linux/arch/tile/kernel/irq.c

282 lines
7.7 KiB
C

/*
* Copyright 2010 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
#include <linux/module.h>
#include <linux/seq_file.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/kernel_stat.h>
#include <linux/uaccess.h>
#include <hv/drv_pcie_rc_intf.h>
#include <arch/spr_def.h>
#include <asm/traps.h>
#include <linux/perf_event.h>
/* Bit-flag stored in irq_desc->chip_data to indicate HW-cleared irqs. */
#define IS_HW_CLEARED 1
/*
* The set of interrupts we enable for arch_local_irq_enable().
* This is initialized to have just a single interrupt that the kernel
* doesn't actually use as a sentinel. During kernel init,
* interrupts are added as the kernel gets prepared to support them.
* NOTE: we could probably initialize them all statically up front.
*/
DEFINE_PER_CPU(unsigned long long, interrupts_enabled_mask) =
INITIAL_INTERRUPTS_ENABLED;
EXPORT_PER_CPU_SYMBOL(interrupts_enabled_mask);
/* Define per-tile device interrupt statistics state. */
DEFINE_PER_CPU(irq_cpustat_t, irq_stat) ____cacheline_internodealigned_in_smp;
EXPORT_PER_CPU_SYMBOL(irq_stat);
/*
* Define per-tile irq disable mask; the hardware/HV only has a single
* mask that we use to implement both masking and disabling.
*/
static DEFINE_PER_CPU(unsigned long, irq_disable_mask)
____cacheline_internodealigned_in_smp;
/*
* Per-tile IRQ nesting depth. Used to make sure we enable newly
* enabled IRQs before exiting the outermost interrupt.
*/
static DEFINE_PER_CPU(int, irq_depth);
#if CHIP_HAS_IPI()
/* Use SPRs to manipulate device interrupts. */
#define mask_irqs(irq_mask) __insn_mtspr(SPR_IPI_MASK_SET_K, irq_mask)
#define unmask_irqs(irq_mask) __insn_mtspr(SPR_IPI_MASK_RESET_K, irq_mask)
#define clear_irqs(irq_mask) __insn_mtspr(SPR_IPI_EVENT_RESET_K, irq_mask)
#else
/* Use HV to manipulate device interrupts. */
#define mask_irqs(irq_mask) hv_disable_intr(irq_mask)
#define unmask_irqs(irq_mask) hv_enable_intr(irq_mask)
#define clear_irqs(irq_mask) hv_clear_intr(irq_mask)
#endif
/*
* The interrupt handling path, implemented in terms of HV interrupt
* emulation on TILEPro, and IPI hardware on TILE-Gx.
* Entered with interrupts disabled.
*/
void tile_dev_intr(struct pt_regs *regs, int intnum)
{
int depth = __this_cpu_inc_return(irq_depth);
unsigned long original_irqs;
unsigned long remaining_irqs;
struct pt_regs *old_regs;
#if CHIP_HAS_IPI()
/*
* Pending interrupts are listed in an SPR. We might be
* nested, so be sure to only handle irqs that weren't already
* masked by a previous interrupt. Then, mask out the ones
* we're going to handle.
*/
unsigned long masked = __insn_mfspr(SPR_IPI_MASK_K);
original_irqs = __insn_mfspr(SPR_IPI_EVENT_K) & ~masked;
__insn_mtspr(SPR_IPI_MASK_SET_K, original_irqs);
#else
/*
* Hypervisor performs the equivalent of the Gx code above and
* then puts the pending interrupt mask into a system save reg
* for us to find.
*/
original_irqs = __insn_mfspr(SPR_SYSTEM_SAVE_K_3);
#endif
remaining_irqs = original_irqs;
/* Track time spent here in an interrupt context. */
old_regs = set_irq_regs(regs);
irq_enter();
#ifdef CONFIG_DEBUG_STACKOVERFLOW
/* Debugging check for stack overflow: less than 1/8th stack free? */
{
long sp = stack_pointer - (long) current_thread_info();
if (unlikely(sp < (sizeof(struct thread_info) + STACK_WARN))) {
pr_emerg("tile_dev_intr: "
"stack overflow: %ld\n",
sp - sizeof(struct thread_info));
dump_stack();
}
}
#endif
while (remaining_irqs) {
unsigned long irq = __ffs(remaining_irqs);
remaining_irqs &= ~(1UL << irq);
/* Count device irqs; Linux IPIs are counted elsewhere. */
if (irq != IRQ_RESCHEDULE)
__this_cpu_inc(irq_stat.irq_dev_intr_count);
generic_handle_irq(irq);
}
/*
* If we weren't nested, turn on all enabled interrupts,
* including any that were reenabled during interrupt
* handling.
*/
if (depth == 1)
unmask_irqs(~__this_cpu_read(irq_disable_mask));
__this_cpu_dec(irq_depth);
/*
* Track time spent against the current process again and
* process any softirqs if they are waiting.
*/
irq_exit();
set_irq_regs(old_regs);
}
/*
* Remove an irq from the disabled mask. If we're in an interrupt
* context, defer enabling the HW interrupt until we leave.
*/
static void tile_irq_chip_enable(struct irq_data *d)
{
get_cpu_var(irq_disable_mask) &= ~(1UL << d->irq);
if (__this_cpu_read(irq_depth) == 0)
unmask_irqs(1UL << d->irq);
put_cpu_var(irq_disable_mask);
}
/*
* Add an irq to the disabled mask. We disable the HW interrupt
* immediately so that there's no possibility of it firing. If we're
* in an interrupt context, the return path is careful to avoid
* unmasking a newly disabled interrupt.
*/
static void tile_irq_chip_disable(struct irq_data *d)
{
get_cpu_var(irq_disable_mask) |= (1UL << d->irq);
mask_irqs(1UL << d->irq);
put_cpu_var(irq_disable_mask);
}
/* Mask an interrupt. */
static void tile_irq_chip_mask(struct irq_data *d)
{
mask_irqs(1UL << d->irq);
}
/* Unmask an interrupt. */
static void tile_irq_chip_unmask(struct irq_data *d)
{
unmask_irqs(1UL << d->irq);
}
/*
* Clear an interrupt before processing it so that any new assertions
* will trigger another irq.
*/
static void tile_irq_chip_ack(struct irq_data *d)
{
if ((unsigned long)irq_data_get_irq_chip_data(d) != IS_HW_CLEARED)
clear_irqs(1UL << d->irq);
}
/*
* For per-cpu interrupts, we need to avoid unmasking any interrupts
* that we disabled via disable_percpu_irq().
*/
static void tile_irq_chip_eoi(struct irq_data *d)
{
if (!(__this_cpu_read(irq_disable_mask) & (1UL << d->irq)))
unmask_irqs(1UL << d->irq);
}
static struct irq_chip tile_irq_chip = {
.name = "tile_irq_chip",
.irq_enable = tile_irq_chip_enable,
.irq_disable = tile_irq_chip_disable,
.irq_ack = tile_irq_chip_ack,
.irq_eoi = tile_irq_chip_eoi,
.irq_mask = tile_irq_chip_mask,
.irq_unmask = tile_irq_chip_unmask,
};
void __init init_IRQ(void)
{
ipi_init();
}
void setup_irq_regs(void)
{
/* Enable interrupt delivery. */
unmask_irqs(~0UL);
#if CHIP_HAS_IPI()
arch_local_irq_unmask(INT_IPI_K);
#endif
}
void tile_irq_activate(unsigned int irq, int tile_irq_type)
{
/*
* We use handle_level_irq() by default because the pending
* interrupt vector (whether modeled by the HV on
* TILEPro or implemented in hardware on TILE-Gx) has
* level-style semantics for each bit. An interrupt fires
* whenever a bit is high, not just at edges.
*/
irq_flow_handler_t handle = handle_level_irq;
if (tile_irq_type == TILE_IRQ_PERCPU)
handle = handle_percpu_irq;
irq_set_chip_and_handler(irq, &tile_irq_chip, handle);
/*
* Flag interrupts that are hardware-cleared so that ack()
* won't clear them.
*/
if (tile_irq_type == TILE_IRQ_HW_CLEAR)
irq_set_chip_data(irq, (void *)IS_HW_CLEARED);
}
EXPORT_SYMBOL(tile_irq_activate);
void ack_bad_irq(unsigned int irq)
{
pr_err("unexpected IRQ trap at vector %02x\n", irq);
}
/*
* /proc/interrupts printing:
*/
int arch_show_interrupts(struct seq_file *p, int prec)
{
#ifdef CONFIG_PERF_EVENTS
int i;
seq_printf(p, "%*s: ", prec, "PMI");
for_each_online_cpu(i)
seq_printf(p, "%10llu ", per_cpu(perf_irqs, i));
seq_puts(p, " perf_events\n");
#endif
return 0;
}
#if CHIP_HAS_IPI()
int arch_setup_hwirq(unsigned int irq, int node)
{
return irq >= NR_IRQS ? -EINVAL : 0;
}
void arch_teardown_hwirq(unsigned int irq) { }
#endif