linux/drivers/scsi/mvsas/mv_sas.c

2206 lines
56 KiB
C

/*
* Marvell 88SE64xx/88SE94xx main function
*
* Copyright 2007 Red Hat, Inc.
* Copyright 2008 Marvell. <kewei@marvell.com>
* Copyright 2009-2011 Marvell. <yuxiangl@marvell.com>
*
* This file is licensed under GPLv2.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; version 2 of the
* License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
* USA
*/
#include "mv_sas.h"
static int mvs_find_tag(struct mvs_info *mvi, struct sas_task *task, u32 *tag)
{
if (task->lldd_task) {
struct mvs_slot_info *slot;
slot = task->lldd_task;
*tag = slot->slot_tag;
return 1;
}
return 0;
}
void mvs_tag_clear(struct mvs_info *mvi, u32 tag)
{
void *bitmap = mvi->tags;
clear_bit(tag, bitmap);
}
void mvs_tag_free(struct mvs_info *mvi, u32 tag)
{
mvs_tag_clear(mvi, tag);
}
void mvs_tag_set(struct mvs_info *mvi, unsigned int tag)
{
void *bitmap = mvi->tags;
set_bit(tag, bitmap);
}
inline int mvs_tag_alloc(struct mvs_info *mvi, u32 *tag_out)
{
unsigned int index, tag;
void *bitmap = mvi->tags;
index = find_first_zero_bit(bitmap, mvi->tags_num);
tag = index;
if (tag >= mvi->tags_num)
return -SAS_QUEUE_FULL;
mvs_tag_set(mvi, tag);
*tag_out = tag;
return 0;
}
void mvs_tag_init(struct mvs_info *mvi)
{
int i;
for (i = 0; i < mvi->tags_num; ++i)
mvs_tag_clear(mvi, i);
}
struct mvs_info *mvs_find_dev_mvi(struct domain_device *dev)
{
unsigned long i = 0, j = 0, hi = 0;
struct sas_ha_struct *sha = dev->port->ha;
struct mvs_info *mvi = NULL;
struct asd_sas_phy *phy;
while (sha->sas_port[i]) {
if (sha->sas_port[i] == dev->port) {
phy = container_of(sha->sas_port[i]->phy_list.next,
struct asd_sas_phy, port_phy_el);
j = 0;
while (sha->sas_phy[j]) {
if (sha->sas_phy[j] == phy)
break;
j++;
}
break;
}
i++;
}
hi = j/((struct mvs_prv_info *)sha->lldd_ha)->n_phy;
mvi = ((struct mvs_prv_info *)sha->lldd_ha)->mvi[hi];
return mvi;
}
int mvs_find_dev_phyno(struct domain_device *dev, int *phyno)
{
unsigned long i = 0, j = 0, n = 0, num = 0;
struct mvs_device *mvi_dev = (struct mvs_device *)dev->lldd_dev;
struct mvs_info *mvi = mvi_dev->mvi_info;
struct sas_ha_struct *sha = dev->port->ha;
while (sha->sas_port[i]) {
if (sha->sas_port[i] == dev->port) {
struct asd_sas_phy *phy;
list_for_each_entry(phy,
&sha->sas_port[i]->phy_list, port_phy_el) {
j = 0;
while (sha->sas_phy[j]) {
if (sha->sas_phy[j] == phy)
break;
j++;
}
phyno[n] = (j >= mvi->chip->n_phy) ?
(j - mvi->chip->n_phy) : j;
num++;
n++;
}
break;
}
i++;
}
return num;
}
struct mvs_device *mvs_find_dev_by_reg_set(struct mvs_info *mvi,
u8 reg_set)
{
u32 dev_no;
for (dev_no = 0; dev_no < MVS_MAX_DEVICES; dev_no++) {
if (mvi->devices[dev_no].taskfileset == MVS_ID_NOT_MAPPED)
continue;
if (mvi->devices[dev_no].taskfileset == reg_set)
return &mvi->devices[dev_no];
}
return NULL;
}
static inline void mvs_free_reg_set(struct mvs_info *mvi,
struct mvs_device *dev)
{
if (!dev) {
mv_printk("device has been free.\n");
return;
}
if (dev->taskfileset == MVS_ID_NOT_MAPPED)
return;
MVS_CHIP_DISP->free_reg_set(mvi, &dev->taskfileset);
}
static inline u8 mvs_assign_reg_set(struct mvs_info *mvi,
struct mvs_device *dev)
{
if (dev->taskfileset != MVS_ID_NOT_MAPPED)
return 0;
return MVS_CHIP_DISP->assign_reg_set(mvi, &dev->taskfileset);
}
void mvs_phys_reset(struct mvs_info *mvi, u32 phy_mask, int hard)
{
u32 no;
for_each_phy(phy_mask, phy_mask, no) {
if (!(phy_mask & 1))
continue;
MVS_CHIP_DISP->phy_reset(mvi, no, hard);
}
}
int mvs_phy_control(struct asd_sas_phy *sas_phy, enum phy_func func,
void *funcdata)
{
int rc = 0, phy_id = sas_phy->id;
u32 tmp, i = 0, hi;
struct sas_ha_struct *sha = sas_phy->ha;
struct mvs_info *mvi = NULL;
while (sha->sas_phy[i]) {
if (sha->sas_phy[i] == sas_phy)
break;
i++;
}
hi = i/((struct mvs_prv_info *)sha->lldd_ha)->n_phy;
mvi = ((struct mvs_prv_info *)sha->lldd_ha)->mvi[hi];
switch (func) {
case PHY_FUNC_SET_LINK_RATE:
MVS_CHIP_DISP->phy_set_link_rate(mvi, phy_id, funcdata);
break;
case PHY_FUNC_HARD_RESET:
tmp = MVS_CHIP_DISP->read_phy_ctl(mvi, phy_id);
if (tmp & PHY_RST_HARD)
break;
MVS_CHIP_DISP->phy_reset(mvi, phy_id, MVS_HARD_RESET);
break;
case PHY_FUNC_LINK_RESET:
MVS_CHIP_DISP->phy_enable(mvi, phy_id);
MVS_CHIP_DISP->phy_reset(mvi, phy_id, MVS_SOFT_RESET);
break;
case PHY_FUNC_DISABLE:
MVS_CHIP_DISP->phy_disable(mvi, phy_id);
break;
case PHY_FUNC_RELEASE_SPINUP_HOLD:
default:
rc = -ENOSYS;
}
msleep(200);
return rc;
}
void mvs_set_sas_addr(struct mvs_info *mvi, int port_id, u32 off_lo,
u32 off_hi, u64 sas_addr)
{
u32 lo = (u32)sas_addr;
u32 hi = (u32)(sas_addr>>32);
MVS_CHIP_DISP->write_port_cfg_addr(mvi, port_id, off_lo);
MVS_CHIP_DISP->write_port_cfg_data(mvi, port_id, lo);
MVS_CHIP_DISP->write_port_cfg_addr(mvi, port_id, off_hi);
MVS_CHIP_DISP->write_port_cfg_data(mvi, port_id, hi);
}
static void mvs_bytes_dmaed(struct mvs_info *mvi, int i)
{
struct mvs_phy *phy = &mvi->phy[i];
struct asd_sas_phy *sas_phy = &phy->sas_phy;
struct sas_ha_struct *sas_ha;
if (!phy->phy_attached)
return;
if (!(phy->att_dev_info & PORT_DEV_TRGT_MASK)
&& phy->phy_type & PORT_TYPE_SAS) {
return;
}
sas_ha = mvi->sas;
sas_ha->notify_phy_event(sas_phy, PHYE_OOB_DONE);
if (sas_phy->phy) {
struct sas_phy *sphy = sas_phy->phy;
sphy->negotiated_linkrate = sas_phy->linkrate;
sphy->minimum_linkrate = phy->minimum_linkrate;
sphy->minimum_linkrate_hw = SAS_LINK_RATE_1_5_GBPS;
sphy->maximum_linkrate = phy->maximum_linkrate;
sphy->maximum_linkrate_hw = MVS_CHIP_DISP->phy_max_link_rate();
}
if (phy->phy_type & PORT_TYPE_SAS) {
struct sas_identify_frame *id;
id = (struct sas_identify_frame *)phy->frame_rcvd;
id->dev_type = phy->identify.device_type;
id->initiator_bits = SAS_PROTOCOL_ALL;
id->target_bits = phy->identify.target_port_protocols;
/* direct attached SAS device */
if (phy->att_dev_info & PORT_SSP_TRGT_MASK) {
MVS_CHIP_DISP->write_port_cfg_addr(mvi, i, PHYR_PHY_STAT);
MVS_CHIP_DISP->write_port_cfg_data(mvi, i, 0x00);
}
} else if (phy->phy_type & PORT_TYPE_SATA) {
/*Nothing*/
}
mv_dprintk("phy %d byte dmaded.\n", i + mvi->id * mvi->chip->n_phy);
sas_phy->frame_rcvd_size = phy->frame_rcvd_size;
mvi->sas->notify_port_event(sas_phy,
PORTE_BYTES_DMAED);
}
void mvs_scan_start(struct Scsi_Host *shost)
{
int i, j;
unsigned short core_nr;
struct mvs_info *mvi;
struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
struct mvs_prv_info *mvs_prv = sha->lldd_ha;
core_nr = ((struct mvs_prv_info *)sha->lldd_ha)->n_host;
for (j = 0; j < core_nr; j++) {
mvi = ((struct mvs_prv_info *)sha->lldd_ha)->mvi[j];
for (i = 0; i < mvi->chip->n_phy; ++i)
mvs_bytes_dmaed(mvi, i);
}
mvs_prv->scan_finished = 1;
}
int mvs_scan_finished(struct Scsi_Host *shost, unsigned long time)
{
struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
struct mvs_prv_info *mvs_prv = sha->lldd_ha;
if (mvs_prv->scan_finished == 0)
return 0;
sas_drain_work(sha);
return 1;
}
static int mvs_task_prep_smp(struct mvs_info *mvi,
struct mvs_task_exec_info *tei)
{
int elem, rc, i;
struct sas_ha_struct *sha = mvi->sas;
struct sas_task *task = tei->task;
struct mvs_cmd_hdr *hdr = tei->hdr;
struct domain_device *dev = task->dev;
struct asd_sas_port *sas_port = dev->port;
struct sas_phy *sphy = dev->phy;
struct asd_sas_phy *sas_phy = sha->sas_phy[sphy->number];
struct scatterlist *sg_req, *sg_resp;
u32 req_len, resp_len, tag = tei->tag;
void *buf_tmp;
u8 *buf_oaf;
dma_addr_t buf_tmp_dma;
void *buf_prd;
struct mvs_slot_info *slot = &mvi->slot_info[tag];
u32 flags = (tei->n_elem << MCH_PRD_LEN_SHIFT);
/*
* DMA-map SMP request, response buffers
*/
sg_req = &task->smp_task.smp_req;
elem = dma_map_sg(mvi->dev, sg_req, 1, PCI_DMA_TODEVICE);
if (!elem)
return -ENOMEM;
req_len = sg_dma_len(sg_req);
sg_resp = &task->smp_task.smp_resp;
elem = dma_map_sg(mvi->dev, sg_resp, 1, PCI_DMA_FROMDEVICE);
if (!elem) {
rc = -ENOMEM;
goto err_out;
}
resp_len = SB_RFB_MAX;
/* must be in dwords */
if ((req_len & 0x3) || (resp_len & 0x3)) {
rc = -EINVAL;
goto err_out_2;
}
/*
* arrange MVS_SLOT_BUF_SZ-sized DMA buffer according to our needs
*/
/* region 1: command table area (MVS_SSP_CMD_SZ bytes) ***** */
buf_tmp = slot->buf;
buf_tmp_dma = slot->buf_dma;
hdr->cmd_tbl = cpu_to_le64(sg_dma_address(sg_req));
/* region 2: open address frame area (MVS_OAF_SZ bytes) ********* */
buf_oaf = buf_tmp;
hdr->open_frame = cpu_to_le64(buf_tmp_dma);
buf_tmp += MVS_OAF_SZ;
buf_tmp_dma += MVS_OAF_SZ;
/* region 3: PRD table *********************************** */
buf_prd = buf_tmp;
if (tei->n_elem)
hdr->prd_tbl = cpu_to_le64(buf_tmp_dma);
else
hdr->prd_tbl = 0;
i = MVS_CHIP_DISP->prd_size() * tei->n_elem;
buf_tmp += i;
buf_tmp_dma += i;
/* region 4: status buffer (larger the PRD, smaller this buf) ****** */
slot->response = buf_tmp;
hdr->status_buf = cpu_to_le64(buf_tmp_dma);
if (mvi->flags & MVF_FLAG_SOC)
hdr->reserved[0] = 0;
/*
* Fill in TX ring and command slot header
*/
slot->tx = mvi->tx_prod;
mvi->tx[mvi->tx_prod] = cpu_to_le32((TXQ_CMD_SMP << TXQ_CMD_SHIFT) |
TXQ_MODE_I | tag |
(MVS_PHY_ID << TXQ_PHY_SHIFT));
hdr->flags |= flags;
hdr->lens = cpu_to_le32(((resp_len / 4) << 16) | ((req_len - 4) / 4));
hdr->tags = cpu_to_le32(tag);
hdr->data_len = 0;
/* generate open address frame hdr (first 12 bytes) */
/* initiator, SMP, ftype 1h */
buf_oaf[0] = (1 << 7) | (PROTOCOL_SMP << 4) | 0x01;
buf_oaf[1] = min(sas_port->linkrate, dev->linkrate) & 0xf;
*(u16 *)(buf_oaf + 2) = 0xFFFF; /* SAS SPEC */
memcpy(buf_oaf + 4, dev->sas_addr, SAS_ADDR_SIZE);
/* fill in PRD (scatter/gather) table, if any */
MVS_CHIP_DISP->make_prd(task->scatter, tei->n_elem, buf_prd);
return 0;
err_out_2:
dma_unmap_sg(mvi->dev, &tei->task->smp_task.smp_resp, 1,
PCI_DMA_FROMDEVICE);
err_out:
dma_unmap_sg(mvi->dev, &tei->task->smp_task.smp_req, 1,
PCI_DMA_TODEVICE);
return rc;
}
static u32 mvs_get_ncq_tag(struct sas_task *task, u32 *tag)
{
struct ata_queued_cmd *qc = task->uldd_task;
if (qc) {
if (qc->tf.command == ATA_CMD_FPDMA_WRITE ||
qc->tf.command == ATA_CMD_FPDMA_READ) {
*tag = qc->tag;
return 1;
}
}
return 0;
}
static int mvs_task_prep_ata(struct mvs_info *mvi,
struct mvs_task_exec_info *tei)
{
struct sas_ha_struct *sha = mvi->sas;
struct sas_task *task = tei->task;
struct domain_device *dev = task->dev;
struct mvs_device *mvi_dev = dev->lldd_dev;
struct mvs_cmd_hdr *hdr = tei->hdr;
struct asd_sas_port *sas_port = dev->port;
struct sas_phy *sphy = dev->phy;
struct asd_sas_phy *sas_phy = sha->sas_phy[sphy->number];
struct mvs_slot_info *slot;
void *buf_prd;
u32 tag = tei->tag, hdr_tag;
u32 flags, del_q;
void *buf_tmp;
u8 *buf_cmd, *buf_oaf;
dma_addr_t buf_tmp_dma;
u32 i, req_len, resp_len;
const u32 max_resp_len = SB_RFB_MAX;
if (mvs_assign_reg_set(mvi, mvi_dev) == MVS_ID_NOT_MAPPED) {
mv_dprintk("Have not enough regiset for dev %d.\n",
mvi_dev->device_id);
return -EBUSY;
}
slot = &mvi->slot_info[tag];
slot->tx = mvi->tx_prod;
del_q = TXQ_MODE_I | tag |
(TXQ_CMD_STP << TXQ_CMD_SHIFT) |
(MVS_PHY_ID << TXQ_PHY_SHIFT) |
(mvi_dev->taskfileset << TXQ_SRS_SHIFT);
mvi->tx[mvi->tx_prod] = cpu_to_le32(del_q);
if (task->data_dir == DMA_FROM_DEVICE)
flags = (MVS_CHIP_DISP->prd_count() << MCH_PRD_LEN_SHIFT);
else
flags = (tei->n_elem << MCH_PRD_LEN_SHIFT);
if (task->ata_task.use_ncq)
flags |= MCH_FPDMA;
if (dev->sata_dev.command_set == ATAPI_COMMAND_SET) {
if (task->ata_task.fis.command != ATA_CMD_ID_ATAPI)
flags |= MCH_ATAPI;
}
hdr->flags = cpu_to_le32(flags);
if (task->ata_task.use_ncq && mvs_get_ncq_tag(task, &hdr_tag))
task->ata_task.fis.sector_count |= (u8) (hdr_tag << 3);
else
hdr_tag = tag;
hdr->tags = cpu_to_le32(hdr_tag);
hdr->data_len = cpu_to_le32(task->total_xfer_len);
/*
* arrange MVS_SLOT_BUF_SZ-sized DMA buffer according to our needs
*/
/* region 1: command table area (MVS_ATA_CMD_SZ bytes) ************** */
buf_cmd = buf_tmp = slot->buf;
buf_tmp_dma = slot->buf_dma;
hdr->cmd_tbl = cpu_to_le64(buf_tmp_dma);
buf_tmp += MVS_ATA_CMD_SZ;
buf_tmp_dma += MVS_ATA_CMD_SZ;
/* region 2: open address frame area (MVS_OAF_SZ bytes) ********* */
/* used for STP. unused for SATA? */
buf_oaf = buf_tmp;
hdr->open_frame = cpu_to_le64(buf_tmp_dma);
buf_tmp += MVS_OAF_SZ;
buf_tmp_dma += MVS_OAF_SZ;
/* region 3: PRD table ********************************************* */
buf_prd = buf_tmp;
if (tei->n_elem)
hdr->prd_tbl = cpu_to_le64(buf_tmp_dma);
else
hdr->prd_tbl = 0;
i = MVS_CHIP_DISP->prd_size() * MVS_CHIP_DISP->prd_count();
buf_tmp += i;
buf_tmp_dma += i;
/* region 4: status buffer (larger the PRD, smaller this buf) ****** */
slot->response = buf_tmp;
hdr->status_buf = cpu_to_le64(buf_tmp_dma);
if (mvi->flags & MVF_FLAG_SOC)
hdr->reserved[0] = 0;
req_len = sizeof(struct host_to_dev_fis);
resp_len = MVS_SLOT_BUF_SZ - MVS_ATA_CMD_SZ -
sizeof(struct mvs_err_info) - i;
/* request, response lengths */
resp_len = min(resp_len, max_resp_len);
hdr->lens = cpu_to_le32(((resp_len / 4) << 16) | (req_len / 4));
if (likely(!task->ata_task.device_control_reg_update))
task->ata_task.fis.flags |= 0x80; /* C=1: update ATA cmd reg */
/* fill in command FIS and ATAPI CDB */
memcpy(buf_cmd, &task->ata_task.fis, sizeof(struct host_to_dev_fis));
if (dev->sata_dev.command_set == ATAPI_COMMAND_SET)
memcpy(buf_cmd + STP_ATAPI_CMD,
task->ata_task.atapi_packet, 16);
/* generate open address frame hdr (first 12 bytes) */
/* initiator, STP, ftype 1h */
buf_oaf[0] = (1 << 7) | (PROTOCOL_STP << 4) | 0x1;
buf_oaf[1] = min(sas_port->linkrate, dev->linkrate) & 0xf;
*(u16 *)(buf_oaf + 2) = cpu_to_be16(mvi_dev->device_id + 1);
memcpy(buf_oaf + 4, dev->sas_addr, SAS_ADDR_SIZE);
/* fill in PRD (scatter/gather) table, if any */
MVS_CHIP_DISP->make_prd(task->scatter, tei->n_elem, buf_prd);
if (task->data_dir == DMA_FROM_DEVICE)
MVS_CHIP_DISP->dma_fix(mvi, sas_port->phy_mask,
TRASH_BUCKET_SIZE, tei->n_elem, buf_prd);
return 0;
}
static int mvs_task_prep_ssp(struct mvs_info *mvi,
struct mvs_task_exec_info *tei, int is_tmf,
struct mvs_tmf_task *tmf)
{
struct sas_task *task = tei->task;
struct mvs_cmd_hdr *hdr = tei->hdr;
struct mvs_port *port = tei->port;
struct domain_device *dev = task->dev;
struct mvs_device *mvi_dev = dev->lldd_dev;
struct asd_sas_port *sas_port = dev->port;
struct mvs_slot_info *slot;
void *buf_prd;
struct ssp_frame_hdr *ssp_hdr;
void *buf_tmp;
u8 *buf_cmd, *buf_oaf, fburst = 0;
dma_addr_t buf_tmp_dma;
u32 flags;
u32 resp_len, req_len, i, tag = tei->tag;
const u32 max_resp_len = SB_RFB_MAX;
u32 phy_mask;
slot = &mvi->slot_info[tag];
phy_mask = ((port->wide_port_phymap) ? port->wide_port_phymap :
sas_port->phy_mask) & TXQ_PHY_MASK;
slot->tx = mvi->tx_prod;
mvi->tx[mvi->tx_prod] = cpu_to_le32(TXQ_MODE_I | tag |
(TXQ_CMD_SSP << TXQ_CMD_SHIFT) |
(phy_mask << TXQ_PHY_SHIFT));
flags = MCH_RETRY;
if (task->ssp_task.enable_first_burst) {
flags |= MCH_FBURST;
fburst = (1 << 7);
}
if (is_tmf)
flags |= (MCH_SSP_FR_TASK << MCH_SSP_FR_TYPE_SHIFT);
else
flags |= (MCH_SSP_FR_CMD << MCH_SSP_FR_TYPE_SHIFT);
hdr->flags = cpu_to_le32(flags | (tei->n_elem << MCH_PRD_LEN_SHIFT));
hdr->tags = cpu_to_le32(tag);
hdr->data_len = cpu_to_le32(task->total_xfer_len);
/*
* arrange MVS_SLOT_BUF_SZ-sized DMA buffer according to our needs
*/
/* region 1: command table area (MVS_SSP_CMD_SZ bytes) ************** */
buf_cmd = buf_tmp = slot->buf;
buf_tmp_dma = slot->buf_dma;
hdr->cmd_tbl = cpu_to_le64(buf_tmp_dma);
buf_tmp += MVS_SSP_CMD_SZ;
buf_tmp_dma += MVS_SSP_CMD_SZ;
/* region 2: open address frame area (MVS_OAF_SZ bytes) ********* */
buf_oaf = buf_tmp;
hdr->open_frame = cpu_to_le64(buf_tmp_dma);
buf_tmp += MVS_OAF_SZ;
buf_tmp_dma += MVS_OAF_SZ;
/* region 3: PRD table ********************************************* */
buf_prd = buf_tmp;
if (tei->n_elem)
hdr->prd_tbl = cpu_to_le64(buf_tmp_dma);
else
hdr->prd_tbl = 0;
i = MVS_CHIP_DISP->prd_size() * tei->n_elem;
buf_tmp += i;
buf_tmp_dma += i;
/* region 4: status buffer (larger the PRD, smaller this buf) ****** */
slot->response = buf_tmp;
hdr->status_buf = cpu_to_le64(buf_tmp_dma);
if (mvi->flags & MVF_FLAG_SOC)
hdr->reserved[0] = 0;
resp_len = MVS_SLOT_BUF_SZ - MVS_SSP_CMD_SZ - MVS_OAF_SZ -
sizeof(struct mvs_err_info) - i;
resp_len = min(resp_len, max_resp_len);
req_len = sizeof(struct ssp_frame_hdr) + 28;
/* request, response lengths */
hdr->lens = cpu_to_le32(((resp_len / 4) << 16) | (req_len / 4));
/* generate open address frame hdr (first 12 bytes) */
/* initiator, SSP, ftype 1h */
buf_oaf[0] = (1 << 7) | (PROTOCOL_SSP << 4) | 0x1;
buf_oaf[1] = min(sas_port->linkrate, dev->linkrate) & 0xf;
*(u16 *)(buf_oaf + 2) = cpu_to_be16(mvi_dev->device_id + 1);
memcpy(buf_oaf + 4, dev->sas_addr, SAS_ADDR_SIZE);
/* fill in SSP frame header (Command Table.SSP frame header) */
ssp_hdr = (struct ssp_frame_hdr *)buf_cmd;
if (is_tmf)
ssp_hdr->frame_type = SSP_TASK;
else
ssp_hdr->frame_type = SSP_COMMAND;
memcpy(ssp_hdr->hashed_dest_addr, dev->hashed_sas_addr,
HASHED_SAS_ADDR_SIZE);
memcpy(ssp_hdr->hashed_src_addr,
dev->hashed_sas_addr, HASHED_SAS_ADDR_SIZE);
ssp_hdr->tag = cpu_to_be16(tag);
/* fill in IU for TASK and Command Frame */
buf_cmd += sizeof(*ssp_hdr);
memcpy(buf_cmd, &task->ssp_task.LUN, 8);
if (ssp_hdr->frame_type != SSP_TASK) {
buf_cmd[9] = fburst | task->ssp_task.task_attr |
(task->ssp_task.task_prio << 3);
memcpy(buf_cmd + 12, task->ssp_task.cmd->cmnd,
task->ssp_task.cmd->cmd_len);
} else{
buf_cmd[10] = tmf->tmf;
switch (tmf->tmf) {
case TMF_ABORT_TASK:
case TMF_QUERY_TASK:
buf_cmd[12] =
(tmf->tag_of_task_to_be_managed >> 8) & 0xff;
buf_cmd[13] =
tmf->tag_of_task_to_be_managed & 0xff;
break;
default:
break;
}
}
/* fill in PRD (scatter/gather) table, if any */
MVS_CHIP_DISP->make_prd(task->scatter, tei->n_elem, buf_prd);
return 0;
}
#define DEV_IS_GONE(mvi_dev) ((!mvi_dev || (mvi_dev->dev_type == SAS_PHY_UNUSED)))
static int mvs_task_prep(struct sas_task *task, struct mvs_info *mvi, int is_tmf,
struct mvs_tmf_task *tmf, int *pass)
{
struct domain_device *dev = task->dev;
struct mvs_device *mvi_dev = dev->lldd_dev;
struct mvs_task_exec_info tei;
struct mvs_slot_info *slot;
u32 tag = 0xdeadbeef, n_elem = 0;
int rc = 0;
if (!dev->port) {
struct task_status_struct *tsm = &task->task_status;
tsm->resp = SAS_TASK_UNDELIVERED;
tsm->stat = SAS_PHY_DOWN;
/*
* libsas will use dev->port, should
* not call task_done for sata
*/
if (dev->dev_type != SAS_SATA_DEV)
task->task_done(task);
return rc;
}
if (DEV_IS_GONE(mvi_dev)) {
if (mvi_dev)
mv_dprintk("device %d not ready.\n",
mvi_dev->device_id);
else
mv_dprintk("device %016llx not ready.\n",
SAS_ADDR(dev->sas_addr));
rc = SAS_PHY_DOWN;
return rc;
}
tei.port = dev->port->lldd_port;
if (tei.port && !tei.port->port_attached && !tmf) {
if (sas_protocol_ata(task->task_proto)) {
struct task_status_struct *ts = &task->task_status;
mv_dprintk("SATA/STP port %d does not attach"
"device.\n", dev->port->id);
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_PHY_DOWN;
task->task_done(task);
} else {
struct task_status_struct *ts = &task->task_status;
mv_dprintk("SAS port %d does not attach"
"device.\n", dev->port->id);
ts->resp = SAS_TASK_UNDELIVERED;
ts->stat = SAS_PHY_DOWN;
task->task_done(task);
}
return rc;
}
if (!sas_protocol_ata(task->task_proto)) {
if (task->num_scatter) {
n_elem = dma_map_sg(mvi->dev,
task->scatter,
task->num_scatter,
task->data_dir);
if (!n_elem) {
rc = -ENOMEM;
goto prep_out;
}
}
} else {
n_elem = task->num_scatter;
}
rc = mvs_tag_alloc(mvi, &tag);
if (rc)
goto err_out;
slot = &mvi->slot_info[tag];
task->lldd_task = NULL;
slot->n_elem = n_elem;
slot->slot_tag = tag;
slot->buf = pci_pool_alloc(mvi->dma_pool, GFP_ATOMIC, &slot->buf_dma);
if (!slot->buf)
goto err_out_tag;
memset(slot->buf, 0, MVS_SLOT_BUF_SZ);
tei.task = task;
tei.hdr = &mvi->slot[tag];
tei.tag = tag;
tei.n_elem = n_elem;
switch (task->task_proto) {
case SAS_PROTOCOL_SMP:
rc = mvs_task_prep_smp(mvi, &tei);
break;
case SAS_PROTOCOL_SSP:
rc = mvs_task_prep_ssp(mvi, &tei, is_tmf, tmf);
break;
case SAS_PROTOCOL_SATA:
case SAS_PROTOCOL_STP:
case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP:
rc = mvs_task_prep_ata(mvi, &tei);
break;
default:
dev_printk(KERN_ERR, mvi->dev,
"unknown sas_task proto: 0x%x\n",
task->task_proto);
rc = -EINVAL;
break;
}
if (rc) {
mv_dprintk("rc is %x\n", rc);
goto err_out_slot_buf;
}
slot->task = task;
slot->port = tei.port;
task->lldd_task = slot;
list_add_tail(&slot->entry, &tei.port->list);
spin_lock(&task->task_state_lock);
task->task_state_flags |= SAS_TASK_AT_INITIATOR;
spin_unlock(&task->task_state_lock);
mvi_dev->running_req++;
++(*pass);
mvi->tx_prod = (mvi->tx_prod + 1) & (MVS_CHIP_SLOT_SZ - 1);
return rc;
err_out_slot_buf:
pci_pool_free(mvi->dma_pool, slot->buf, slot->buf_dma);
err_out_tag:
mvs_tag_free(mvi, tag);
err_out:
dev_printk(KERN_ERR, mvi->dev, "mvsas prep failed[%d]!\n", rc);
if (!sas_protocol_ata(task->task_proto))
if (n_elem)
dma_unmap_sg(mvi->dev, task->scatter, n_elem,
task->data_dir);
prep_out:
return rc;
}
static struct mvs_task_list *mvs_task_alloc_list(int *num, gfp_t gfp_flags)
{
struct mvs_task_list *first = NULL;
for (; *num > 0; --*num) {
struct mvs_task_list *mvs_list = kmem_cache_zalloc(mvs_task_list_cache, gfp_flags);
if (!mvs_list)
break;
INIT_LIST_HEAD(&mvs_list->list);
if (!first)
first = mvs_list;
else
list_add_tail(&mvs_list->list, &first->list);
}
return first;
}
static inline void mvs_task_free_list(struct mvs_task_list *mvs_list)
{
LIST_HEAD(list);
struct list_head *pos, *a;
struct mvs_task_list *mlist = NULL;
__list_add(&list, mvs_list->list.prev, &mvs_list->list);
list_for_each_safe(pos, a, &list) {
list_del_init(pos);
mlist = list_entry(pos, struct mvs_task_list, list);
kmem_cache_free(mvs_task_list_cache, mlist);
}
}
static int mvs_task_exec(struct sas_task *task, const int num, gfp_t gfp_flags,
struct completion *completion, int is_tmf,
struct mvs_tmf_task *tmf)
{
struct mvs_info *mvi = NULL;
u32 rc = 0;
u32 pass = 0;
unsigned long flags = 0;
mvi = ((struct mvs_device *)task->dev->lldd_dev)->mvi_info;
spin_lock_irqsave(&mvi->lock, flags);
rc = mvs_task_prep(task, mvi, is_tmf, tmf, &pass);
if (rc)
dev_printk(KERN_ERR, mvi->dev, "mvsas exec failed[%d]!\n", rc);
if (likely(pass))
MVS_CHIP_DISP->start_delivery(mvi, (mvi->tx_prod - 1) &
(MVS_CHIP_SLOT_SZ - 1));
spin_unlock_irqrestore(&mvi->lock, flags);
return rc;
}
static int mvs_collector_task_exec(struct sas_task *task, const int num, gfp_t gfp_flags,
struct completion *completion, int is_tmf,
struct mvs_tmf_task *tmf)
{
struct domain_device *dev = task->dev;
struct mvs_prv_info *mpi = dev->port->ha->lldd_ha;
struct mvs_info *mvi = NULL;
struct sas_task *t = task;
struct mvs_task_list *mvs_list = NULL, *a;
LIST_HEAD(q);
int pass[2] = {0};
u32 rc = 0;
u32 n = num;
unsigned long flags = 0;
mvs_list = mvs_task_alloc_list(&n, gfp_flags);
if (n) {
printk(KERN_ERR "%s: mvs alloc list failed.\n", __func__);
rc = -ENOMEM;
goto free_list;
}
__list_add(&q, mvs_list->list.prev, &mvs_list->list);
list_for_each_entry(a, &q, list) {
a->task = t;
t = list_entry(t->list.next, struct sas_task, list);
}
list_for_each_entry(a, &q , list) {
t = a->task;
mvi = ((struct mvs_device *)t->dev->lldd_dev)->mvi_info;
spin_lock_irqsave(&mvi->lock, flags);
rc = mvs_task_prep(t, mvi, is_tmf, tmf, &pass[mvi->id]);
if (rc)
dev_printk(KERN_ERR, mvi->dev, "mvsas exec failed[%d]!\n", rc);
spin_unlock_irqrestore(&mvi->lock, flags);
}
if (likely(pass[0]))
MVS_CHIP_DISP->start_delivery(mpi->mvi[0],
(mpi->mvi[0]->tx_prod - 1) & (MVS_CHIP_SLOT_SZ - 1));
if (likely(pass[1]))
MVS_CHIP_DISP->start_delivery(mpi->mvi[1],
(mpi->mvi[1]->tx_prod - 1) & (MVS_CHIP_SLOT_SZ - 1));
list_del_init(&q);
free_list:
if (mvs_list)
mvs_task_free_list(mvs_list);
return rc;
}
int mvs_queue_command(struct sas_task *task, const int num,
gfp_t gfp_flags)
{
struct mvs_device *mvi_dev = task->dev->lldd_dev;
struct sas_ha_struct *sas = mvi_dev->mvi_info->sas;
if (sas->lldd_max_execute_num < 2)
return mvs_task_exec(task, num, gfp_flags, NULL, 0, NULL);
else
return mvs_collector_task_exec(task, num, gfp_flags, NULL, 0, NULL);
}
static void mvs_slot_free(struct mvs_info *mvi, u32 rx_desc)
{
u32 slot_idx = rx_desc & RXQ_SLOT_MASK;
mvs_tag_clear(mvi, slot_idx);
}
static void mvs_slot_task_free(struct mvs_info *mvi, struct sas_task *task,
struct mvs_slot_info *slot, u32 slot_idx)
{
if (!slot->task)
return;
if (!sas_protocol_ata(task->task_proto))
if (slot->n_elem)
dma_unmap_sg(mvi->dev, task->scatter,
slot->n_elem, task->data_dir);
switch (task->task_proto) {
case SAS_PROTOCOL_SMP:
dma_unmap_sg(mvi->dev, &task->smp_task.smp_resp, 1,
PCI_DMA_FROMDEVICE);
dma_unmap_sg(mvi->dev, &task->smp_task.smp_req, 1,
PCI_DMA_TODEVICE);
break;
case SAS_PROTOCOL_SATA:
case SAS_PROTOCOL_STP:
case SAS_PROTOCOL_SSP:
default:
/* do nothing */
break;
}
if (slot->buf) {
pci_pool_free(mvi->dma_pool, slot->buf, slot->buf_dma);
slot->buf = NULL;
}
list_del_init(&slot->entry);
task->lldd_task = NULL;
slot->task = NULL;
slot->port = NULL;
slot->slot_tag = 0xFFFFFFFF;
mvs_slot_free(mvi, slot_idx);
}
static void mvs_update_wideport(struct mvs_info *mvi, int phy_no)
{
struct mvs_phy *phy = &mvi->phy[phy_no];
struct mvs_port *port = phy->port;
int j, no;
for_each_phy(port->wide_port_phymap, j, no) {
if (j & 1) {
MVS_CHIP_DISP->write_port_cfg_addr(mvi, no,
PHYR_WIDE_PORT);
MVS_CHIP_DISP->write_port_cfg_data(mvi, no,
port->wide_port_phymap);
} else {
MVS_CHIP_DISP->write_port_cfg_addr(mvi, no,
PHYR_WIDE_PORT);
MVS_CHIP_DISP->write_port_cfg_data(mvi, no,
0);
}
}
}
static u32 mvs_is_phy_ready(struct mvs_info *mvi, int i)
{
u32 tmp;
struct mvs_phy *phy = &mvi->phy[i];
struct mvs_port *port = phy->port;
tmp = MVS_CHIP_DISP->read_phy_ctl(mvi, i);
if ((tmp & PHY_READY_MASK) && !(phy->irq_status & PHYEV_POOF)) {
if (!port)
phy->phy_attached = 1;
return tmp;
}
if (port) {
if (phy->phy_type & PORT_TYPE_SAS) {
port->wide_port_phymap &= ~(1U << i);
if (!port->wide_port_phymap)
port->port_attached = 0;
mvs_update_wideport(mvi, i);
} else if (phy->phy_type & PORT_TYPE_SATA)
port->port_attached = 0;
phy->port = NULL;
phy->phy_attached = 0;
phy->phy_type &= ~(PORT_TYPE_SAS | PORT_TYPE_SATA);
}
return 0;
}
static void *mvs_get_d2h_reg(struct mvs_info *mvi, int i, void *buf)
{
u32 *s = (u32 *) buf;
if (!s)
return NULL;
MVS_CHIP_DISP->write_port_cfg_addr(mvi, i, PHYR_SATA_SIG3);
s[3] = cpu_to_le32(MVS_CHIP_DISP->read_port_cfg_data(mvi, i));
MVS_CHIP_DISP->write_port_cfg_addr(mvi, i, PHYR_SATA_SIG2);
s[2] = cpu_to_le32(MVS_CHIP_DISP->read_port_cfg_data(mvi, i));
MVS_CHIP_DISP->write_port_cfg_addr(mvi, i, PHYR_SATA_SIG1);
s[1] = cpu_to_le32(MVS_CHIP_DISP->read_port_cfg_data(mvi, i));
MVS_CHIP_DISP->write_port_cfg_addr(mvi, i, PHYR_SATA_SIG0);
s[0] = cpu_to_le32(MVS_CHIP_DISP->read_port_cfg_data(mvi, i));
if (((s[1] & 0x00FFFFFF) == 0x00EB1401) && (*(u8 *)&s[3] == 0x01))
s[1] = 0x00EB1401 | (*((u8 *)&s[1] + 3) & 0x10);
return s;
}
static u32 mvs_is_sig_fis_received(u32 irq_status)
{
return irq_status & PHYEV_SIG_FIS;
}
static void mvs_sig_remove_timer(struct mvs_phy *phy)
{
if (phy->timer.function)
del_timer(&phy->timer);
phy->timer.function = NULL;
}
void mvs_update_phyinfo(struct mvs_info *mvi, int i, int get_st)
{
struct mvs_phy *phy = &mvi->phy[i];
struct sas_identify_frame *id;
id = (struct sas_identify_frame *)phy->frame_rcvd;
if (get_st) {
phy->irq_status = MVS_CHIP_DISP->read_port_irq_stat(mvi, i);
phy->phy_status = mvs_is_phy_ready(mvi, i);
}
if (phy->phy_status) {
int oob_done = 0;
struct asd_sas_phy *sas_phy = &mvi->phy[i].sas_phy;
oob_done = MVS_CHIP_DISP->oob_done(mvi, i);
MVS_CHIP_DISP->fix_phy_info(mvi, i, id);
if (phy->phy_type & PORT_TYPE_SATA) {
phy->identify.target_port_protocols = SAS_PROTOCOL_STP;
if (mvs_is_sig_fis_received(phy->irq_status)) {
mvs_sig_remove_timer(phy);
phy->phy_attached = 1;
phy->att_dev_sas_addr =
i + mvi->id * mvi->chip->n_phy;
if (oob_done)
sas_phy->oob_mode = SATA_OOB_MODE;
phy->frame_rcvd_size =
sizeof(struct dev_to_host_fis);
mvs_get_d2h_reg(mvi, i, id);
} else {
u32 tmp;
dev_printk(KERN_DEBUG, mvi->dev,
"Phy%d : No sig fis\n", i);
tmp = MVS_CHIP_DISP->read_port_irq_mask(mvi, i);
MVS_CHIP_DISP->write_port_irq_mask(mvi, i,
tmp | PHYEV_SIG_FIS);
phy->phy_attached = 0;
phy->phy_type &= ~PORT_TYPE_SATA;
goto out_done;
}
} else if (phy->phy_type & PORT_TYPE_SAS
|| phy->att_dev_info & PORT_SSP_INIT_MASK) {
phy->phy_attached = 1;
phy->identify.device_type =
phy->att_dev_info & PORT_DEV_TYPE_MASK;
if (phy->identify.device_type == SAS_END_DEVICE)
phy->identify.target_port_protocols =
SAS_PROTOCOL_SSP;
else if (phy->identify.device_type != SAS_PHY_UNUSED)
phy->identify.target_port_protocols =
SAS_PROTOCOL_SMP;
if (oob_done)
sas_phy->oob_mode = SAS_OOB_MODE;
phy->frame_rcvd_size =
sizeof(struct sas_identify_frame);
}
memcpy(sas_phy->attached_sas_addr,
&phy->att_dev_sas_addr, SAS_ADDR_SIZE);
if (MVS_CHIP_DISP->phy_work_around)
MVS_CHIP_DISP->phy_work_around(mvi, i);
}
mv_dprintk("phy %d attach dev info is %x\n",
i + mvi->id * mvi->chip->n_phy, phy->att_dev_info);
mv_dprintk("phy %d attach sas addr is %llx\n",
i + mvi->id * mvi->chip->n_phy, phy->att_dev_sas_addr);
out_done:
if (get_st)
MVS_CHIP_DISP->write_port_irq_stat(mvi, i, phy->irq_status);
}
static void mvs_port_notify_formed(struct asd_sas_phy *sas_phy, int lock)
{
struct sas_ha_struct *sas_ha = sas_phy->ha;
struct mvs_info *mvi = NULL; int i = 0, hi;
struct mvs_phy *phy = sas_phy->lldd_phy;
struct asd_sas_port *sas_port = sas_phy->port;
struct mvs_port *port;
unsigned long flags = 0;
if (!sas_port)
return;
while (sas_ha->sas_phy[i]) {
if (sas_ha->sas_phy[i] == sas_phy)
break;
i++;
}
hi = i/((struct mvs_prv_info *)sas_ha->lldd_ha)->n_phy;
mvi = ((struct mvs_prv_info *)sas_ha->lldd_ha)->mvi[hi];
if (i >= mvi->chip->n_phy)
port = &mvi->port[i - mvi->chip->n_phy];
else
port = &mvi->port[i];
if (lock)
spin_lock_irqsave(&mvi->lock, flags);
port->port_attached = 1;
phy->port = port;
sas_port->lldd_port = port;
if (phy->phy_type & PORT_TYPE_SAS) {
port->wide_port_phymap = sas_port->phy_mask;
mv_printk("set wide port phy map %x\n", sas_port->phy_mask);
mvs_update_wideport(mvi, sas_phy->id);
/* direct attached SAS device */
if (phy->att_dev_info & PORT_SSP_TRGT_MASK) {
MVS_CHIP_DISP->write_port_cfg_addr(mvi, i, PHYR_PHY_STAT);
MVS_CHIP_DISP->write_port_cfg_data(mvi, i, 0x04);
}
}
if (lock)
spin_unlock_irqrestore(&mvi->lock, flags);
}
static void mvs_port_notify_deformed(struct asd_sas_phy *sas_phy, int lock)
{
struct domain_device *dev;
struct mvs_phy *phy = sas_phy->lldd_phy;
struct mvs_info *mvi = phy->mvi;
struct asd_sas_port *port = sas_phy->port;
int phy_no = 0;
while (phy != &mvi->phy[phy_no]) {
phy_no++;
if (phy_no >= MVS_MAX_PHYS)
return;
}
list_for_each_entry(dev, &port->dev_list, dev_list_node)
mvs_do_release_task(phy->mvi, phy_no, dev);
}
void mvs_port_formed(struct asd_sas_phy *sas_phy)
{
mvs_port_notify_formed(sas_phy, 1);
}
void mvs_port_deformed(struct asd_sas_phy *sas_phy)
{
mvs_port_notify_deformed(sas_phy, 1);
}
struct mvs_device *mvs_alloc_dev(struct mvs_info *mvi)
{
u32 dev;
for (dev = 0; dev < MVS_MAX_DEVICES; dev++) {
if (mvi->devices[dev].dev_type == SAS_PHY_UNUSED) {
mvi->devices[dev].device_id = dev;
return &mvi->devices[dev];
}
}
if (dev == MVS_MAX_DEVICES)
mv_printk("max support %d devices, ignore ..\n",
MVS_MAX_DEVICES);
return NULL;
}
void mvs_free_dev(struct mvs_device *mvi_dev)
{
u32 id = mvi_dev->device_id;
memset(mvi_dev, 0, sizeof(*mvi_dev));
mvi_dev->device_id = id;
mvi_dev->dev_type = SAS_PHY_UNUSED;
mvi_dev->dev_status = MVS_DEV_NORMAL;
mvi_dev->taskfileset = MVS_ID_NOT_MAPPED;
}
int mvs_dev_found_notify(struct domain_device *dev, int lock)
{
unsigned long flags = 0;
int res = 0;
struct mvs_info *mvi = NULL;
struct domain_device *parent_dev = dev->parent;
struct mvs_device *mvi_device;
mvi = mvs_find_dev_mvi(dev);
if (lock)
spin_lock_irqsave(&mvi->lock, flags);
mvi_device = mvs_alloc_dev(mvi);
if (!mvi_device) {
res = -1;
goto found_out;
}
dev->lldd_dev = mvi_device;
mvi_device->dev_status = MVS_DEV_NORMAL;
mvi_device->dev_type = dev->dev_type;
mvi_device->mvi_info = mvi;
mvi_device->sas_device = dev;
if (parent_dev && DEV_IS_EXPANDER(parent_dev->dev_type)) {
int phy_id;
u8 phy_num = parent_dev->ex_dev.num_phys;
struct ex_phy *phy;
for (phy_id = 0; phy_id < phy_num; phy_id++) {
phy = &parent_dev->ex_dev.ex_phy[phy_id];
if (SAS_ADDR(phy->attached_sas_addr) ==
SAS_ADDR(dev->sas_addr)) {
mvi_device->attached_phy = phy_id;
break;
}
}
if (phy_id == phy_num) {
mv_printk("Error: no attached dev:%016llx"
"at ex:%016llx.\n",
SAS_ADDR(dev->sas_addr),
SAS_ADDR(parent_dev->sas_addr));
res = -1;
}
}
found_out:
if (lock)
spin_unlock_irqrestore(&mvi->lock, flags);
return res;
}
int mvs_dev_found(struct domain_device *dev)
{
return mvs_dev_found_notify(dev, 1);
}
void mvs_dev_gone_notify(struct domain_device *dev)
{
unsigned long flags = 0;
struct mvs_device *mvi_dev = dev->lldd_dev;
struct mvs_info *mvi = mvi_dev->mvi_info;
spin_lock_irqsave(&mvi->lock, flags);
if (mvi_dev) {
mv_dprintk("found dev[%d:%x] is gone.\n",
mvi_dev->device_id, mvi_dev->dev_type);
mvs_release_task(mvi, dev);
mvs_free_reg_set(mvi, mvi_dev);
mvs_free_dev(mvi_dev);
} else {
mv_dprintk("found dev has gone.\n");
}
dev->lldd_dev = NULL;
mvi_dev->sas_device = NULL;
spin_unlock_irqrestore(&mvi->lock, flags);
}
void mvs_dev_gone(struct domain_device *dev)
{
mvs_dev_gone_notify(dev);
}
static void mvs_task_done(struct sas_task *task)
{
if (!del_timer(&task->slow_task->timer))
return;
complete(&task->slow_task->completion);
}
static void mvs_tmf_timedout(unsigned long data)
{
struct sas_task *task = (struct sas_task *)data;
task->task_state_flags |= SAS_TASK_STATE_ABORTED;
complete(&task->slow_task->completion);
}
#define MVS_TASK_TIMEOUT 20
static int mvs_exec_internal_tmf_task(struct domain_device *dev,
void *parameter, u32 para_len, struct mvs_tmf_task *tmf)
{
int res, retry;
struct sas_task *task = NULL;
for (retry = 0; retry < 3; retry++) {
task = sas_alloc_slow_task(GFP_KERNEL);
if (!task)
return -ENOMEM;
task->dev = dev;
task->task_proto = dev->tproto;
memcpy(&task->ssp_task, parameter, para_len);
task->task_done = mvs_task_done;
task->slow_task->timer.data = (unsigned long) task;
task->slow_task->timer.function = mvs_tmf_timedout;
task->slow_task->timer.expires = jiffies + MVS_TASK_TIMEOUT*HZ;
add_timer(&task->slow_task->timer);
res = mvs_task_exec(task, 1, GFP_KERNEL, NULL, 1, tmf);
if (res) {
del_timer(&task->slow_task->timer);
mv_printk("executing internal task failed:%d\n", res);
goto ex_err;
}
wait_for_completion(&task->slow_task->completion);
res = TMF_RESP_FUNC_FAILED;
/* Even TMF timed out, return direct. */
if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
mv_printk("TMF task[%x] timeout.\n", tmf->tmf);
goto ex_err;
}
}
if (task->task_status.resp == SAS_TASK_COMPLETE &&
task->task_status.stat == SAM_STAT_GOOD) {
res = TMF_RESP_FUNC_COMPLETE;
break;
}
if (task->task_status.resp == SAS_TASK_COMPLETE &&
task->task_status.stat == SAS_DATA_UNDERRUN) {
/* no error, but return the number of bytes of
* underrun */
res = task->task_status.residual;
break;
}
if (task->task_status.resp == SAS_TASK_COMPLETE &&
task->task_status.stat == SAS_DATA_OVERRUN) {
mv_dprintk("blocked task error.\n");
res = -EMSGSIZE;
break;
} else {
mv_dprintk(" task to dev %016llx response: 0x%x "
"status 0x%x\n",
SAS_ADDR(dev->sas_addr),
task->task_status.resp,
task->task_status.stat);
sas_free_task(task);
task = NULL;
}
}
ex_err:
BUG_ON(retry == 3 && task != NULL);
sas_free_task(task);
return res;
}
static int mvs_debug_issue_ssp_tmf(struct domain_device *dev,
u8 *lun, struct mvs_tmf_task *tmf)
{
struct sas_ssp_task ssp_task;
if (!(dev->tproto & SAS_PROTOCOL_SSP))
return TMF_RESP_FUNC_ESUPP;
memcpy(ssp_task.LUN, lun, 8);
return mvs_exec_internal_tmf_task(dev, &ssp_task,
sizeof(ssp_task), tmf);
}
/* Standard mandates link reset for ATA (type 0)
and hard reset for SSP (type 1) , only for RECOVERY */
static int mvs_debug_I_T_nexus_reset(struct domain_device *dev)
{
int rc;
struct sas_phy *phy = sas_get_local_phy(dev);
int reset_type = (dev->dev_type == SAS_SATA_DEV ||
(dev->tproto & SAS_PROTOCOL_STP)) ? 0 : 1;
rc = sas_phy_reset(phy, reset_type);
sas_put_local_phy(phy);
msleep(2000);
return rc;
}
/* mandatory SAM-3 */
int mvs_lu_reset(struct domain_device *dev, u8 *lun)
{
unsigned long flags;
int rc = TMF_RESP_FUNC_FAILED;
struct mvs_tmf_task tmf_task;
struct mvs_device * mvi_dev = dev->lldd_dev;
struct mvs_info *mvi = mvi_dev->mvi_info;
tmf_task.tmf = TMF_LU_RESET;
mvi_dev->dev_status = MVS_DEV_EH;
rc = mvs_debug_issue_ssp_tmf(dev, lun, &tmf_task);
if (rc == TMF_RESP_FUNC_COMPLETE) {
spin_lock_irqsave(&mvi->lock, flags);
mvs_release_task(mvi, dev);
spin_unlock_irqrestore(&mvi->lock, flags);
}
/* If failed, fall-through I_T_Nexus reset */
mv_printk("%s for device[%x]:rc= %d\n", __func__,
mvi_dev->device_id, rc);
return rc;
}
int mvs_I_T_nexus_reset(struct domain_device *dev)
{
unsigned long flags;
int rc = TMF_RESP_FUNC_FAILED;
struct mvs_device * mvi_dev = (struct mvs_device *)dev->lldd_dev;
struct mvs_info *mvi = mvi_dev->mvi_info;
if (mvi_dev->dev_status != MVS_DEV_EH)
return TMF_RESP_FUNC_COMPLETE;
else
mvi_dev->dev_status = MVS_DEV_NORMAL;
rc = mvs_debug_I_T_nexus_reset(dev);
mv_printk("%s for device[%x]:rc= %d\n",
__func__, mvi_dev->device_id, rc);
spin_lock_irqsave(&mvi->lock, flags);
mvs_release_task(mvi, dev);
spin_unlock_irqrestore(&mvi->lock, flags);
return rc;
}
/* optional SAM-3 */
int mvs_query_task(struct sas_task *task)
{
u32 tag;
struct scsi_lun lun;
struct mvs_tmf_task tmf_task;
int rc = TMF_RESP_FUNC_FAILED;
if (task->lldd_task && task->task_proto & SAS_PROTOCOL_SSP) {
struct scsi_cmnd * cmnd = (struct scsi_cmnd *)task->uldd_task;
struct domain_device *dev = task->dev;
struct mvs_device *mvi_dev = (struct mvs_device *)dev->lldd_dev;
struct mvs_info *mvi = mvi_dev->mvi_info;
int_to_scsilun(cmnd->device->lun, &lun);
rc = mvs_find_tag(mvi, task, &tag);
if (rc == 0) {
rc = TMF_RESP_FUNC_FAILED;
return rc;
}
tmf_task.tmf = TMF_QUERY_TASK;
tmf_task.tag_of_task_to_be_managed = cpu_to_le16(tag);
rc = mvs_debug_issue_ssp_tmf(dev, lun.scsi_lun, &tmf_task);
switch (rc) {
/* The task is still in Lun, release it then */
case TMF_RESP_FUNC_SUCC:
/* The task is not in Lun or failed, reset the phy */
case TMF_RESP_FUNC_FAILED:
case TMF_RESP_FUNC_COMPLETE:
break;
}
}
mv_printk("%s:rc= %d\n", __func__, rc);
return rc;
}
/* mandatory SAM-3, still need free task/slot info */
int mvs_abort_task(struct sas_task *task)
{
struct scsi_lun lun;
struct mvs_tmf_task tmf_task;
struct domain_device *dev = task->dev;
struct mvs_device *mvi_dev = (struct mvs_device *)dev->lldd_dev;
struct mvs_info *mvi;
int rc = TMF_RESP_FUNC_FAILED;
unsigned long flags;
u32 tag;
if (!mvi_dev) {
mv_printk("Device has removed\n");
return TMF_RESP_FUNC_FAILED;
}
mvi = mvi_dev->mvi_info;
spin_lock_irqsave(&task->task_state_lock, flags);
if (task->task_state_flags & SAS_TASK_STATE_DONE) {
spin_unlock_irqrestore(&task->task_state_lock, flags);
rc = TMF_RESP_FUNC_COMPLETE;
goto out;
}
spin_unlock_irqrestore(&task->task_state_lock, flags);
mvi_dev->dev_status = MVS_DEV_EH;
if (task->lldd_task && task->task_proto & SAS_PROTOCOL_SSP) {
struct scsi_cmnd * cmnd = (struct scsi_cmnd *)task->uldd_task;
int_to_scsilun(cmnd->device->lun, &lun);
rc = mvs_find_tag(mvi, task, &tag);
if (rc == 0) {
mv_printk("No such tag in %s\n", __func__);
rc = TMF_RESP_FUNC_FAILED;
return rc;
}
tmf_task.tmf = TMF_ABORT_TASK;
tmf_task.tag_of_task_to_be_managed = cpu_to_le16(tag);
rc = mvs_debug_issue_ssp_tmf(dev, lun.scsi_lun, &tmf_task);
/* if successful, clear the task and callback forwards.*/
if (rc == TMF_RESP_FUNC_COMPLETE) {
u32 slot_no;
struct mvs_slot_info *slot;
if (task->lldd_task) {
slot = task->lldd_task;
slot_no = (u32) (slot - mvi->slot_info);
spin_lock_irqsave(&mvi->lock, flags);
mvs_slot_complete(mvi, slot_no, 1);
spin_unlock_irqrestore(&mvi->lock, flags);
}
}
} else if (task->task_proto & SAS_PROTOCOL_SATA ||
task->task_proto & SAS_PROTOCOL_STP) {
if (SAS_SATA_DEV == dev->dev_type) {
struct mvs_slot_info *slot = task->lldd_task;
u32 slot_idx = (u32)(slot - mvi->slot_info);
mv_dprintk("mvs_abort_task() mvi=%p task=%p "
"slot=%p slot_idx=x%x\n",
mvi, task, slot, slot_idx);
task->task_state_flags |= SAS_TASK_STATE_ABORTED;
mvs_slot_task_free(mvi, task, slot, slot_idx);
rc = TMF_RESP_FUNC_COMPLETE;
goto out;
}
}
out:
if (rc != TMF_RESP_FUNC_COMPLETE)
mv_printk("%s:rc= %d\n", __func__, rc);
return rc;
}
int mvs_abort_task_set(struct domain_device *dev, u8 *lun)
{
int rc = TMF_RESP_FUNC_FAILED;
struct mvs_tmf_task tmf_task;
tmf_task.tmf = TMF_ABORT_TASK_SET;
rc = mvs_debug_issue_ssp_tmf(dev, lun, &tmf_task);
return rc;
}
int mvs_clear_aca(struct domain_device *dev, u8 *lun)
{
int rc = TMF_RESP_FUNC_FAILED;
struct mvs_tmf_task tmf_task;
tmf_task.tmf = TMF_CLEAR_ACA;
rc = mvs_debug_issue_ssp_tmf(dev, lun, &tmf_task);
return rc;
}
int mvs_clear_task_set(struct domain_device *dev, u8 *lun)
{
int rc = TMF_RESP_FUNC_FAILED;
struct mvs_tmf_task tmf_task;
tmf_task.tmf = TMF_CLEAR_TASK_SET;
rc = mvs_debug_issue_ssp_tmf(dev, lun, &tmf_task);
return rc;
}
static int mvs_sata_done(struct mvs_info *mvi, struct sas_task *task,
u32 slot_idx, int err)
{
struct mvs_device *mvi_dev = task->dev->lldd_dev;
struct task_status_struct *tstat = &task->task_status;
struct ata_task_resp *resp = (struct ata_task_resp *)tstat->buf;
int stat = SAM_STAT_GOOD;
resp->frame_len = sizeof(struct dev_to_host_fis);
memcpy(&resp->ending_fis[0],
SATA_RECEIVED_D2H_FIS(mvi_dev->taskfileset),
sizeof(struct dev_to_host_fis));
tstat->buf_valid_size = sizeof(*resp);
if (unlikely(err)) {
if (unlikely(err & CMD_ISS_STPD))
stat = SAS_OPEN_REJECT;
else
stat = SAS_PROTO_RESPONSE;
}
return stat;
}
void mvs_set_sense(u8 *buffer, int len, int d_sense,
int key, int asc, int ascq)
{
memset(buffer, 0, len);
if (d_sense) {
/* Descriptor format */
if (len < 4) {
mv_printk("Length %d of sense buffer too small to "
"fit sense %x:%x:%x", len, key, asc, ascq);
}
buffer[0] = 0x72; /* Response Code */
if (len > 1)
buffer[1] = key; /* Sense Key */
if (len > 2)
buffer[2] = asc; /* ASC */
if (len > 3)
buffer[3] = ascq; /* ASCQ */
} else {
if (len < 14) {
mv_printk("Length %d of sense buffer too small to "
"fit sense %x:%x:%x", len, key, asc, ascq);
}
buffer[0] = 0x70; /* Response Code */
if (len > 2)
buffer[2] = key; /* Sense Key */
if (len > 7)
buffer[7] = 0x0a; /* Additional Sense Length */
if (len > 12)
buffer[12] = asc; /* ASC */
if (len > 13)
buffer[13] = ascq; /* ASCQ */
}
return;
}
void mvs_fill_ssp_resp_iu(struct ssp_response_iu *iu,
u8 key, u8 asc, u8 asc_q)
{
iu->datapres = 2;
iu->response_data_len = 0;
iu->sense_data_len = 17;
iu->status = 02;
mvs_set_sense(iu->sense_data, 17, 0,
key, asc, asc_q);
}
static int mvs_slot_err(struct mvs_info *mvi, struct sas_task *task,
u32 slot_idx)
{
struct mvs_slot_info *slot = &mvi->slot_info[slot_idx];
int stat;
u32 err_dw0 = le32_to_cpu(*(u32 *)slot->response);
u32 err_dw1 = le32_to_cpu(*((u32 *)slot->response + 1));
u32 tfs = 0;
enum mvs_port_type type = PORT_TYPE_SAS;
if (err_dw0 & CMD_ISS_STPD)
MVS_CHIP_DISP->issue_stop(mvi, type, tfs);
MVS_CHIP_DISP->command_active(mvi, slot_idx);
stat = SAM_STAT_CHECK_CONDITION;
switch (task->task_proto) {
case SAS_PROTOCOL_SSP:
{
stat = SAS_ABORTED_TASK;
if ((err_dw0 & NO_DEST) || err_dw1 & bit(31)) {
struct ssp_response_iu *iu = slot->response +
sizeof(struct mvs_err_info);
mvs_fill_ssp_resp_iu(iu, NOT_READY, 0x04, 01);
sas_ssp_task_response(mvi->dev, task, iu);
stat = SAM_STAT_CHECK_CONDITION;
}
if (err_dw1 & bit(31))
mv_printk("reuse same slot, retry command.\n");
break;
}
case SAS_PROTOCOL_SMP:
stat = SAM_STAT_CHECK_CONDITION;
break;
case SAS_PROTOCOL_SATA:
case SAS_PROTOCOL_STP:
case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP:
{
task->ata_task.use_ncq = 0;
stat = SAS_PROTO_RESPONSE;
mvs_sata_done(mvi, task, slot_idx, err_dw0);
}
break;
default:
break;
}
return stat;
}
int mvs_slot_complete(struct mvs_info *mvi, u32 rx_desc, u32 flags)
{
u32 slot_idx = rx_desc & RXQ_SLOT_MASK;
struct mvs_slot_info *slot = &mvi->slot_info[slot_idx];
struct sas_task *task = slot->task;
struct mvs_device *mvi_dev = NULL;
struct task_status_struct *tstat;
struct domain_device *dev;
u32 aborted;
void *to;
enum exec_status sts;
if (unlikely(!task || !task->lldd_task || !task->dev))
return -1;
tstat = &task->task_status;
dev = task->dev;
mvi_dev = dev->lldd_dev;
spin_lock(&task->task_state_lock);
task->task_state_flags &=
~(SAS_TASK_STATE_PENDING | SAS_TASK_AT_INITIATOR);
task->task_state_flags |= SAS_TASK_STATE_DONE;
/* race condition*/
aborted = task->task_state_flags & SAS_TASK_STATE_ABORTED;
spin_unlock(&task->task_state_lock);
memset(tstat, 0, sizeof(*tstat));
tstat->resp = SAS_TASK_COMPLETE;
if (unlikely(aborted)) {
tstat->stat = SAS_ABORTED_TASK;
if (mvi_dev && mvi_dev->running_req)
mvi_dev->running_req--;
if (sas_protocol_ata(task->task_proto))
mvs_free_reg_set(mvi, mvi_dev);
mvs_slot_task_free(mvi, task, slot, slot_idx);
return -1;
}
/* when no device attaching, go ahead and complete by error handling*/
if (unlikely(!mvi_dev || flags)) {
if (!mvi_dev)
mv_dprintk("port has not device.\n");
tstat->stat = SAS_PHY_DOWN;
goto out;
}
/*
* error info record present; slot->response is 32 bit aligned but may
* not be 64 bit aligned, so check for zero in two 32 bit reads
*/
if (unlikely((rx_desc & RXQ_ERR)
&& (*((u32 *)slot->response)
|| *(((u32 *)slot->response) + 1)))) {
mv_dprintk("port %d slot %d rx_desc %X has error info"
"%016llX.\n", slot->port->sas_port.id, slot_idx,
rx_desc, get_unaligned_le64(slot->response));
tstat->stat = mvs_slot_err(mvi, task, slot_idx);
tstat->resp = SAS_TASK_COMPLETE;
goto out;
}
switch (task->task_proto) {
case SAS_PROTOCOL_SSP:
/* hw says status == 0, datapres == 0 */
if (rx_desc & RXQ_GOOD) {
tstat->stat = SAM_STAT_GOOD;
tstat->resp = SAS_TASK_COMPLETE;
}
/* response frame present */
else if (rx_desc & RXQ_RSP) {
struct ssp_response_iu *iu = slot->response +
sizeof(struct mvs_err_info);
sas_ssp_task_response(mvi->dev, task, iu);
} else
tstat->stat = SAM_STAT_CHECK_CONDITION;
break;
case SAS_PROTOCOL_SMP: {
struct scatterlist *sg_resp = &task->smp_task.smp_resp;
tstat->stat = SAM_STAT_GOOD;
to = kmap_atomic(sg_page(sg_resp));
memcpy(to + sg_resp->offset,
slot->response + sizeof(struct mvs_err_info),
sg_dma_len(sg_resp));
kunmap_atomic(to);
break;
}
case SAS_PROTOCOL_SATA:
case SAS_PROTOCOL_STP:
case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP: {
tstat->stat = mvs_sata_done(mvi, task, slot_idx, 0);
break;
}
default:
tstat->stat = SAM_STAT_CHECK_CONDITION;
break;
}
if (!slot->port->port_attached) {
mv_dprintk("port %d has removed.\n", slot->port->sas_port.id);
tstat->stat = SAS_PHY_DOWN;
}
out:
if (mvi_dev && mvi_dev->running_req) {
mvi_dev->running_req--;
if (sas_protocol_ata(task->task_proto) && !mvi_dev->running_req)
mvs_free_reg_set(mvi, mvi_dev);
}
mvs_slot_task_free(mvi, task, slot, slot_idx);
sts = tstat->stat;
spin_unlock(&mvi->lock);
if (task->task_done)
task->task_done(task);
spin_lock(&mvi->lock);
return sts;
}
void mvs_do_release_task(struct mvs_info *mvi,
int phy_no, struct domain_device *dev)
{
u32 slot_idx;
struct mvs_phy *phy;
struct mvs_port *port;
struct mvs_slot_info *slot, *slot2;
phy = &mvi->phy[phy_no];
port = phy->port;
if (!port)
return;
/* clean cmpl queue in case request is already finished */
mvs_int_rx(mvi, false);
list_for_each_entry_safe(slot, slot2, &port->list, entry) {
struct sas_task *task;
slot_idx = (u32) (slot - mvi->slot_info);
task = slot->task;
if (dev && task->dev != dev)
continue;
mv_printk("Release slot [%x] tag[%x], task [%p]:\n",
slot_idx, slot->slot_tag, task);
MVS_CHIP_DISP->command_active(mvi, slot_idx);
mvs_slot_complete(mvi, slot_idx, 1);
}
}
void mvs_release_task(struct mvs_info *mvi,
struct domain_device *dev)
{
int i, phyno[WIDE_PORT_MAX_PHY], num;
num = mvs_find_dev_phyno(dev, phyno);
for (i = 0; i < num; i++)
mvs_do_release_task(mvi, phyno[i], dev);
}
static void mvs_phy_disconnected(struct mvs_phy *phy)
{
phy->phy_attached = 0;
phy->att_dev_info = 0;
phy->att_dev_sas_addr = 0;
}
static void mvs_work_queue(struct work_struct *work)
{
struct delayed_work *dw = container_of(work, struct delayed_work, work);
struct mvs_wq *mwq = container_of(dw, struct mvs_wq, work_q);
struct mvs_info *mvi = mwq->mvi;
unsigned long flags;
u32 phy_no = (unsigned long) mwq->data;
struct sas_ha_struct *sas_ha = mvi->sas;
struct mvs_phy *phy = &mvi->phy[phy_no];
struct asd_sas_phy *sas_phy = &phy->sas_phy;
spin_lock_irqsave(&mvi->lock, flags);
if (mwq->handler & PHY_PLUG_EVENT) {
if (phy->phy_event & PHY_PLUG_OUT) {
u32 tmp;
struct sas_identify_frame *id;
id = (struct sas_identify_frame *)phy->frame_rcvd;
tmp = MVS_CHIP_DISP->read_phy_ctl(mvi, phy_no);
phy->phy_event &= ~PHY_PLUG_OUT;
if (!(tmp & PHY_READY_MASK)) {
sas_phy_disconnected(sas_phy);
mvs_phy_disconnected(phy);
sas_ha->notify_phy_event(sas_phy,
PHYE_LOSS_OF_SIGNAL);
mv_dprintk("phy%d Removed Device\n", phy_no);
} else {
MVS_CHIP_DISP->detect_porttype(mvi, phy_no);
mvs_update_phyinfo(mvi, phy_no, 1);
mvs_bytes_dmaed(mvi, phy_no);
mvs_port_notify_formed(sas_phy, 0);
mv_dprintk("phy%d Attached Device\n", phy_no);
}
}
} else if (mwq->handler & EXP_BRCT_CHG) {
phy->phy_event &= ~EXP_BRCT_CHG;
sas_ha->notify_port_event(sas_phy,
PORTE_BROADCAST_RCVD);
mv_dprintk("phy%d Got Broadcast Change\n", phy_no);
}
list_del(&mwq->entry);
spin_unlock_irqrestore(&mvi->lock, flags);
kfree(mwq);
}
static int mvs_handle_event(struct mvs_info *mvi, void *data, int handler)
{
struct mvs_wq *mwq;
int ret = 0;
mwq = kmalloc(sizeof(struct mvs_wq), GFP_ATOMIC);
if (mwq) {
mwq->mvi = mvi;
mwq->data = data;
mwq->handler = handler;
MV_INIT_DELAYED_WORK(&mwq->work_q, mvs_work_queue, mwq);
list_add_tail(&mwq->entry, &mvi->wq_list);
schedule_delayed_work(&mwq->work_q, HZ * 2);
} else
ret = -ENOMEM;
return ret;
}
static void mvs_sig_time_out(unsigned long tphy)
{
struct mvs_phy *phy = (struct mvs_phy *)tphy;
struct mvs_info *mvi = phy->mvi;
u8 phy_no;
for (phy_no = 0; phy_no < mvi->chip->n_phy; phy_no++) {
if (&mvi->phy[phy_no] == phy) {
mv_dprintk("Get signature time out, reset phy %d\n",
phy_no+mvi->id*mvi->chip->n_phy);
MVS_CHIP_DISP->phy_reset(mvi, phy_no, MVS_HARD_RESET);
}
}
}
void mvs_int_port(struct mvs_info *mvi, int phy_no, u32 events)
{
u32 tmp;
struct mvs_phy *phy = &mvi->phy[phy_no];
phy->irq_status = MVS_CHIP_DISP->read_port_irq_stat(mvi, phy_no);
MVS_CHIP_DISP->write_port_irq_stat(mvi, phy_no, phy->irq_status);
mv_dprintk("phy %d ctrl sts=0x%08X.\n", phy_no+mvi->id*mvi->chip->n_phy,
MVS_CHIP_DISP->read_phy_ctl(mvi, phy_no));
mv_dprintk("phy %d irq sts = 0x%08X\n", phy_no+mvi->id*mvi->chip->n_phy,
phy->irq_status);
/*
* events is port event now ,
* we need check the interrupt status which belongs to per port.
*/
if (phy->irq_status & PHYEV_DCDR_ERR) {
mv_dprintk("phy %d STP decoding error.\n",
phy_no + mvi->id*mvi->chip->n_phy);
}
if (phy->irq_status & PHYEV_POOF) {
mdelay(500);
if (!(phy->phy_event & PHY_PLUG_OUT)) {
int dev_sata = phy->phy_type & PORT_TYPE_SATA;
int ready;
mvs_do_release_task(mvi, phy_no, NULL);
phy->phy_event |= PHY_PLUG_OUT;
MVS_CHIP_DISP->clear_srs_irq(mvi, 0, 1);
mvs_handle_event(mvi,
(void *)(unsigned long)phy_no,
PHY_PLUG_EVENT);
ready = mvs_is_phy_ready(mvi, phy_no);
if (ready || dev_sata) {
if (MVS_CHIP_DISP->stp_reset)
MVS_CHIP_DISP->stp_reset(mvi,
phy_no);
else
MVS_CHIP_DISP->phy_reset(mvi,
phy_no, MVS_SOFT_RESET);
return;
}
}
}
if (phy->irq_status & PHYEV_COMWAKE) {
tmp = MVS_CHIP_DISP->read_port_irq_mask(mvi, phy_no);
MVS_CHIP_DISP->write_port_irq_mask(mvi, phy_no,
tmp | PHYEV_SIG_FIS);
if (phy->timer.function == NULL) {
phy->timer.data = (unsigned long)phy;
phy->timer.function = mvs_sig_time_out;
phy->timer.expires = jiffies + 5*HZ;
add_timer(&phy->timer);
}
}
if (phy->irq_status & (PHYEV_SIG_FIS | PHYEV_ID_DONE)) {
phy->phy_status = mvs_is_phy_ready(mvi, phy_no);
mv_dprintk("notify plug in on phy[%d]\n", phy_no);
if (phy->phy_status) {
mdelay(10);
MVS_CHIP_DISP->detect_porttype(mvi, phy_no);
if (phy->phy_type & PORT_TYPE_SATA) {
tmp = MVS_CHIP_DISP->read_port_irq_mask(
mvi, phy_no);
tmp &= ~PHYEV_SIG_FIS;
MVS_CHIP_DISP->write_port_irq_mask(mvi,
phy_no, tmp);
}
mvs_update_phyinfo(mvi, phy_no, 0);
if (phy->phy_type & PORT_TYPE_SAS) {
MVS_CHIP_DISP->phy_reset(mvi, phy_no, MVS_PHY_TUNE);
mdelay(10);
}
mvs_bytes_dmaed(mvi, phy_no);
/* whether driver is going to handle hot plug */
if (phy->phy_event & PHY_PLUG_OUT) {
mvs_port_notify_formed(&phy->sas_phy, 0);
phy->phy_event &= ~PHY_PLUG_OUT;
}
} else {
mv_dprintk("plugin interrupt but phy%d is gone\n",
phy_no + mvi->id*mvi->chip->n_phy);
}
} else if (phy->irq_status & PHYEV_BROAD_CH) {
mv_dprintk("phy %d broadcast change.\n",
phy_no + mvi->id*mvi->chip->n_phy);
mvs_handle_event(mvi, (void *)(unsigned long)phy_no,
EXP_BRCT_CHG);
}
}
int mvs_int_rx(struct mvs_info *mvi, bool self_clear)
{
u32 rx_prod_idx, rx_desc;
bool attn = false;
/* the first dword in the RX ring is special: it contains
* a mirror of the hardware's RX producer index, so that
* we don't have to stall the CPU reading that register.
* The actual RX ring is offset by one dword, due to this.
*/
rx_prod_idx = mvi->rx_cons;
mvi->rx_cons = le32_to_cpu(mvi->rx[0]);
if (mvi->rx_cons == 0xfff) /* h/w hasn't touched RX ring yet */
return 0;
/* The CMPL_Q may come late, read from register and try again
* note: if coalescing is enabled,
* it will need to read from register every time for sure
*/
if (unlikely(mvi->rx_cons == rx_prod_idx))
mvi->rx_cons = MVS_CHIP_DISP->rx_update(mvi) & RX_RING_SZ_MASK;
if (mvi->rx_cons == rx_prod_idx)
return 0;
while (mvi->rx_cons != rx_prod_idx) {
/* increment our internal RX consumer pointer */
rx_prod_idx = (rx_prod_idx + 1) & (MVS_RX_RING_SZ - 1);
rx_desc = le32_to_cpu(mvi->rx[rx_prod_idx + 1]);
if (likely(rx_desc & RXQ_DONE))
mvs_slot_complete(mvi, rx_desc, 0);
if (rx_desc & RXQ_ATTN) {
attn = true;
} else if (rx_desc & RXQ_ERR) {
if (!(rx_desc & RXQ_DONE))
mvs_slot_complete(mvi, rx_desc, 0);
} else if (rx_desc & RXQ_SLOT_RESET) {
mvs_slot_free(mvi, rx_desc);
}
}
if (attn && self_clear)
MVS_CHIP_DISP->int_full(mvi);
return 0;
}