linux/drivers/usb/host/uhci-hcd.c

943 lines
25 KiB
C

/*
* Universal Host Controller Interface driver for USB.
*
* Maintainer: Alan Stern <stern@rowland.harvard.edu>
*
* (C) Copyright 1999 Linus Torvalds
* (C) Copyright 1999-2002 Johannes Erdfelt, johannes@erdfelt.com
* (C) Copyright 1999 Randy Dunlap
* (C) Copyright 1999 Georg Acher, acher@in.tum.de
* (C) Copyright 1999 Deti Fliegl, deti@fliegl.de
* (C) Copyright 1999 Thomas Sailer, sailer@ife.ee.ethz.ch
* (C) Copyright 1999 Roman Weissgaerber, weissg@vienna.at
* (C) Copyright 2000 Yggdrasil Computing, Inc. (port of new PCI interface
* support from usb-ohci.c by Adam Richter, adam@yggdrasil.com).
* (C) Copyright 1999 Gregory P. Smith (from usb-ohci.c)
* (C) Copyright 2004-2007 Alan Stern, stern@rowland.harvard.edu
*
* Intel documents this fairly well, and as far as I know there
* are no royalties or anything like that, but even so there are
* people who decided that they want to do the same thing in a
* completely different way.
*
*/
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/errno.h>
#include <linux/unistd.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/debugfs.h>
#include <linux/pm.h>
#include <linux/dmapool.h>
#include <linux/dma-mapping.h>
#include <linux/usb.h>
#include <linux/usb/hcd.h>
#include <linux/bitops.h>
#include <linux/dmi.h>
#include <linux/uaccess.h>
#include <asm/io.h>
#include <asm/irq.h>
#include "uhci-hcd.h"
/*
* Version Information
*/
#define DRIVER_AUTHOR \
"Linus 'Frodo Rabbit' Torvalds, Johannes Erdfelt, " \
"Randy Dunlap, Georg Acher, Deti Fliegl, Thomas Sailer, " \
"Roman Weissgaerber, Alan Stern"
#define DRIVER_DESC "USB Universal Host Controller Interface driver"
/* for flakey hardware, ignore overcurrent indicators */
static bool ignore_oc;
module_param(ignore_oc, bool, S_IRUGO);
MODULE_PARM_DESC(ignore_oc, "ignore hardware overcurrent indications");
/*
* debug = 0, no debugging messages
* debug = 1, dump failed URBs except for stalls
* debug = 2, dump all failed URBs (including stalls)
* show all queues in /sys/kernel/debug/uhci/[pci_addr]
* debug = 3, show all TDs in URBs when dumping
*/
#ifdef CONFIG_DYNAMIC_DEBUG
static int debug = 1;
module_param(debug, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(debug, "Debug level");
static char *errbuf;
#else
#define debug 0
#define errbuf NULL
#endif
#define ERRBUF_LEN (32 * 1024)
static struct kmem_cache *uhci_up_cachep; /* urb_priv */
static void suspend_rh(struct uhci_hcd *uhci, enum uhci_rh_state new_state);
static void wakeup_rh(struct uhci_hcd *uhci);
static void uhci_get_current_frame_number(struct uhci_hcd *uhci);
/*
* Calculate the link pointer DMA value for the first Skeleton QH in a frame.
*/
static __hc32 uhci_frame_skel_link(struct uhci_hcd *uhci, int frame)
{
int skelnum;
/*
* The interrupt queues will be interleaved as evenly as possible.
* There's not much to be done about period-1 interrupts; they have
* to occur in every frame. But we can schedule period-2 interrupts
* in odd-numbered frames, period-4 interrupts in frames congruent
* to 2 (mod 4), and so on. This way each frame only has two
* interrupt QHs, which will help spread out bandwidth utilization.
*
* ffs (Find First bit Set) does exactly what we need:
* 1,3,5,... => ffs = 0 => use period-2 QH = skelqh[8],
* 2,6,10,... => ffs = 1 => use period-4 QH = skelqh[7], etc.
* ffs >= 7 => not on any high-period queue, so use
* period-1 QH = skelqh[9].
* Add in UHCI_NUMFRAMES to insure at least one bit is set.
*/
skelnum = 8 - (int) __ffs(frame | UHCI_NUMFRAMES);
if (skelnum <= 1)
skelnum = 9;
return LINK_TO_QH(uhci, uhci->skelqh[skelnum]);
}
#include "uhci-debug.c"
#include "uhci-q.c"
#include "uhci-hub.c"
/*
* Finish up a host controller reset and update the recorded state.
*/
static void finish_reset(struct uhci_hcd *uhci)
{
int port;
/* HCRESET doesn't affect the Suspend, Reset, and Resume Detect
* bits in the port status and control registers.
* We have to clear them by hand.
*/
for (port = 0; port < uhci->rh_numports; ++port)
uhci_writew(uhci, 0, USBPORTSC1 + (port * 2));
uhci->port_c_suspend = uhci->resuming_ports = 0;
uhci->rh_state = UHCI_RH_RESET;
uhci->is_stopped = UHCI_IS_STOPPED;
clear_bit(HCD_FLAG_POLL_RH, &uhci_to_hcd(uhci)->flags);
}
/*
* Last rites for a defunct/nonfunctional controller
* or one we don't want to use any more.
*/
static void uhci_hc_died(struct uhci_hcd *uhci)
{
uhci_get_current_frame_number(uhci);
uhci->reset_hc(uhci);
finish_reset(uhci);
uhci->dead = 1;
/* The current frame may already be partway finished */
++uhci->frame_number;
}
/*
* Initialize a controller that was newly discovered or has lost power
* or otherwise been reset while it was suspended. In none of these cases
* can we be sure of its previous state.
*/
static void check_and_reset_hc(struct uhci_hcd *uhci)
{
if (uhci->check_and_reset_hc(uhci))
finish_reset(uhci);
}
#if defined(CONFIG_USB_UHCI_SUPPORT_NON_PCI_HC)
/*
* The two functions below are generic reset functions that are used on systems
* that do not have keyboard and mouse legacy support. We assume that we are
* running on such a system if CONFIG_USB_UHCI_SUPPORT_NON_PCI_HC is defined.
*/
/*
* Make sure the controller is completely inactive, unable to
* generate interrupts or do DMA.
*/
static void uhci_generic_reset_hc(struct uhci_hcd *uhci)
{
/* Reset the HC - this will force us to get a
* new notification of any already connected
* ports due to the virtual disconnect that it
* implies.
*/
uhci_writew(uhci, USBCMD_HCRESET, USBCMD);
mb();
udelay(5);
if (uhci_readw(uhci, USBCMD) & USBCMD_HCRESET)
dev_warn(uhci_dev(uhci), "HCRESET not completed yet!\n");
/* Just to be safe, disable interrupt requests and
* make sure the controller is stopped.
*/
uhci_writew(uhci, 0, USBINTR);
uhci_writew(uhci, 0, USBCMD);
}
/*
* Initialize a controller that was newly discovered or has just been
* resumed. In either case we can't be sure of its previous state.
*
* Returns: 1 if the controller was reset, 0 otherwise.
*/
static int uhci_generic_check_and_reset_hc(struct uhci_hcd *uhci)
{
unsigned int cmd, intr;
/*
* When restarting a suspended controller, we expect all the
* settings to be the same as we left them:
*
* Controller is stopped and configured with EGSM set;
* No interrupts enabled except possibly Resume Detect.
*
* If any of these conditions are violated we do a complete reset.
*/
cmd = uhci_readw(uhci, USBCMD);
if ((cmd & USBCMD_RS) || !(cmd & USBCMD_CF) || !(cmd & USBCMD_EGSM)) {
dev_dbg(uhci_dev(uhci), "%s: cmd = 0x%04x\n",
__func__, cmd);
goto reset_needed;
}
intr = uhci_readw(uhci, USBINTR);
if (intr & (~USBINTR_RESUME)) {
dev_dbg(uhci_dev(uhci), "%s: intr = 0x%04x\n",
__func__, intr);
goto reset_needed;
}
return 0;
reset_needed:
dev_dbg(uhci_dev(uhci), "Performing full reset\n");
uhci_generic_reset_hc(uhci);
return 1;
}
#endif /* CONFIG_USB_UHCI_SUPPORT_NON_PCI_HC */
/*
* Store the basic register settings needed by the controller.
*/
static void configure_hc(struct uhci_hcd *uhci)
{
/* Set the frame length to the default: 1 ms exactly */
uhci_writeb(uhci, USBSOF_DEFAULT, USBSOF);
/* Store the frame list base address */
uhci_writel(uhci, uhci->frame_dma_handle, USBFLBASEADD);
/* Set the current frame number */
uhci_writew(uhci, uhci->frame_number & UHCI_MAX_SOF_NUMBER,
USBFRNUM);
/* perform any arch/bus specific configuration */
if (uhci->configure_hc)
uhci->configure_hc(uhci);
}
static int resume_detect_interrupts_are_broken(struct uhci_hcd *uhci)
{
/* If we have to ignore overcurrent events then almost by definition
* we can't depend on resume-detect interrupts. */
if (ignore_oc)
return 1;
return uhci->resume_detect_interrupts_are_broken ?
uhci->resume_detect_interrupts_are_broken(uhci) : 0;
}
static int global_suspend_mode_is_broken(struct uhci_hcd *uhci)
{
return uhci->global_suspend_mode_is_broken ?
uhci->global_suspend_mode_is_broken(uhci) : 0;
}
static void suspend_rh(struct uhci_hcd *uhci, enum uhci_rh_state new_state)
__releases(uhci->lock)
__acquires(uhci->lock)
{
int auto_stop;
int int_enable, egsm_enable, wakeup_enable;
struct usb_device *rhdev = uhci_to_hcd(uhci)->self.root_hub;
auto_stop = (new_state == UHCI_RH_AUTO_STOPPED);
dev_dbg(&rhdev->dev, "%s%s\n", __func__,
(auto_stop ? " (auto-stop)" : ""));
/* Start off by assuming Resume-Detect interrupts and EGSM work
* and that remote wakeups should be enabled.
*/
egsm_enable = USBCMD_EGSM;
int_enable = USBINTR_RESUME;
wakeup_enable = 1;
/*
* In auto-stop mode, we must be able to detect new connections.
* The user can force us to poll by disabling remote wakeup;
* otherwise we will use the EGSM/RD mechanism.
*/
if (auto_stop) {
if (!device_may_wakeup(&rhdev->dev))
egsm_enable = int_enable = 0;
}
#ifdef CONFIG_PM
/*
* In bus-suspend mode, we use the wakeup setting specified
* for the root hub.
*/
else {
if (!rhdev->do_remote_wakeup)
wakeup_enable = 0;
}
#endif
/*
* UHCI doesn't distinguish between wakeup requests from downstream
* devices and local connect/disconnect events. There's no way to
* enable one without the other; both are controlled by EGSM. Thus
* if wakeups are disallowed then EGSM must be turned off -- in which
* case remote wakeup requests from downstream during system sleep
* will be lost.
*
* In addition, if EGSM is broken then we can't use it. Likewise,
* if Resume-Detect interrupts are broken then we can't use them.
*
* Finally, neither EGSM nor RD is useful by itself. Without EGSM,
* the RD status bit will never get set. Without RD, the controller
* won't generate interrupts to tell the system about wakeup events.
*/
if (!wakeup_enable || global_suspend_mode_is_broken(uhci) ||
resume_detect_interrupts_are_broken(uhci))
egsm_enable = int_enable = 0;
uhci->RD_enable = !!int_enable;
uhci_writew(uhci, int_enable, USBINTR);
uhci_writew(uhci, egsm_enable | USBCMD_CF, USBCMD);
mb();
udelay(5);
/* If we're auto-stopping then no devices have been attached
* for a while, so there shouldn't be any active URBs and the
* controller should stop after a few microseconds. Otherwise
* we will give the controller one frame to stop.
*/
if (!auto_stop && !(uhci_readw(uhci, USBSTS) & USBSTS_HCH)) {
uhci->rh_state = UHCI_RH_SUSPENDING;
spin_unlock_irq(&uhci->lock);
msleep(1);
spin_lock_irq(&uhci->lock);
if (uhci->dead)
return;
}
if (!(uhci_readw(uhci, USBSTS) & USBSTS_HCH))
dev_warn(uhci_dev(uhci), "Controller not stopped yet!\n");
uhci_get_current_frame_number(uhci);
uhci->rh_state = new_state;
uhci->is_stopped = UHCI_IS_STOPPED;
/*
* If remote wakeup is enabled but either EGSM or RD interrupts
* doesn't work, then we won't get an interrupt when a wakeup event
* occurs. Thus the suspended root hub needs to be polled.
*/
if (wakeup_enable && (!int_enable || !egsm_enable))
set_bit(HCD_FLAG_POLL_RH, &uhci_to_hcd(uhci)->flags);
else
clear_bit(HCD_FLAG_POLL_RH, &uhci_to_hcd(uhci)->flags);
uhci_scan_schedule(uhci);
uhci_fsbr_off(uhci);
}
static void start_rh(struct uhci_hcd *uhci)
{
uhci->is_stopped = 0;
/* Mark it configured and running with a 64-byte max packet.
* All interrupts are enabled, even though RESUME won't do anything.
*/
uhci_writew(uhci, USBCMD_RS | USBCMD_CF | USBCMD_MAXP, USBCMD);
uhci_writew(uhci, USBINTR_TIMEOUT | USBINTR_RESUME |
USBINTR_IOC | USBINTR_SP, USBINTR);
mb();
uhci->rh_state = UHCI_RH_RUNNING;
set_bit(HCD_FLAG_POLL_RH, &uhci_to_hcd(uhci)->flags);
}
static void wakeup_rh(struct uhci_hcd *uhci)
__releases(uhci->lock)
__acquires(uhci->lock)
{
dev_dbg(&uhci_to_hcd(uhci)->self.root_hub->dev,
"%s%s\n", __func__,
uhci->rh_state == UHCI_RH_AUTO_STOPPED ?
" (auto-start)" : "");
/* If we are auto-stopped then no devices are attached so there's
* no need for wakeup signals. Otherwise we send Global Resume
* for 20 ms.
*/
if (uhci->rh_state == UHCI_RH_SUSPENDED) {
unsigned egsm;
/* Keep EGSM on if it was set before */
egsm = uhci_readw(uhci, USBCMD) & USBCMD_EGSM;
uhci->rh_state = UHCI_RH_RESUMING;
uhci_writew(uhci, USBCMD_FGR | USBCMD_CF | egsm, USBCMD);
spin_unlock_irq(&uhci->lock);
msleep(20);
spin_lock_irq(&uhci->lock);
if (uhci->dead)
return;
/* End Global Resume and wait for EOP to be sent */
uhci_writew(uhci, USBCMD_CF, USBCMD);
mb();
udelay(4);
if (uhci_readw(uhci, USBCMD) & USBCMD_FGR)
dev_warn(uhci_dev(uhci), "FGR not stopped yet!\n");
}
start_rh(uhci);
/* Restart root hub polling */
mod_timer(&uhci_to_hcd(uhci)->rh_timer, jiffies);
}
static irqreturn_t uhci_irq(struct usb_hcd *hcd)
{
struct uhci_hcd *uhci = hcd_to_uhci(hcd);
unsigned short status;
/*
* Read the interrupt status, and write it back to clear the
* interrupt cause. Contrary to the UHCI specification, the
* "HC Halted" status bit is persistent: it is RO, not R/WC.
*/
status = uhci_readw(uhci, USBSTS);
if (!(status & ~USBSTS_HCH)) /* shared interrupt, not mine */
return IRQ_NONE;
uhci_writew(uhci, status, USBSTS); /* Clear it */
spin_lock(&uhci->lock);
if (unlikely(!uhci->is_initialized)) /* not yet configured */
goto done;
if (status & ~(USBSTS_USBINT | USBSTS_ERROR | USBSTS_RD)) {
if (status & USBSTS_HSE)
dev_err(uhci_dev(uhci),
"host system error, PCI problems?\n");
if (status & USBSTS_HCPE)
dev_err(uhci_dev(uhci),
"host controller process error, something bad happened!\n");
if (status & USBSTS_HCH) {
if (uhci->rh_state >= UHCI_RH_RUNNING) {
dev_err(uhci_dev(uhci),
"host controller halted, very bad!\n");
if (debug > 1 && errbuf) {
/* Print the schedule for debugging */
uhci_sprint_schedule(uhci, errbuf,
ERRBUF_LEN - EXTRA_SPACE);
lprintk(errbuf);
}
uhci_hc_died(uhci);
usb_hc_died(hcd);
/* Force a callback in case there are
* pending unlinks */
mod_timer(&hcd->rh_timer, jiffies);
}
}
}
if (status & USBSTS_RD) {
spin_unlock(&uhci->lock);
usb_hcd_poll_rh_status(hcd);
} else {
uhci_scan_schedule(uhci);
done:
spin_unlock(&uhci->lock);
}
return IRQ_HANDLED;
}
/*
* Store the current frame number in uhci->frame_number if the controller
* is running. Expand from 11 bits (of which we use only 10) to a
* full-sized integer.
*
* Like many other parts of the driver, this code relies on being polled
* more than once per second as long as the controller is running.
*/
static void uhci_get_current_frame_number(struct uhci_hcd *uhci)
{
if (!uhci->is_stopped) {
unsigned delta;
delta = (uhci_readw(uhci, USBFRNUM) - uhci->frame_number) &
(UHCI_NUMFRAMES - 1);
uhci->frame_number += delta;
}
}
/*
* De-allocate all resources
*/
static void release_uhci(struct uhci_hcd *uhci)
{
int i;
spin_lock_irq(&uhci->lock);
uhci->is_initialized = 0;
spin_unlock_irq(&uhci->lock);
debugfs_remove(uhci->dentry);
for (i = 0; i < UHCI_NUM_SKELQH; i++)
uhci_free_qh(uhci, uhci->skelqh[i]);
uhci_free_td(uhci, uhci->term_td);
dma_pool_destroy(uhci->qh_pool);
dma_pool_destroy(uhci->td_pool);
kfree(uhci->frame_cpu);
dma_free_coherent(uhci_dev(uhci),
UHCI_NUMFRAMES * sizeof(*uhci->frame),
uhci->frame, uhci->frame_dma_handle);
}
/*
* Allocate a frame list, and then setup the skeleton
*
* The hardware doesn't really know any difference
* in the queues, but the order does matter for the
* protocols higher up. The order in which the queues
* are encountered by the hardware is:
*
* - All isochronous events are handled before any
* of the queues. We don't do that here, because
* we'll create the actual TD entries on demand.
* - The first queue is the high-period interrupt queue.
* - The second queue is the period-1 interrupt and async
* (low-speed control, full-speed control, then bulk) queue.
* - The third queue is the terminating bandwidth reclamation queue,
* which contains no members, loops back to itself, and is present
* only when FSBR is on and there are no full-speed control or bulk QHs.
*/
static int uhci_start(struct usb_hcd *hcd)
{
struct uhci_hcd *uhci = hcd_to_uhci(hcd);
int retval = -EBUSY;
int i;
struct dentry __maybe_unused *dentry;
hcd->uses_new_polling = 1;
/* Accept arbitrarily long scatter-gather lists */
if (!(hcd->driver->flags & HCD_LOCAL_MEM))
hcd->self.sg_tablesize = ~0;
spin_lock_init(&uhci->lock);
setup_timer(&uhci->fsbr_timer, uhci_fsbr_timeout,
(unsigned long) uhci);
INIT_LIST_HEAD(&uhci->idle_qh_list);
init_waitqueue_head(&uhci->waitqh);
#ifdef UHCI_DEBUG_OPS
dentry = debugfs_create_file(hcd->self.bus_name,
S_IFREG|S_IRUGO|S_IWUSR, uhci_debugfs_root,
uhci, &uhci_debug_operations);
if (!dentry) {
dev_err(uhci_dev(uhci), "couldn't create uhci debugfs entry\n");
return -ENOMEM;
}
uhci->dentry = dentry;
#endif
uhci->frame = dma_alloc_coherent(uhci_dev(uhci),
UHCI_NUMFRAMES * sizeof(*uhci->frame),
&uhci->frame_dma_handle, GFP_KERNEL);
if (!uhci->frame) {
dev_err(uhci_dev(uhci),
"unable to allocate consistent memory for frame list\n");
goto err_alloc_frame;
}
memset(uhci->frame, 0, UHCI_NUMFRAMES * sizeof(*uhci->frame));
uhci->frame_cpu = kcalloc(UHCI_NUMFRAMES, sizeof(*uhci->frame_cpu),
GFP_KERNEL);
if (!uhci->frame_cpu)
goto err_alloc_frame_cpu;
uhci->td_pool = dma_pool_create("uhci_td", uhci_dev(uhci),
sizeof(struct uhci_td), 16, 0);
if (!uhci->td_pool) {
dev_err(uhci_dev(uhci), "unable to create td dma_pool\n");
goto err_create_td_pool;
}
uhci->qh_pool = dma_pool_create("uhci_qh", uhci_dev(uhci),
sizeof(struct uhci_qh), 16, 0);
if (!uhci->qh_pool) {
dev_err(uhci_dev(uhci), "unable to create qh dma_pool\n");
goto err_create_qh_pool;
}
uhci->term_td = uhci_alloc_td(uhci);
if (!uhci->term_td) {
dev_err(uhci_dev(uhci), "unable to allocate terminating TD\n");
goto err_alloc_term_td;
}
for (i = 0; i < UHCI_NUM_SKELQH; i++) {
uhci->skelqh[i] = uhci_alloc_qh(uhci, NULL, NULL);
if (!uhci->skelqh[i]) {
dev_err(uhci_dev(uhci), "unable to allocate QH\n");
goto err_alloc_skelqh;
}
}
/*
* 8 Interrupt queues; link all higher int queues to int1 = async
*/
for (i = SKEL_ISO + 1; i < SKEL_ASYNC; ++i)
uhci->skelqh[i]->link = LINK_TO_QH(uhci, uhci->skel_async_qh);
uhci->skel_async_qh->link = UHCI_PTR_TERM(uhci);
uhci->skel_term_qh->link = LINK_TO_QH(uhci, uhci->skel_term_qh);
/* This dummy TD is to work around a bug in Intel PIIX controllers */
uhci_fill_td(uhci, uhci->term_td, 0, uhci_explen(0) |
(0x7f << TD_TOKEN_DEVADDR_SHIFT) | USB_PID_IN, 0);
uhci->term_td->link = UHCI_PTR_TERM(uhci);
uhci->skel_async_qh->element = uhci->skel_term_qh->element =
LINK_TO_TD(uhci, uhci->term_td);
/*
* Fill the frame list: make all entries point to the proper
* interrupt queue.
*/
for (i = 0; i < UHCI_NUMFRAMES; i++) {
/* Only place we don't use the frame list routines */
uhci->frame[i] = uhci_frame_skel_link(uhci, i);
}
/*
* Some architectures require a full mb() to enforce completion of
* the memory writes above before the I/O transfers in configure_hc().
*/
mb();
spin_lock_irq(&uhci->lock);
configure_hc(uhci);
uhci->is_initialized = 1;
start_rh(uhci);
spin_unlock_irq(&uhci->lock);
return 0;
/*
* error exits:
*/
err_alloc_skelqh:
for (i = 0; i < UHCI_NUM_SKELQH; i++) {
if (uhci->skelqh[i])
uhci_free_qh(uhci, uhci->skelqh[i]);
}
uhci_free_td(uhci, uhci->term_td);
err_alloc_term_td:
dma_pool_destroy(uhci->qh_pool);
err_create_qh_pool:
dma_pool_destroy(uhci->td_pool);
err_create_td_pool:
kfree(uhci->frame_cpu);
err_alloc_frame_cpu:
dma_free_coherent(uhci_dev(uhci),
UHCI_NUMFRAMES * sizeof(*uhci->frame),
uhci->frame, uhci->frame_dma_handle);
err_alloc_frame:
debugfs_remove(uhci->dentry);
return retval;
}
static void uhci_stop(struct usb_hcd *hcd)
{
struct uhci_hcd *uhci = hcd_to_uhci(hcd);
spin_lock_irq(&uhci->lock);
if (HCD_HW_ACCESSIBLE(hcd) && !uhci->dead)
uhci_hc_died(uhci);
uhci_scan_schedule(uhci);
spin_unlock_irq(&uhci->lock);
synchronize_irq(hcd->irq);
del_timer_sync(&uhci->fsbr_timer);
release_uhci(uhci);
}
#ifdef CONFIG_PM
static int uhci_rh_suspend(struct usb_hcd *hcd)
{
struct uhci_hcd *uhci = hcd_to_uhci(hcd);
int rc = 0;
spin_lock_irq(&uhci->lock);
if (!HCD_HW_ACCESSIBLE(hcd))
rc = -ESHUTDOWN;
else if (uhci->dead)
; /* Dead controllers tell no tales */
/* Once the controller is stopped, port resumes that are already
* in progress won't complete. Hence if remote wakeup is enabled
* for the root hub and any ports are in the middle of a resume or
* remote wakeup, we must fail the suspend.
*/
else if (hcd->self.root_hub->do_remote_wakeup &&
uhci->resuming_ports) {
dev_dbg(uhci_dev(uhci),
"suspend failed because a port is resuming\n");
rc = -EBUSY;
} else
suspend_rh(uhci, UHCI_RH_SUSPENDED);
spin_unlock_irq(&uhci->lock);
return rc;
}
static int uhci_rh_resume(struct usb_hcd *hcd)
{
struct uhci_hcd *uhci = hcd_to_uhci(hcd);
int rc = 0;
spin_lock_irq(&uhci->lock);
if (!HCD_HW_ACCESSIBLE(hcd))
rc = -ESHUTDOWN;
else if (!uhci->dead)
wakeup_rh(uhci);
spin_unlock_irq(&uhci->lock);
return rc;
}
#endif
/* Wait until a particular device/endpoint's QH is idle, and free it */
static void uhci_hcd_endpoint_disable(struct usb_hcd *hcd,
struct usb_host_endpoint *hep)
{
struct uhci_hcd *uhci = hcd_to_uhci(hcd);
struct uhci_qh *qh;
spin_lock_irq(&uhci->lock);
qh = (struct uhci_qh *) hep->hcpriv;
if (qh == NULL)
goto done;
while (qh->state != QH_STATE_IDLE) {
++uhci->num_waiting;
spin_unlock_irq(&uhci->lock);
wait_event_interruptible(uhci->waitqh,
qh->state == QH_STATE_IDLE);
spin_lock_irq(&uhci->lock);
--uhci->num_waiting;
}
uhci_free_qh(uhci, qh);
done:
spin_unlock_irq(&uhci->lock);
}
static int uhci_hcd_get_frame_number(struct usb_hcd *hcd)
{
struct uhci_hcd *uhci = hcd_to_uhci(hcd);
unsigned frame_number;
unsigned delta;
/* Minimize latency by avoiding the spinlock */
frame_number = uhci->frame_number;
barrier();
delta = (uhci_readw(uhci, USBFRNUM) - frame_number) &
(UHCI_NUMFRAMES - 1);
return frame_number + delta;
}
/* Determines number of ports on controller */
static int uhci_count_ports(struct usb_hcd *hcd)
{
struct uhci_hcd *uhci = hcd_to_uhci(hcd);
unsigned io_size = (unsigned) hcd->rsrc_len;
int port;
/* The UHCI spec says devices must have 2 ports, and goes on to say
* they may have more but gives no way to determine how many there
* are. However according to the UHCI spec, Bit 7 of the port
* status and control register is always set to 1. So we try to
* use this to our advantage. Another common failure mode when
* a nonexistent register is addressed is to return all ones, so
* we test for that also.
*/
for (port = 0; port < (io_size - USBPORTSC1) / 2; port++) {
unsigned int portstatus;
portstatus = uhci_readw(uhci, USBPORTSC1 + (port * 2));
if (!(portstatus & 0x0080) || portstatus == 0xffff)
break;
}
if (debug)
dev_info(uhci_dev(uhci), "detected %d ports\n", port);
/* Anything greater than 7 is weird so we'll ignore it. */
if (port > UHCI_RH_MAXCHILD) {
dev_info(uhci_dev(uhci),
"port count misdetected? forcing to 2 ports\n");
port = 2;
}
return port;
}
static const char hcd_name[] = "uhci_hcd";
#ifdef CONFIG_PCI
#include "uhci-pci.c"
#define PCI_DRIVER uhci_pci_driver
#endif
#ifdef CONFIG_SPARC_LEON
#include "uhci-grlib.c"
#define PLATFORM_DRIVER uhci_grlib_driver
#endif
#ifdef CONFIG_USB_UHCI_PLATFORM
#include "uhci-platform.c"
#define PLATFORM_DRIVER uhci_platform_driver
#endif
#if !defined(PCI_DRIVER) && !defined(PLATFORM_DRIVER)
#error "missing bus glue for uhci-hcd"
#endif
static int __init uhci_hcd_init(void)
{
int retval = -ENOMEM;
if (usb_disabled())
return -ENODEV;
printk(KERN_INFO "uhci_hcd: " DRIVER_DESC "%s\n",
ignore_oc ? ", overcurrent ignored" : "");
set_bit(USB_UHCI_LOADED, &usb_hcds_loaded);
#ifdef CONFIG_DYNAMIC_DEBUG
errbuf = kmalloc(ERRBUF_LEN, GFP_KERNEL);
if (!errbuf)
goto errbuf_failed;
uhci_debugfs_root = debugfs_create_dir("uhci", usb_debug_root);
if (!uhci_debugfs_root)
goto debug_failed;
#endif
uhci_up_cachep = kmem_cache_create("uhci_urb_priv",
sizeof(struct urb_priv), 0, 0, NULL);
if (!uhci_up_cachep)
goto up_failed;
#ifdef PLATFORM_DRIVER
retval = platform_driver_register(&PLATFORM_DRIVER);
if (retval < 0)
goto clean0;
#endif
#ifdef PCI_DRIVER
retval = pci_register_driver(&PCI_DRIVER);
if (retval < 0)
goto clean1;
#endif
return 0;
#ifdef PCI_DRIVER
clean1:
#endif
#ifdef PLATFORM_DRIVER
platform_driver_unregister(&PLATFORM_DRIVER);
clean0:
#endif
kmem_cache_destroy(uhci_up_cachep);
up_failed:
#if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
debugfs_remove(uhci_debugfs_root);
debug_failed:
kfree(errbuf);
errbuf_failed:
#endif
clear_bit(USB_UHCI_LOADED, &usb_hcds_loaded);
return retval;
}
static void __exit uhci_hcd_cleanup(void)
{
#ifdef PLATFORM_DRIVER
platform_driver_unregister(&PLATFORM_DRIVER);
#endif
#ifdef PCI_DRIVER
pci_unregister_driver(&PCI_DRIVER);
#endif
kmem_cache_destroy(uhci_up_cachep);
debugfs_remove(uhci_debugfs_root);
#ifdef CONFIG_DYNAMIC_DEBUG
kfree(errbuf);
#endif
clear_bit(USB_UHCI_LOADED, &usb_hcds_loaded);
}
module_init(uhci_hcd_init);
module_exit(uhci_hcd_cleanup);
MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_LICENSE("GPL");