linux/drivers/gpu/drm/amd/amdgpu/amdgpu_ctx.c

323 lines
7.5 KiB
C

/*
* Copyright 2015 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: monk liu <monk.liu@amd.com>
*/
#include <drm/drmP.h>
#include "amdgpu.h"
int amdgpu_ctx_init(struct amdgpu_device *adev, enum amd_sched_priority pri,
struct amdgpu_ctx *ctx)
{
unsigned i, j;
int r;
memset(ctx, 0, sizeof(*ctx));
ctx->adev = adev;
kref_init(&ctx->refcount);
spin_lock_init(&ctx->ring_lock);
ctx->fences = kzalloc(sizeof(struct fence *) * amdgpu_sched_jobs *
AMDGPU_MAX_RINGS, GFP_KERNEL);
if (!ctx->fences)
return -ENOMEM;
for (i = 0; i < AMDGPU_MAX_RINGS; ++i) {
ctx->rings[i].sequence = 1;
ctx->rings[i].fences = (void *)ctx->fences + sizeof(struct fence *) *
amdgpu_sched_jobs * i;
}
if (amdgpu_enable_scheduler) {
/* create context entity for each ring */
for (i = 0; i < adev->num_rings; i++) {
struct amd_sched_rq *rq;
if (pri >= AMD_SCHED_MAX_PRIORITY) {
kfree(ctx->fences);
return -EINVAL;
}
rq = &adev->rings[i]->sched.sched_rq[pri];
r = amd_sched_entity_init(&adev->rings[i]->sched,
&ctx->rings[i].entity,
rq, amdgpu_sched_jobs);
if (r)
break;
}
if (i < adev->num_rings) {
for (j = 0; j < i; j++)
amd_sched_entity_fini(&adev->rings[j]->sched,
&ctx->rings[j].entity);
kfree(ctx->fences);
return r;
}
}
return 0;
}
void amdgpu_ctx_fini(struct amdgpu_ctx *ctx)
{
struct amdgpu_device *adev = ctx->adev;
unsigned i, j;
if (!adev)
return;
for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
for (j = 0; j < amdgpu_sched_jobs; ++j)
fence_put(ctx->rings[i].fences[j]);
kfree(ctx->fences);
if (amdgpu_enable_scheduler) {
for (i = 0; i < adev->num_rings; i++)
amd_sched_entity_fini(&adev->rings[i]->sched,
&ctx->rings[i].entity);
}
}
static int amdgpu_ctx_alloc(struct amdgpu_device *adev,
struct amdgpu_fpriv *fpriv,
uint32_t *id)
{
struct amdgpu_ctx_mgr *mgr = &fpriv->ctx_mgr;
struct amdgpu_ctx *ctx;
int r;
ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
if (!ctx)
return -ENOMEM;
mutex_lock(&mgr->lock);
r = idr_alloc(&mgr->ctx_handles, ctx, 1, 0, GFP_KERNEL);
if (r < 0) {
mutex_unlock(&mgr->lock);
kfree(ctx);
return r;
}
*id = (uint32_t)r;
r = amdgpu_ctx_init(adev, AMD_SCHED_PRIORITY_NORMAL, ctx);
if (r) {
idr_remove(&mgr->ctx_handles, *id);
*id = 0;
kfree(ctx);
}
mutex_unlock(&mgr->lock);
return r;
}
static void amdgpu_ctx_do_release(struct kref *ref)
{
struct amdgpu_ctx *ctx;
ctx = container_of(ref, struct amdgpu_ctx, refcount);
amdgpu_ctx_fini(ctx);
kfree(ctx);
}
static int amdgpu_ctx_free(struct amdgpu_fpriv *fpriv, uint32_t id)
{
struct amdgpu_ctx_mgr *mgr = &fpriv->ctx_mgr;
struct amdgpu_ctx *ctx;
mutex_lock(&mgr->lock);
ctx = idr_find(&mgr->ctx_handles, id);
if (ctx) {
idr_remove(&mgr->ctx_handles, id);
kref_put(&ctx->refcount, amdgpu_ctx_do_release);
mutex_unlock(&mgr->lock);
return 0;
}
mutex_unlock(&mgr->lock);
return -EINVAL;
}
static int amdgpu_ctx_query(struct amdgpu_device *adev,
struct amdgpu_fpriv *fpriv, uint32_t id,
union drm_amdgpu_ctx_out *out)
{
struct amdgpu_ctx *ctx;
struct amdgpu_ctx_mgr *mgr;
unsigned reset_counter;
if (!fpriv)
return -EINVAL;
mgr = &fpriv->ctx_mgr;
mutex_lock(&mgr->lock);
ctx = idr_find(&mgr->ctx_handles, id);
if (!ctx) {
mutex_unlock(&mgr->lock);
return -EINVAL;
}
/* TODO: these two are always zero */
out->state.flags = 0x0;
out->state.hangs = 0x0;
/* determine if a GPU reset has occured since the last call */
reset_counter = atomic_read(&adev->gpu_reset_counter);
/* TODO: this should ideally return NO, GUILTY, or INNOCENT. */
if (ctx->reset_counter == reset_counter)
out->state.reset_status = AMDGPU_CTX_NO_RESET;
else
out->state.reset_status = AMDGPU_CTX_UNKNOWN_RESET;
ctx->reset_counter = reset_counter;
mutex_unlock(&mgr->lock);
return 0;
}
int amdgpu_ctx_ioctl(struct drm_device *dev, void *data,
struct drm_file *filp)
{
int r;
uint32_t id;
union drm_amdgpu_ctx *args = data;
struct amdgpu_device *adev = dev->dev_private;
struct amdgpu_fpriv *fpriv = filp->driver_priv;
r = 0;
id = args->in.ctx_id;
switch (args->in.op) {
case AMDGPU_CTX_OP_ALLOC_CTX:
r = amdgpu_ctx_alloc(adev, fpriv, &id);
args->out.alloc.ctx_id = id;
break;
case AMDGPU_CTX_OP_FREE_CTX:
r = amdgpu_ctx_free(fpriv, id);
break;
case AMDGPU_CTX_OP_QUERY_STATE:
r = amdgpu_ctx_query(adev, fpriv, id, &args->out);
break;
default:
return -EINVAL;
}
return r;
}
struct amdgpu_ctx *amdgpu_ctx_get(struct amdgpu_fpriv *fpriv, uint32_t id)
{
struct amdgpu_ctx *ctx;
struct amdgpu_ctx_mgr *mgr;
if (!fpriv)
return NULL;
mgr = &fpriv->ctx_mgr;
mutex_lock(&mgr->lock);
ctx = idr_find(&mgr->ctx_handles, id);
if (ctx)
kref_get(&ctx->refcount);
mutex_unlock(&mgr->lock);
return ctx;
}
int amdgpu_ctx_put(struct amdgpu_ctx *ctx)
{
if (ctx == NULL)
return -EINVAL;
kref_put(&ctx->refcount, amdgpu_ctx_do_release);
return 0;
}
uint64_t amdgpu_ctx_add_fence(struct amdgpu_ctx *ctx, struct amdgpu_ring *ring,
struct fence *fence)
{
struct amdgpu_ctx_ring *cring = & ctx->rings[ring->idx];
uint64_t seq = cring->sequence;
unsigned idx = 0;
struct fence *other = NULL;
idx = seq % amdgpu_sched_jobs;
other = cring->fences[idx];
if (other) {
signed long r;
r = fence_wait_timeout(other, false, MAX_SCHEDULE_TIMEOUT);
if (r < 0)
DRM_ERROR("Error (%ld) waiting for fence!\n", r);
}
fence_get(fence);
spin_lock(&ctx->ring_lock);
cring->fences[idx] = fence;
cring->sequence++;
spin_unlock(&ctx->ring_lock);
fence_put(other);
return seq;
}
struct fence *amdgpu_ctx_get_fence(struct amdgpu_ctx *ctx,
struct amdgpu_ring *ring, uint64_t seq)
{
struct amdgpu_ctx_ring *cring = & ctx->rings[ring->idx];
struct fence *fence;
spin_lock(&ctx->ring_lock);
if (seq >= cring->sequence) {
spin_unlock(&ctx->ring_lock);
return ERR_PTR(-EINVAL);
}
if (seq + amdgpu_sched_jobs < cring->sequence) {
spin_unlock(&ctx->ring_lock);
return NULL;
}
fence = fence_get(cring->fences[seq % amdgpu_sched_jobs]);
spin_unlock(&ctx->ring_lock);
return fence;
}
void amdgpu_ctx_mgr_init(struct amdgpu_ctx_mgr *mgr)
{
mutex_init(&mgr->lock);
idr_init(&mgr->ctx_handles);
}
void amdgpu_ctx_mgr_fini(struct amdgpu_ctx_mgr *mgr)
{
struct amdgpu_ctx *ctx;
struct idr *idp;
uint32_t id;
idp = &mgr->ctx_handles;
idr_for_each_entry(idp, ctx, id) {
if (kref_put(&ctx->refcount, amdgpu_ctx_do_release) != 1)
DRM_ERROR("ctx %p is still alive\n", ctx);
}
idr_destroy(&mgr->ctx_handles);
mutex_destroy(&mgr->lock);
}