linux/arch/sparc/kernel/uprobes.c

319 lines
8.5 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* User-space Probes (UProbes) for sparc
*
* Copyright (C) 2013 Oracle Inc.
*
* Authors:
* Jose E. Marchesi <jose.marchesi@oracle.com>
* Eric Saint Etienne <eric.saint.etienne@oracle.com>
*/
#include <linux/kernel.h>
#include <linux/highmem.h>
#include <linux/uprobes.h>
#include <linux/uaccess.h>
#include <linux/sched.h> /* For struct task_struct */
#include <linux/kdebug.h>
#include <asm/cacheflush.h>
/* Compute the address of the breakpoint instruction and return it.
*
* Note that uprobe_get_swbp_addr is defined as a weak symbol in
* kernel/events/uprobe.c.
*/
unsigned long uprobe_get_swbp_addr(struct pt_regs *regs)
{
return instruction_pointer(regs);
}
static void copy_to_page(struct page *page, unsigned long vaddr,
const void *src, int len)
{
void *kaddr = kmap_atomic(page);
memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
kunmap_atomic(kaddr);
}
/* Fill in the xol area with the probed instruction followed by the
* single-step trap. Some fixups in the copied instruction are
* performed at this point.
*
* Note that uprobe_xol_copy is defined as a weak symbol in
* kernel/events/uprobe.c.
*/
void arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
void *src, unsigned long len)
{
const u32 stp_insn = UPROBE_STP_INSN;
u32 insn = *(u32 *) src;
/* Branches annulling their delay slot must be fixed to not do
* so. Clearing the annul bit on these instructions we can be
* sure the single-step breakpoint in the XOL slot will be
* executed.
*/
u32 op = (insn >> 30) & 0x3;
u32 op2 = (insn >> 22) & 0x7;
if (op == 0 &&
(op2 == 1 || op2 == 2 || op2 == 3 || op2 == 5 || op2 == 6) &&
(insn & ANNUL_BIT) == ANNUL_BIT)
insn &= ~ANNUL_BIT;
copy_to_page(page, vaddr, &insn, len);
copy_to_page(page, vaddr+len, &stp_insn, 4);
}
/* Instruction analysis/validity.
*
* This function returns 0 on success or a -ve number on error.
*/
int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe,
struct mm_struct *mm, unsigned long addr)
{
/* Any unsupported instruction? Then return -EINVAL */
return 0;
}
/* If INSN is a relative control transfer instruction, return the
* corrected branch destination value.
*
* Note that regs->tpc and regs->tnpc still hold the values of the
* program counters at the time of the single-step trap due to the
* execution of the UPROBE_STP_INSN at utask->xol_vaddr + 4.
*
*/
static unsigned long relbranch_fixup(u32 insn, struct uprobe_task *utask,
struct pt_regs *regs)
{
/* Branch not taken, no mods necessary. */
if (regs->tnpc == regs->tpc + 0x4UL)
return utask->autask.saved_tnpc + 0x4UL;
/* The three cases are call, branch w/prediction,
* and traditional branch.
*/
if ((insn & 0xc0000000) == 0x40000000 ||
(insn & 0xc1c00000) == 0x00400000 ||
(insn & 0xc1c00000) == 0x00800000) {
unsigned long real_pc = (unsigned long) utask->vaddr;
unsigned long ixol_addr = utask->xol_vaddr;
/* The instruction did all the work for us
* already, just apply the offset to the correct
* instruction location.
*/
return (real_pc + (regs->tnpc - ixol_addr));
}
/* It is jmpl or some other absolute PC modification instruction,
* leave NPC as-is.
*/
return regs->tnpc;
}
/* If INSN is an instruction which writes its PC location
* into a destination register, fix that up.
*/
static int retpc_fixup(struct pt_regs *regs, u32 insn,
unsigned long real_pc)
{
unsigned long *slot = NULL;
int rc = 0;
/* Simplest case is 'call', which always uses %o7 */
if ((insn & 0xc0000000) == 0x40000000)
slot = &regs->u_regs[UREG_I7];
/* 'jmpl' encodes the register inside of the opcode */
if ((insn & 0xc1f80000) == 0x81c00000) {
unsigned long rd = ((insn >> 25) & 0x1f);
if (rd <= 15) {
slot = &regs->u_regs[rd];
} else {
unsigned long fp = regs->u_regs[UREG_FP];
/* Hard case, it goes onto the stack. */
flushw_all();
rd -= 16;
if (test_thread_64bit_stack(fp)) {
unsigned long __user *uslot =
(unsigned long __user *) (fp + STACK_BIAS) + rd;
rc = __put_user(real_pc, uslot);
} else {
unsigned int __user *uslot = (unsigned int
__user *) fp + rd;
rc = __put_user((u32) real_pc, uslot);
}
}
}
if (slot != NULL)
*slot = real_pc;
return rc;
}
/* Single-stepping can be avoided for certain instructions: NOPs and
* instructions that can be emulated. This function determines
* whether the instruction where the uprobe is installed falls in one
* of these cases and emulates it.
*
* This function returns true if the single-stepping can be skipped,
* false otherwise.
*/
bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
/* We currently only emulate NOP instructions.
*/
if (auprobe->ixol == (1 << 24)) {
regs->tnpc += 4;
regs->tpc += 4;
return true;
}
return false;
}
/* Prepare to execute out of line. At this point
* current->utask->xol_vaddr points to an allocated XOL slot properly
* initialized with the original instruction and the single-stepping
* trap instruction.
*
* This function returns 0 on success, any other number on error.
*/
int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
struct uprobe_task *utask = current->utask;
struct arch_uprobe_task *autask = &current->utask->autask;
/* Save the current program counters so they can be restored
* later.
*/
autask->saved_tpc = regs->tpc;
autask->saved_tnpc = regs->tnpc;
/* Adjust PC and NPC so the first instruction in the XOL slot
* will be executed by the user task.
*/
instruction_pointer_set(regs, utask->xol_vaddr);
return 0;
}
/* Prepare to resume execution after the single-step. Called after
* single-stepping. To avoid the SMP problems that can occur when we
* temporarily put back the original opcode to single-step, we
* single-stepped a copy of the instruction.
*
* This function returns 0 on success, any other number on error.
*/
int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
struct uprobe_task *utask = current->utask;
struct arch_uprobe_task *autask = &utask->autask;
u32 insn = auprobe->ixol;
int rc = 0;
if (utask->state == UTASK_SSTEP_ACK) {
regs->tnpc = relbranch_fixup(insn, utask, regs);
regs->tpc = autask->saved_tnpc;
rc = retpc_fixup(regs, insn, (unsigned long) utask->vaddr);
} else {
regs->tnpc = utask->vaddr+4;
regs->tpc = autask->saved_tnpc+4;
}
return rc;
}
/* Handler for uprobe traps. This is called from the traps table and
* triggers the proper die notification.
*/
asmlinkage void uprobe_trap(struct pt_regs *regs,
unsigned long trap_level)
{
BUG_ON(trap_level != 0x173 && trap_level != 0x174);
/* We are only interested in user-mode code. Uprobe traps
* shall not be present in kernel code.
*/
if (!user_mode(regs)) {
local_irq_enable();
bad_trap(regs, trap_level);
return;
}
/* trap_level == 0x173 --> ta 0x73
* trap_level == 0x174 --> ta 0x74
*/
if (notify_die((trap_level == 0x173) ? DIE_BPT : DIE_SSTEP,
(trap_level == 0x173) ? "bpt" : "sstep",
regs, 0, trap_level, SIGTRAP) != NOTIFY_STOP)
bad_trap(regs, trap_level);
}
/* Callback routine for handling die notifications.
*/
int arch_uprobe_exception_notify(struct notifier_block *self,
unsigned long val, void *data)
{
int ret = NOTIFY_DONE;
struct die_args *args = (struct die_args *)data;
/* We are only interested in userspace traps */
if (args->regs && !user_mode(args->regs))
return NOTIFY_DONE;
switch (val) {
case DIE_BPT:
if (uprobe_pre_sstep_notifier(args->regs))
ret = NOTIFY_STOP;
break;
case DIE_SSTEP:
if (uprobe_post_sstep_notifier(args->regs))
ret = NOTIFY_STOP;
default:
break;
}
return ret;
}
/* This function gets called when a XOL instruction either gets
* trapped or the thread has a fatal signal, so reset the instruction
* pointer to its probed address.
*/
void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
struct uprobe_task *utask = current->utask;
instruction_pointer_set(regs, utask->vaddr);
}
/* If xol insn itself traps and generates a signal(Say,
* SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
* instruction jumps back to its own address.
*/
bool arch_uprobe_xol_was_trapped(struct task_struct *t)
{
return false;
}
unsigned long
arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr,
struct pt_regs *regs)
{
unsigned long orig_ret_vaddr = regs->u_regs[UREG_I7];
regs->u_regs[UREG_I7] = trampoline_vaddr-8;
return orig_ret_vaddr + 8;
}