFSR_SPERR 0x0100000000000000UL /* Secondary Parity Error */
#define SABRE_PIOAFSR_BMSK 0x0000ffff00000000UL /* Byte Mask */
#define SABRE_PIOAFSR_BLK 0x0000000080000000UL /* Was Block Operation */
#define SABRE_PIOAFAR 0x2018UL
#define SABRE_PCIDIAG 0x2020UL
#define SABRE_PCIDIAG_DRTRY 0x0000000000000040UL /* Disable PIO Retry Limit */
#define SABRE_PCIDIAG_IPAPAR 0x0000000000000008UL /* Invert PIO Address Parity */
#define SABRE_PCIDIAG_IPDPAR 0x0000000000000004UL /* Invert PIO Data Parity */
#define SABRE_PCIDIAG_IDDPAR 0x0000000000000002UL /* Invert DMA Data Parity */
#define SABRE_PCIDIAG_ELPBK 0x0000000000000001UL /* Loopback Enable - not supported */
#define SABRE_PCITASR 0x2028UL
#define SABRE_PCITASR_EF 0x0000000000000080UL /* Respond to 0xe0000000-0xffffffff */
#define SABRE_PCITASR_CD 0x0000000000000040UL /* Respond to 0xc0000000-0xdfffffff */
#define SABRE_PCITASR_AB 0x0000000000000020UL /* Respond to 0xa0000000-0xbfffffff */
#define SABRE_PCITASR_89 0x0000000000000010UL /* Respond to 0x80000000-0x9fffffff */
#define SABRE_PCITASR_67 0x0000000000000008UL /* Respond to 0x60000000-0x7fffffff */
#define SABRE_PCITASR_45 0x0000000000000004UL /* Respond to 0x40000000-0x5fffffff */
#define SABRE_PCITASR_23 0x0000000000000002UL /* Respond to 0x20000000-0x3fffffff */
#define SABRE_PCITASR_01 0x0000000000000001UL /* Respond to 0x00000000-0x1fffffff */
#define SABRE_PIOBUF_DIAG 0x5000UL
#define SABRE_DMABUF_DIAGLO 0x5100UL
#define SABRE_DMABUF_DIAGHI 0x51c0UL
#define SABRE_IMAP_GFX_ALIAS 0x6000UL /* Aliases to 0x1098 */
#define SABRE_IMAP_EUPA_ALIAS 0x8000UL /* Aliases to 0x10a0 */
#define SABRE_IOMMU_VADIAG 0xa400UL
#define SABRE_IOMMU_TCDIAG 0xa408UL
#define SABRE_IOMMU_TAG 0xa580UL
#define SABRE_IOMMUTAG_ERRSTS 0x0000000001800000UL /* Error status bits */
#define SABRE_IOMMUTAG_ERR 0x0000000000400000UL /* Error present */
#define SABRE_IOMMUTAG_WRITE 0x0000000000200000UL /* Page is writable */
#define SABRE_IOMMUTAG_STREAM 0x0000000000100000UL /* Streamable bit - unused */
#define SABRE_IOMMUTAG_SIZE 0x0000000000080000UL /* 0=8k 1=16k */
#define SABRE_IOMMUTAG_VPN 0x000000000007ffffUL /* Virtual Page Number [31:13] */
#define SABRE_IOMMU_DATA 0xa600UL
#define SABRE_IOMMUDATA_VALID 0x0000000040000000UL /* Valid */
#define SABRE_IOMMUDATA_USED 0x0000000020000000UL /* Used (for LRU algorithm) */
#define SABRE_IOMMUDATA_CACHE 0x0000000010000000UL /* Cacheable */
#define SABRE_IOMMUDATA_PPN 0x00000000001fffffUL /* Physical Page Number [33:13] */
#define SABRE_PCI_IRQSTATE 0xa800UL
#define SABRE_OBIO_IRQSTATE 0xa808UL
#define SABRE_FFBCFG 0xf000UL
#define SABRE_FFBCFG_SPRQS 0x000000000f000000 /* Slave P_RQST queue size */
#define SABRE_FFBCFG_ONEREAD 0x0000000000004000 /* Slave supports one outstanding read */
#define SABRE_MCCTRL0 0xf010UL
#define SABRE_MCCTRL0_RENAB 0x0000000080000000 /* Refresh Enable */
#define SABRE_MCCTRL0_EENAB 0x0000000010000000 /* Enable all ECC functions */
#define SABRE_MCCTRL0_11BIT 0x0000000000001000 /* Enable 11-bit column addressing */
#define SABRE_MCCTRL0_DPP 0x0000000000000f00 /* DIMM Pair Present Bits */
#define SABRE_MCCTRL0_RINTVL 0x00000000000000ff /* Refresh Interval */
#define SABRE_MCCTRL1 0xf018UL
#define SABRE_MCCTRL1_AMDC 0x0000000038000000 /* Advance Memdata Clock */
#define SABRE_MCCTRL1_ARDC 0x0000000007000000 /* Advance DRAM Read Data Clock */
#define SABRE_MCCTRL1_CSR 0x0000000000e00000 /* CAS to RAS delay for CBR refresh */
#define SABRE_MCCTRL1_CASRW 0x00000000001c0000 /* CAS length for read/write */
#define SABRE_MCCTRL1_RCD 0x0000000000038000 /* RAS to CAS delay */
#define SABRE_MCCTRL1_CP 0x0000000000007000 /* CAS Precharge */
#define SABRE_MCCTRL1_RP 0x0000000000000e00 /* RAS Precharge */
#define SABRE_MCCTRL1_RAS 0x00000000000001c0 /* Length of RAS for refresh */
#define SABRE_MCCTRL1_CASRW2 0x0000000000000038 /* Must be same as CASRW */
#define SABRE_MCCTRL1_RSC 0x0000000000000007 /* RAS after CAS hold time */
#define SABRE_RESETCTRL 0xf020UL
#define SABRE_CONFIGSPACE 0x001000000UL
#define SABRE_IOSPACE 0x002000000UL
#define SABRE_IOSPACE_SIZE 0x000ffffffUL
#define SABRE_MEMSPACE 0x100000000UL
#define SABRE_MEMSPACE_SIZE 0x07fffffffUL
static int hummingbird_p;
static struct pci_bus *sabre_root_bus;
/* SABRE error handling support. */
static void sabre_check_iommu_error(struct pci_pbm_info *pbm,
unsigned long afsr,
unsigned long afar)
{
struct iommu *iommu = pbm->iommu;
unsigned long iommu_tag[16];
unsigned long iommu_data[16];
unsigned long flags;
u64 control;
int i;
spin_lock_irqsave(&iommu->lock, flags);
control = sabre_read(iommu->iommu_control);
if (control & SABRE_IOMMUCTRL_ERR) {
char *type_string;
/* Clear the error encountered bit.
* NOTE: On Sabre this is write 1 to clear,
* which is different from Psycho.
*/
sabre_write(iommu->iommu_control, control);
switch((control & SABRE_IOMMUCTRL_ERRSTS) >> 25UL) {
case 1:
type_string = "Invalid Error";
break;
case 3:
type_string = "ECC Error";
break;
default:
type_string = "Unknown";
break;
};
printk("%s: IOMMU Error, type[%s]\n",
pbm->name, type_string);
/* Enter diagnostic mode and probe for error'd
* entries in the IOTLB.
*/
control &= ~(SABRE_IOMMUCTRL_ERRSTS | SABRE_IOMMUCTRL_ERR);
sabre_write(iommu->iommu_control,
(control | SABRE_IOMMUCTRL_DENAB));
for (i = 0; i < 16; i++) {
unsigned long base = pbm->controller_regs;
iommu_tag[i] =
sabre_read(base + SABRE_IOMMU_TAG + (i * 8UL));
iommu_data[i] =
sabre_read(base + SABRE_IOMMU_DATA + (i * 8UL));
sabre_write(base + SABRE_IOMMU_TAG + (i * 8UL), 0);
sabre_write(base + SABRE_IOMMU_DATA + (i * 8UL), 0);
}
sabre_write(iommu->iommu_control, control);
for (i = 0; i < 16; i++) {
unsigned long tag, data;
tag = iommu_tag[i];
if (!(tag & SABRE_IOMMUTAG_ERR))
continue;
data = iommu_data[i];
switch((tag & SABRE_IOMMUTAG_ERRSTS) >> 23UL) {
case 1:
type_string = "Invalid Error";
break;
case 3:
type_string = "ECC Error";
break;
default:
type_string = "Unknown";
break;
};
printk("%s: IOMMU TAG(%d)[RAW(%016lx)error(%s)wr(%d)sz(%dK)vpg(%08lx)]\n",
pbm->name, i, tag, type_string,
((tag & SABRE_IOMMUTAG_WRITE) ? 1 : 0),
((tag & SABRE_IOMMUTAG_SIZE) ? 64 : 8),
((tag & SABRE_IOMMUTAG_VPN) << IOMMU_PAGE_SHIFT));
printk("%s: IOMMU DATA(%d)[RAW(%016lx)valid(%d)used(%d)cache(%d)ppg(%016lx)\n",
pbm->name, i, data,
((data & SABRE_IOMMUDATA_VALID) ? 1 : 0),
((data & SABRE_IOMMUDATA_USED) ? 1 : 0),
((data & SABRE_IOMMUDATA_CACHE) ? 1 : 0),
((data & SABRE_IOMMUDATA_PPN) << IOMMU_PAGE_SHIFT));
}
}
spin_unlock_irqrestore(&iommu->lock, flags);
}
static irqreturn_t sabre_ue_intr(int irq, void *dev_id)
{
struct pci_pbm_info *pbm = dev_id;
unsigned long afsr_reg = pbm->controller_regs + SABRE_UE_AFSR;
unsigned long afar_reg = pbm->controller_regs + SABRE_UECE_AFAR;
unsigned long afsr, afar, error_bits;
int reported;
/* Latch uncorrectable error status. */
afar = sabre_read(afar_reg);
afsr = sabre_read(afsr_reg);
/* Clear the primary/secondary error status bits. */
error_bits = afsr &
(SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR |
SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR |
SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE);
if (!error_bits)
return IRQ_NONE;
sabre_write(afsr_reg, error_bits);
/* Log the error. */
printk("%s: Uncorrectable Error, primary error type[%s%s]\n",
pbm->name,
((error_bits & SABRE_UEAFSR_PDRD) ?
"DMA Read" :
((error_bits & SABRE_UEAFSR_PDWR) ?
"DMA Write" : "???")),
((error_bits & SABRE_UEAFSR_PDTE) ?
":Translation Error" : ""));
printk("%s: bytemask[%04lx] dword_offset[%lx] was_block(%d)\n",
pbm->name,
(afsr & SABRE_UEAFSR_BMSK) >> 32UL,
(afsr & SABRE_UEAFSR_OFF) >> 29UL,
((afsr & SABRE_UEAFSR_BLK) ? 1 : 0));
printk("%s: UE AFAR [%016lx]\n", pbm->name, afar);
printk("%s: UE Secondary errors [", pbm->name);
reported = 0;
if (afsr & SABRE_UEAFSR_SDRD) {
reported++;
printk("(DMA Read)");
}
if (afsr & SABRE_UEAFSR_SDWR) {
reported++;
printk("(DMA Write)");
}
if (afsr & SABRE_UEAFSR_SDTE) {
reported++;
printk("(Translation Error)");
}
if (!reported)
printk("(none)");
printk("]\n");
/* Interrogate IOMMU for error status. */
sabre_check_iommu_error(pbm, afsr, afar);
return IRQ_HANDLED;
}
static irqreturn_t sabre_ce_intr(int irq, void *dev_id)
{
struct pci_pbm_info *pbm = dev_id;
unsigned long afsr_reg = pbm->controller_regs + SABRE_CE_AFSR;
unsigned long afar_reg = pbm->controller_regs + SABRE_UECE_AFAR;
unsigned long afsr, afar, error_bits;
int reported;
/* Latch error status. */
afar = sabre_read(afar_reg);
afsr = sabre_read(afsr_reg);
/* Clear primary/secondary error status bits. */
error_bits = afsr &
(SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR |
SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR);
if (!error_bits)
return IRQ_NONE;
sabre_write(afsr_reg, error_bits);
/* Log the error. */
printk("%s: Correctable Error, primary error type[%s]\n",
pbm->name,
((error_bits & SABRE_CEAFSR_PDRD) ?
"DMA Read" :
((error_bits & SABRE_CEAFSR_PDWR) ?
"DMA Write" : "???")));
/* XXX Use syndrome and afar to print out module string just like
* XXX UDB CE trap handler does... -DaveM
*/
printk("%s: syndrome[%02lx] bytemask[%04lx] dword_offset[%lx] "
"was_block(%d)\n",
pbm->name,
(afsr & SABRE_CEAFSR_ESYND) >> 48UL,
(afsr & SABRE_CEAFSR_BMSK) >> 32UL,
(afsr & SABRE_CEAFSR_OFF) >> 29UL,
((afsr & SABRE_CEAFSR_BLK) ? 1 : 0));
printk("%s: CE AFAR [%016lx]\n", pbm->name, afar);
printk("%s: CE Secondary errors [", pbm->name);
reported = 0;
if (afsr & SABRE_CEAFSR_SDRD) {
reported++;
printk("(DMA Read)");
}
if (afsr & SABRE_CEAFSR_SDWR) {
reported++;
printk("(DMA Write)");
}
if (!reported)
printk("(none)");
printk("]\n");
return IRQ_HANDLED;
}
static irqreturn_t sabre_pcierr_intr_other(struct pci_pbm_info *pbm)
{
unsigned long csr_reg, csr, csr_error_bits;
irqreturn_t ret = IRQ_NONE;
u16 stat;
csr_reg = pbm->controller_regs + SABRE_PCICTRL;
csr = sabre_read(csr_reg);
csr_error_bits =
csr & SABRE_PCICTRL_SERR;
if (csr_error_bits) {
/* Clear the errors. */
sabre_write(csr_reg, csr);
/* Log 'em. */
if (csr_error_bits & SABRE_PCICTRL_SERR)
printk("%s: PCI SERR signal asserted.\n",
pbm->name);
ret = IRQ_HANDLED;
}
pci_bus_read_config_word(sabre_root_bus, 0,
PCI_STATUS, &stat);
if (stat & (PCI_STATUS_PARITY |
PCI_STATUS_SIG_TARGET_ABORT |
PCI_STATUS_REC_TARGET_ABORT |
PCI_STATUS_REC_MASTER_ABORT |
PCI_STATUS_SIG_SYSTEM_ERROR)) {
printk("%s: PCI bus error, PCI_STATUS[%04x]\n",
pbm->name, stat);
pci_bus_write_config_word(sabre_root_bus, 0,
PCI_STATUS, 0xffff);
ret = IRQ_HANDLED;
}
return ret;
}
static irqreturn_t sabre_pcierr_intr(int irq, void *dev_id)
{
struct pci_pbm_info *pbm = dev_id;
unsigned long afsr_reg, afar_reg;
unsigned long afsr, afar, error_bits;
int reported;
afsr_reg = pbm->controller_regs + SABRE_PIOAFSR;
afar_reg = pbm->controller_regs + SABRE_PIOAFAR;
/* Latch error status. */
afar = sabre_read(afar_reg);
afsr = sabre_read(afsr_reg);
/* Clear primary/secondary error status bits. */
error_bits = afsr &
(SABRE_PIOAFSR_PMA | SABRE_PIOAFSR_PTA |
SABRE_PIOAFSR_PRTRY | SABRE_PIOAFSR_PPERR |
SABRE_PIOAFSR_SMA | SABRE_PIOAFSR_STA |
SABRE_PIOAFSR_SRTRY | SABRE_PIOAFSR_SPERR);
if (!error_bits)
return sabre_pcierr_intr_other(pbm);
sabre_write(afsr_reg, error_bits);
/* Log the error. */
printk("%s: PCI Error, primary error type[%s]\n",
pbm->name,
(((error_bits & SABRE_PIOAFSR_PMA) ?
"Master Abort" :
((error_bits & SABRE_PIOAFSR_PTA) ?
"Target Abort" :
((error_bits & SABRE_PIOAFSR_PRTRY) ?
"Excessive Retries" :
((error_bits & SABRE_PIOAFSR_PPERR) ?
"Parity Error" : "???"))))));
printk("%s: bytemask[%04lx] was_block(%d)\n",
pbm->name,
(afsr & SABRE_PIOAFSR_BMSK) >> 32UL,
(afsr & SABRE_PIOAFSR_BLK) ? 1 : 0);
printk("%s: PCI AFAR [%016lx]\n", pbm->name, afar);
printk("%s: PCI Secondary errors [", pbm->name);
reported = 0;
if (afsr & SABRE_PIOAFSR_SMA) {
reported++;
printk("(Master Abort)");
}
if (afsr & SABRE_PIOAFSR_STA) {
reported++;
printk("(Target Abort)");
}
if (afsr & SABRE_PIOAFSR_SRTRY) {
reported++;
printk("(Excessive Retries)");
}
if (afsr & SABRE_PIOAFSR_SPERR) {
reported++;
printk("(Parity Error)");
}
if (!reported)
printk("(none)");
printk("]\n");
/* For the error types shown, scan both PCI buses for devices
* which have logged that error type.
*/
/* If we see a Target Abort, this could be the result of an
* IOMMU translation error of some sort. It is extremely
* useful to log this information as usually it indicates
* a bug in the IOMMU support code or a PCI device driver.
*/
if (error_bits & (SABRE_PIOAFSR_PTA | SABRE_PIOAFSR_STA)) {
sabre_check_iommu_error(pbm, afsr, afar);
pci_scan_for_target_abort(pbm, pbm->pci_bus);
}
if (error_bits & (SABRE_PIOAFSR_PMA | SABRE_PIOAFSR_SMA))
pci_scan_for_master_abort(pbm, pbm->pci_bus);
/* For excessive retries, SABRE/PBM will abort the device
* and there is no way to specifically check for excessive
* retries in the config space status registers. So what
* we hope is that we'll catch it via the master/target
* abort events.
*/
if (error_bits & (SABRE_PIOAFSR_PPERR | SABRE_PIOAFSR_SPERR))
pci_scan_for_parity_error(pbm, pbm->pci_bus);
return IRQ_HANDLED;
}
static void sabre_register_error_handlers(struct pci_pbm_info *pbm)
{
struct device_node *dp = pbm->prom_node;
struct of_device *op;
unsigned long base = pbm->controller_regs;
u64 tmp;
int err;
if (pbm->chip_type == PBM_CHIP_TYPE_SABRE)
dp = dp->parent;
op = of_find_device_by_node(dp);
if (!op)
return;
/* Sabre/Hummingbird IRQ property layout is:
* 0: PCI ERR
* 1: UE ERR
* 2: CE ERR
* 3: POWER FAIL
*/
if (op->num_irqs < 4)
return;
/* We clear the error bits in the appropriate AFSR before
* registering the handler so that we don't get spurious
* interrupts.
*/
sabre_write(base + SABRE_UE_AFSR,
(SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR |
SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR |
SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE));
err = request_irq(op->irqs[1], sabre_ue_intr, 0, "SABRE_UE", pbm);
if (err)
printk(KERN_WARNING "%s: Couldn't register UE, err=%d.\n",
pbm->name, err);
sabre_write(base + SABRE_CE_AFSR,
(SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR |
SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR));
err = request_irq(op->irqs[2], sabre_ce_intr, 0, "SABRE_CE", pbm);
if (err)
printk(KERN_WARNING "%s: Couldn't register CE, err=%d.\n",
pbm->name, err);
err = request_irq(op->irqs[0], sabre_pcierr_intr, 0,
"SABRE_PCIERR", pbm);
if (err)
printk(KERN_WARNING "%s: Couldn't register PCIERR, err=%d.\n",
pbm->name, err);
tmp = sabre_read(base + SABRE_PCICTRL);
tmp |= SABRE_PCICTRL_ERREN;
sabre_write(base + SABRE_PCICTRL, tmp);
}
static void apb_init(struct pci_bus *sabre_bus)
{
struct pci_dev *pdev;
list_for_each_entry(pdev, &sabre_bus->devices, bus_list) {
if (pdev->vendor == PCI_VENDOR_ID_SUN &&
pdev->device == PCI_DEVICE_ID_SUN_SIMBA) {
u16 word16;
pci_read_config_word(pdev, PCI_COMMAND, &word16);
word16 |= PCI_COMMAND_SERR | PCI_COMMAND_PARITY |
PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY |
PCI_COMMAND_IO;
pci_write_config_word(pdev, PCI_COMMAND, word16);
/* Status register bits are "write 1 to clear". */
pci_write_config_word(pdev, PCI_STATUS, 0xffff);
pci_write_config_word(pdev, PCI_SEC_STATUS, 0xffff);
/* Use a primary/seconday latency timer value
* of 64.
*/
pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 64);
pci_write_config_byte(pdev, PCI_SEC_LATENCY_TIMER, 64);
/* Enable reporting/forwarding of master aborts,
* parity, and SERR.
*/
pci_write_config_byte(pdev, PCI_BRIDGE_CONTROL,
(PCI_BRIDGE_CTL_PARITY |
PCI_BRIDGE_CTL_SERR |
PCI_BRIDGE_CTL_MASTER_ABORT));
}
}
}
static void __init sabre_scan_bus(struct pci_pbm_info *pbm)
{
static int once;
/* The APB bridge speaks to the Sabre host PCI bridge
* at 66Mhz, but the front side of APB runs at 33Mhz
* for both segments.
*
* Hummingbird systems do not use APB, so they run
* at 66MHZ.
*/
if (hummingbird_p)
pbm->is_66mhz_capable = 1;
else
pbm->is_66mhz_capable = 0;
/* This driver has not been verified to handle
* multiple SABREs yet, so trap this.
*
* Also note that the SABRE host bridge is hardwired
* to live at bus 0.
*/
if (once != 0) {
prom_printf("SABRE: Multiple controllers unsupported.\n");
prom_halt();
}
once++;
pbm->pci_bus = pci_scan_one_pbm(pbm);
if (!pbm->pci_bus)
return;
sabre_root_bus = pbm->pci_bus;
apb_init(pbm->pci_bus);
sabre_register_error_handlers(pbm);
}
static int sabre_iommu_init(struct pci_pbm_info *pbm,
int tsbsize, unsigned long dvma_offset,
u32 dma_mask)
{
struct iommu *iommu = pbm->iommu;
unsigned long i;
u64 control;
int err;
/* Register addresses. */
iommu->iommu_control = pbm->controller_regs + SABRE_IOMMU_CONTROL;
iommu->iommu_tsbbase = pbm->controller_regs + SABRE_IOMMU_TSBBASE;
iommu->iommu_flush = pbm->controller_regs + SABRE_IOMMU_FLUSH;
iommu->iommu_tags = iommu->iommu_flush + (0xa580UL - 0x0210UL);
iommu->write_complete_reg = pbm->controller_regs + SABRE_WRSYNC;
/* Sabre's IOMMU lacks ctx flushing. */
iommu->iommu_ctxflush = 0;
/* Invalidate TLB Entries. */
control = sabre_read(pbm->controller_regs + SABRE_IOMMU_CONTROL);
control |= SABRE_IOMMUCTRL_DENAB;
sabre_write(pbm->controller_regs + SABRE_IOMMU_CONTROL, control);
for(i = 0; i < 16; i++) {
sabre_write(pbm->controller_regs + SABRE_IOMMU_TAG + (i * 8UL), 0);
sabre_write(pbm->controller_regs + SABRE_IOMMU_DATA + (i * 8UL), 0);
}
/* Leave diag mode enabled for full-flushing done
* in pci_iommu.c
*/
err = iommu_table_init(iommu, tsbsize * 1024 * 8,
dvma_offset, dma_mask, pbm->numa_node);
if (err)
return err;
sabre_write(pbm->controller_regs + SABRE_IOMMU_TSBBASE,
__pa(iommu->page_table));
control = sabre_read(pbm->controller_regs + SABRE_IOMMU_CONTROL);
control &= ~(SABRE_IOMMUCTRL_TSBSZ | SABRE_IOMMUCTRL_TBWSZ);
control |= SABRE_IOMMUCTRL_ENAB;
switch(tsbsize) {
case 64:
control |= SABRE_IOMMU_TSBSZ_64K;
break;
case 128:
control |= SABRE_IOMMU_TSBSZ_128K;
break;
default:
prom_printf("iommu_init: Illegal TSB size %d\n", tsbsize);
prom_halt();
break;
}
sabre_write(pbm->controller_regs + SABRE_IOMMU_CONTROL, control);
return 0;
}
static void __init sabre_pbm_init(struct pci_controller_info *p,
struct pci_pbm_info *pbm, struct device_node *dp)
{
pbm->name = dp->full_name;
printk("%s: SABRE PCI Bus Module\n", pbm->name);
pbm->numa_node = -1;
pbm->scan_bus = sabre_scan_bus;
pbm->pci_ops = &sun4u_pci_ops;
pbm->config_space_reg_bits = 8;
pbm->index = pci_num_pbms++;
pbm->chip_type = PBM_CHIP_TYPE_SABRE;
pbm->parent = p;
pbm->prom_node = dp;
pci_get_pbm_props(pbm);
pci_determine_mem_io_space(pbm);
}
void __init sabre_init(struct device_node *dp, char *model_name)
{
const struct linux_prom64_registers *pr_regs;
struct pci_controller_info *p;
struct pci_pbm_info *pbm;
struct iommu *iommu;
int tsbsize;
const u32 *vdma;
u32 upa_portid, dma_mask;
u64 clear_irq;
hummingbird_p = 0;
if (!strcmp(model_name, "pci108e,a001"))
hummingbird_p = 1;
else if (!strcmp(model_name, "SUNW,sabre")) {
const char *compat = of_get_property(dp, "compatible", NULL);
if (compat && !strcmp(compat, "pci108e,a001"))
hummingbird_p = 1;
if (!hummingbird_p) {
struct device_node *dp;
/* Of course, Sun has to encode things a thousand
* different ways, inconsistently.
*/
for_each_node_by_type(dp, "cpu") {
if (!strcmp(dp->name, "SUNW,UltraSPARC-IIe"))
hummingbird_p = 1;
}
}
}
p = kzalloc(sizeof(*p), GFP_ATOMIC);
if (!p)
goto fatal_memory_error;
iommu = kzalloc(sizeof(*iommu), GFP_ATOMIC);
if (!iommu)
goto fatal_memory_error;
pbm = &p->pbm_A;
pbm->iommu = iommu;
upa_portid = of_getintprop_default(dp, "upa-portid", 0xff);
pbm->next = pci_pbm_root;
pci_pbm_root = pbm;
pbm->portid = upa_portid;
/*
* Map in SABRE register set and report the presence of this SABRE.
*/
pr_regs = of_get_property(dp, "reg", NULL);
/*
* First REG in property is base of entire SABRE register space.
*/
pbm->controller_regs = pr_regs[0].phys_addr;
/* Clear interrupts */
/* PCI first */
for (clear_irq = SABRE_ICLR_A_SLOT0; clear_irq < SABRE_ICLR_B_SLOT0 + 0x80; clear_irq += 8)
sabre_write(pbm->controller_regs + clear_irq, 0x0UL);
/* Then OBIO */
for (clear_irq = SABRE_ICLR_SCSI; clear_irq < SABRE_ICLR_SCSI + 0x80; clear_irq += 8)
sabre_write(pbm->controller_regs + clear_irq, 0x0UL);
/* Error interrupts are enabled later after the bus scan. */
sabre_write(pbm->controller_regs + SABRE_PCICTRL,
(SABRE_PCICTRL_MRLEN | SABRE_PCICTRL_SERR |
SABRE_PCICTRL_ARBPARK | SABRE_PCICTRL_AEN));
/* Now map in PCI config space for entire SABRE. */
pbm->config_space =
(pbm->controller_regs + SABRE_CONFIGSPACE);
vdma = of_get_property(dp, "virtual-dma", NULL);
dma_mask = vdma[0];
switch(vdma[1]) {
case 0x20000000:
dma_mask |= 0x1fffffff;
tsbsize = 64;
break;
case 0x40000000:
dma_mask |= 0x3fffffff;
tsbsize = 128;
break;
case 0x80000000:
dma_mask |= 0x7fffffff;
tsbsize = 128;
break;
default:
prom_printf("SABRE: strange virtual-dma size.\n");
prom_halt();
}
if (sabre_iommu_init(pbm, tsbsize, vdma[0], dma_mask))
goto fatal_memory_error;
/*
* Look for APB underneath.
*/
sabre_pbm_init(p, pbm, dp);
return;
fatal_memory_error:
prom_printf("SABRE: Fatal memory allocation error.\n");
prom_halt();
}