linux/drivers/gpu/drm/tegra/sor.c

3570 lines
90 KiB
C

/*
* Copyright (C) 2013 NVIDIA Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/debugfs.h>
#include <linux/gpio.h>
#include <linux/io.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/regulator/consumer.h>
#include <linux/reset.h>
#include <soc/tegra/pmc.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_dp_helper.h>
#include <drm/drm_panel.h>
#include <drm/drm_scdc_helper.h>
#include "dc.h"
#include "drm.h"
#include "hda.h"
#include "sor.h"
#include "trace.h"
#define SOR_REKEY 0x38
struct tegra_sor_hdmi_settings {
unsigned long frequency;
u8 vcocap;
u8 filter;
u8 ichpmp;
u8 loadadj;
u8 tmds_termadj;
u8 tx_pu_value;
u8 bg_temp_coef;
u8 bg_vref_level;
u8 avdd10_level;
u8 avdd14_level;
u8 sparepll;
u8 drive_current[4];
u8 preemphasis[4];
};
#if 1
static const struct tegra_sor_hdmi_settings tegra210_sor_hdmi_defaults[] = {
{
.frequency = 54000000,
.vcocap = 0x0,
.filter = 0x0,
.ichpmp = 0x1,
.loadadj = 0x3,
.tmds_termadj = 0x9,
.tx_pu_value = 0x10,
.bg_temp_coef = 0x3,
.bg_vref_level = 0x8,
.avdd10_level = 0x4,
.avdd14_level = 0x4,
.sparepll = 0x0,
.drive_current = { 0x33, 0x3a, 0x3a, 0x3a },
.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
}, {
.frequency = 75000000,
.vcocap = 0x3,
.filter = 0x0,
.ichpmp = 0x1,
.loadadj = 0x3,
.tmds_termadj = 0x9,
.tx_pu_value = 0x40,
.bg_temp_coef = 0x3,
.bg_vref_level = 0x8,
.avdd10_level = 0x4,
.avdd14_level = 0x4,
.sparepll = 0x0,
.drive_current = { 0x33, 0x3a, 0x3a, 0x3a },
.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
}, {
.frequency = 150000000,
.vcocap = 0x3,
.filter = 0x0,
.ichpmp = 0x1,
.loadadj = 0x3,
.tmds_termadj = 0x9,
.tx_pu_value = 0x66,
.bg_temp_coef = 0x3,
.bg_vref_level = 0x8,
.avdd10_level = 0x4,
.avdd14_level = 0x4,
.sparepll = 0x0,
.drive_current = { 0x33, 0x3a, 0x3a, 0x3a },
.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
}, {
.frequency = 300000000,
.vcocap = 0x3,
.filter = 0x0,
.ichpmp = 0x1,
.loadadj = 0x3,
.tmds_termadj = 0x9,
.tx_pu_value = 0x66,
.bg_temp_coef = 0x3,
.bg_vref_level = 0xa,
.avdd10_level = 0x4,
.avdd14_level = 0x4,
.sparepll = 0x0,
.drive_current = { 0x33, 0x3f, 0x3f, 0x3f },
.preemphasis = { 0x00, 0x17, 0x17, 0x17 },
}, {
.frequency = 600000000,
.vcocap = 0x3,
.filter = 0x0,
.ichpmp = 0x1,
.loadadj = 0x3,
.tmds_termadj = 0x9,
.tx_pu_value = 0x66,
.bg_temp_coef = 0x3,
.bg_vref_level = 0x8,
.avdd10_level = 0x4,
.avdd14_level = 0x4,
.sparepll = 0x0,
.drive_current = { 0x33, 0x3f, 0x3f, 0x3f },
.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
},
};
#else
static const struct tegra_sor_hdmi_settings tegra210_sor_hdmi_defaults[] = {
{
.frequency = 75000000,
.vcocap = 0x3,
.filter = 0x0,
.ichpmp = 0x1,
.loadadj = 0x3,
.tmds_termadj = 0x9,
.tx_pu_value = 0x40,
.bg_temp_coef = 0x3,
.bg_vref_level = 0x8,
.avdd10_level = 0x4,
.avdd14_level = 0x4,
.sparepll = 0x0,
.drive_current = { 0x29, 0x29, 0x29, 0x29 },
.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
}, {
.frequency = 150000000,
.vcocap = 0x3,
.filter = 0x0,
.ichpmp = 0x1,
.loadadj = 0x3,
.tmds_termadj = 0x9,
.tx_pu_value = 0x66,
.bg_temp_coef = 0x3,
.bg_vref_level = 0x8,
.avdd10_level = 0x4,
.avdd14_level = 0x4,
.sparepll = 0x0,
.drive_current = { 0x30, 0x37, 0x37, 0x37 },
.preemphasis = { 0x01, 0x02, 0x02, 0x02 },
}, {
.frequency = 300000000,
.vcocap = 0x3,
.filter = 0x0,
.ichpmp = 0x6,
.loadadj = 0x3,
.tmds_termadj = 0x9,
.tx_pu_value = 0x66,
.bg_temp_coef = 0x3,
.bg_vref_level = 0xf,
.avdd10_level = 0x4,
.avdd14_level = 0x4,
.sparepll = 0x0,
.drive_current = { 0x30, 0x37, 0x37, 0x37 },
.preemphasis = { 0x10, 0x3e, 0x3e, 0x3e },
}, {
.frequency = 600000000,
.vcocap = 0x3,
.filter = 0x0,
.ichpmp = 0xa,
.loadadj = 0x3,
.tmds_termadj = 0xb,
.tx_pu_value = 0x66,
.bg_temp_coef = 0x3,
.bg_vref_level = 0xe,
.avdd10_level = 0x4,
.avdd14_level = 0x4,
.sparepll = 0x0,
.drive_current = { 0x35, 0x3e, 0x3e, 0x3e },
.preemphasis = { 0x02, 0x3f, 0x3f, 0x3f },
},
};
#endif
static const struct tegra_sor_hdmi_settings tegra186_sor_hdmi_defaults[] = {
{
.frequency = 54000000,
.vcocap = 0,
.filter = 5,
.ichpmp = 5,
.loadadj = 3,
.tmds_termadj = 0xf,
.tx_pu_value = 0,
.bg_temp_coef = 3,
.bg_vref_level = 8,
.avdd10_level = 4,
.avdd14_level = 4,
.sparepll = 0x54,
.drive_current = { 0x3a, 0x3a, 0x3a, 0x33 },
.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
}, {
.frequency = 75000000,
.vcocap = 1,
.filter = 5,
.ichpmp = 5,
.loadadj = 3,
.tmds_termadj = 0xf,
.tx_pu_value = 0,
.bg_temp_coef = 3,
.bg_vref_level = 8,
.avdd10_level = 4,
.avdd14_level = 4,
.sparepll = 0x44,
.drive_current = { 0x3a, 0x3a, 0x3a, 0x33 },
.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
}, {
.frequency = 150000000,
.vcocap = 3,
.filter = 5,
.ichpmp = 5,
.loadadj = 3,
.tmds_termadj = 15,
.tx_pu_value = 0x66 /* 0 */,
.bg_temp_coef = 3,
.bg_vref_level = 8,
.avdd10_level = 4,
.avdd14_level = 4,
.sparepll = 0x00, /* 0x34 */
.drive_current = { 0x3a, 0x3a, 0x3a, 0x37 },
.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
}, {
.frequency = 300000000,
.vcocap = 3,
.filter = 5,
.ichpmp = 5,
.loadadj = 3,
.tmds_termadj = 15,
.tx_pu_value = 64,
.bg_temp_coef = 3,
.bg_vref_level = 8,
.avdd10_level = 4,
.avdd14_level = 4,
.sparepll = 0x34,
.drive_current = { 0x3d, 0x3d, 0x3d, 0x33 },
.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
}, {
.frequency = 600000000,
.vcocap = 3,
.filter = 5,
.ichpmp = 5,
.loadadj = 3,
.tmds_termadj = 12,
.tx_pu_value = 96,
.bg_temp_coef = 3,
.bg_vref_level = 8,
.avdd10_level = 4,
.avdd14_level = 4,
.sparepll = 0x34,
.drive_current = { 0x3d, 0x3d, 0x3d, 0x33 },
.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
}
};
static const struct tegra_sor_hdmi_settings tegra194_sor_hdmi_defaults[] = {
{
.frequency = 54000000,
.vcocap = 0,
.filter = 5,
.ichpmp = 5,
.loadadj = 3,
.tmds_termadj = 0xf,
.tx_pu_value = 0,
.bg_temp_coef = 3,
.bg_vref_level = 8,
.avdd10_level = 4,
.avdd14_level = 4,
.sparepll = 0x54,
.drive_current = { 0x3a, 0x3a, 0x3a, 0x33 },
.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
}, {
.frequency = 75000000,
.vcocap = 1,
.filter = 5,
.ichpmp = 5,
.loadadj = 3,
.tmds_termadj = 0xf,
.tx_pu_value = 0,
.bg_temp_coef = 3,
.bg_vref_level = 8,
.avdd10_level = 4,
.avdd14_level = 4,
.sparepll = 0x44,
.drive_current = { 0x3a, 0x3a, 0x3a, 0x33 },
.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
}, {
.frequency = 150000000,
.vcocap = 3,
.filter = 5,
.ichpmp = 5,
.loadadj = 3,
.tmds_termadj = 15,
.tx_pu_value = 0x66 /* 0 */,
.bg_temp_coef = 3,
.bg_vref_level = 8,
.avdd10_level = 4,
.avdd14_level = 4,
.sparepll = 0x00, /* 0x34 */
.drive_current = { 0x3a, 0x3a, 0x3a, 0x37 },
.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
}, {
.frequency = 300000000,
.vcocap = 3,
.filter = 5,
.ichpmp = 5,
.loadadj = 3,
.tmds_termadj = 15,
.tx_pu_value = 64,
.bg_temp_coef = 3,
.bg_vref_level = 8,
.avdd10_level = 4,
.avdd14_level = 4,
.sparepll = 0x34,
.drive_current = { 0x3d, 0x3d, 0x3d, 0x33 },
.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
}, {
.frequency = 600000000,
.vcocap = 3,
.filter = 5,
.ichpmp = 5,
.loadadj = 3,
.tmds_termadj = 12,
.tx_pu_value = 96,
.bg_temp_coef = 3,
.bg_vref_level = 8,
.avdd10_level = 4,
.avdd14_level = 4,
.sparepll = 0x34,
.drive_current = { 0x3d, 0x3d, 0x3d, 0x33 },
.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
}
};
struct tegra_sor_regs {
unsigned int head_state0;
unsigned int head_state1;
unsigned int head_state2;
unsigned int head_state3;
unsigned int head_state4;
unsigned int head_state5;
unsigned int pll0;
unsigned int pll1;
unsigned int pll2;
unsigned int pll3;
unsigned int dp_padctl0;
unsigned int dp_padctl2;
};
struct tegra_sor_soc {
bool supports_edp;
bool supports_lvds;
bool supports_hdmi;
bool supports_dp;
const struct tegra_sor_regs *regs;
bool has_nvdisplay;
const struct tegra_sor_hdmi_settings *settings;
unsigned int num_settings;
const u8 *xbar_cfg;
};
struct tegra_sor;
struct tegra_sor_ops {
const char *name;
int (*probe)(struct tegra_sor *sor);
int (*remove)(struct tegra_sor *sor);
};
struct tegra_sor {
struct host1x_client client;
struct tegra_output output;
struct device *dev;
const struct tegra_sor_soc *soc;
void __iomem *regs;
unsigned int index;
unsigned int irq;
struct reset_control *rst;
struct clk *clk_parent;
struct clk *clk_safe;
struct clk *clk_out;
struct clk *clk_pad;
struct clk *clk_dp;
struct clk *clk;
u8 xbar_cfg[5];
struct drm_dp_aux *aux;
struct drm_info_list *debugfs_files;
const struct tegra_sor_ops *ops;
enum tegra_io_pad pad;
/* for HDMI 2.0 */
struct tegra_sor_hdmi_settings *settings;
unsigned int num_settings;
struct regulator *avdd_io_supply;
struct regulator *vdd_pll_supply;
struct regulator *hdmi_supply;
struct delayed_work scdc;
bool scdc_enabled;
struct tegra_hda_format format;
};
struct tegra_sor_state {
struct drm_connector_state base;
unsigned int link_speed;
unsigned long pclk;
unsigned int bpc;
};
static inline struct tegra_sor_state *
to_sor_state(struct drm_connector_state *state)
{
return container_of(state, struct tegra_sor_state, base);
}
struct tegra_sor_config {
u32 bits_per_pixel;
u32 active_polarity;
u32 active_count;
u32 tu_size;
u32 active_frac;
u32 watermark;
u32 hblank_symbols;
u32 vblank_symbols;
};
static inline struct tegra_sor *
host1x_client_to_sor(struct host1x_client *client)
{
return container_of(client, struct tegra_sor, client);
}
static inline struct tegra_sor *to_sor(struct tegra_output *output)
{
return container_of(output, struct tegra_sor, output);
}
static inline u32 tegra_sor_readl(struct tegra_sor *sor, unsigned int offset)
{
u32 value = readl(sor->regs + (offset << 2));
trace_sor_readl(sor->dev, offset, value);
return value;
}
static inline void tegra_sor_writel(struct tegra_sor *sor, u32 value,
unsigned int offset)
{
trace_sor_writel(sor->dev, offset, value);
writel(value, sor->regs + (offset << 2));
}
static int tegra_sor_set_parent_clock(struct tegra_sor *sor, struct clk *parent)
{
int err;
clk_disable_unprepare(sor->clk);
err = clk_set_parent(sor->clk_out, parent);
if (err < 0)
return err;
err = clk_prepare_enable(sor->clk);
if (err < 0)
return err;
return 0;
}
struct tegra_clk_sor_pad {
struct clk_hw hw;
struct tegra_sor *sor;
};
static inline struct tegra_clk_sor_pad *to_pad(struct clk_hw *hw)
{
return container_of(hw, struct tegra_clk_sor_pad, hw);
}
static const char * const tegra_clk_sor_pad_parents[] = {
"pll_d2_out0", "pll_dp"
};
static int tegra_clk_sor_pad_set_parent(struct clk_hw *hw, u8 index)
{
struct tegra_clk_sor_pad *pad = to_pad(hw);
struct tegra_sor *sor = pad->sor;
u32 value;
value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
value &= ~SOR_CLK_CNTRL_DP_CLK_SEL_MASK;
switch (index) {
case 0:
value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_PCLK;
break;
case 1:
value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_DPCLK;
break;
}
tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
return 0;
}
static u8 tegra_clk_sor_pad_get_parent(struct clk_hw *hw)
{
struct tegra_clk_sor_pad *pad = to_pad(hw);
struct tegra_sor *sor = pad->sor;
u8 parent = U8_MAX;
u32 value;
value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
switch (value & SOR_CLK_CNTRL_DP_CLK_SEL_MASK) {
case SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_PCLK:
case SOR_CLK_CNTRL_DP_CLK_SEL_DIFF_PCLK:
parent = 0;
break;
case SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_DPCLK:
case SOR_CLK_CNTRL_DP_CLK_SEL_DIFF_DPCLK:
parent = 1;
break;
}
return parent;
}
static const struct clk_ops tegra_clk_sor_pad_ops = {
.set_parent = tegra_clk_sor_pad_set_parent,
.get_parent = tegra_clk_sor_pad_get_parent,
};
static struct clk *tegra_clk_sor_pad_register(struct tegra_sor *sor,
const char *name)
{
struct tegra_clk_sor_pad *pad;
struct clk_init_data init;
struct clk *clk;
pad = devm_kzalloc(sor->dev, sizeof(*pad), GFP_KERNEL);
if (!pad)
return ERR_PTR(-ENOMEM);
pad->sor = sor;
init.name = name;
init.flags = 0;
init.parent_names = tegra_clk_sor_pad_parents;
init.num_parents = ARRAY_SIZE(tegra_clk_sor_pad_parents);
init.ops = &tegra_clk_sor_pad_ops;
pad->hw.init = &init;
clk = devm_clk_register(sor->dev, &pad->hw);
return clk;
}
static int tegra_sor_dp_train_fast(struct tegra_sor *sor,
struct drm_dp_link *link)
{
unsigned int i;
u8 pattern;
u32 value;
int err;
/* setup lane parameters */
value = SOR_LANE_DRIVE_CURRENT_LANE3(0x40) |
SOR_LANE_DRIVE_CURRENT_LANE2(0x40) |
SOR_LANE_DRIVE_CURRENT_LANE1(0x40) |
SOR_LANE_DRIVE_CURRENT_LANE0(0x40);
tegra_sor_writel(sor, value, SOR_LANE_DRIVE_CURRENT0);
value = SOR_LANE_PREEMPHASIS_LANE3(0x0f) |
SOR_LANE_PREEMPHASIS_LANE2(0x0f) |
SOR_LANE_PREEMPHASIS_LANE1(0x0f) |
SOR_LANE_PREEMPHASIS_LANE0(0x0f);
tegra_sor_writel(sor, value, SOR_LANE_PREEMPHASIS0);
value = SOR_LANE_POSTCURSOR_LANE3(0x00) |
SOR_LANE_POSTCURSOR_LANE2(0x00) |
SOR_LANE_POSTCURSOR_LANE1(0x00) |
SOR_LANE_POSTCURSOR_LANE0(0x00);
tegra_sor_writel(sor, value, SOR_LANE_POSTCURSOR0);
/* disable LVDS mode */
tegra_sor_writel(sor, 0, SOR_LVDS);
value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
value |= SOR_DP_PADCTL_TX_PU_ENABLE;
value &= ~SOR_DP_PADCTL_TX_PU_MASK;
value |= SOR_DP_PADCTL_TX_PU(2); /* XXX: don't hardcode? */
tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
value |= SOR_DP_PADCTL_CM_TXD_3 | SOR_DP_PADCTL_CM_TXD_2 |
SOR_DP_PADCTL_CM_TXD_1 | SOR_DP_PADCTL_CM_TXD_0;
tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
usleep_range(10, 100);
value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
value &= ~(SOR_DP_PADCTL_CM_TXD_3 | SOR_DP_PADCTL_CM_TXD_2 |
SOR_DP_PADCTL_CM_TXD_1 | SOR_DP_PADCTL_CM_TXD_0);
tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
err = drm_dp_aux_prepare(sor->aux, DP_SET_ANSI_8B10B);
if (err < 0)
return err;
for (i = 0, value = 0; i < link->num_lanes; i++) {
unsigned long lane = SOR_DP_TPG_CHANNEL_CODING |
SOR_DP_TPG_SCRAMBLER_NONE |
SOR_DP_TPG_PATTERN_TRAIN1;
value = (value << 8) | lane;
}
tegra_sor_writel(sor, value, SOR_DP_TPG);
pattern = DP_TRAINING_PATTERN_1;
err = drm_dp_aux_train(sor->aux, link, pattern);
if (err < 0)
return err;
value = tegra_sor_readl(sor, SOR_DP_SPARE0);
value |= SOR_DP_SPARE_SEQ_ENABLE;
value &= ~SOR_DP_SPARE_PANEL_INTERNAL;
value |= SOR_DP_SPARE_MACRO_SOR_CLK;
tegra_sor_writel(sor, value, SOR_DP_SPARE0);
for (i = 0, value = 0; i < link->num_lanes; i++) {
unsigned long lane = SOR_DP_TPG_CHANNEL_CODING |
SOR_DP_TPG_SCRAMBLER_NONE |
SOR_DP_TPG_PATTERN_TRAIN2;
value = (value << 8) | lane;
}
tegra_sor_writel(sor, value, SOR_DP_TPG);
pattern = DP_LINK_SCRAMBLING_DISABLE | DP_TRAINING_PATTERN_2;
err = drm_dp_aux_train(sor->aux, link, pattern);
if (err < 0)
return err;
for (i = 0, value = 0; i < link->num_lanes; i++) {
unsigned long lane = SOR_DP_TPG_CHANNEL_CODING |
SOR_DP_TPG_SCRAMBLER_GALIOS |
SOR_DP_TPG_PATTERN_NONE;
value = (value << 8) | lane;
}
tegra_sor_writel(sor, value, SOR_DP_TPG);
pattern = DP_TRAINING_PATTERN_DISABLE;
err = drm_dp_aux_train(sor->aux, link, pattern);
if (err < 0)
return err;
return 0;
}
static void tegra_sor_super_update(struct tegra_sor *sor)
{
tegra_sor_writel(sor, 0, SOR_SUPER_STATE0);
tegra_sor_writel(sor, 1, SOR_SUPER_STATE0);
tegra_sor_writel(sor, 0, SOR_SUPER_STATE0);
}
static void tegra_sor_update(struct tegra_sor *sor)
{
tegra_sor_writel(sor, 0, SOR_STATE0);
tegra_sor_writel(sor, 1, SOR_STATE0);
tegra_sor_writel(sor, 0, SOR_STATE0);
}
static int tegra_sor_setup_pwm(struct tegra_sor *sor, unsigned long timeout)
{
u32 value;
value = tegra_sor_readl(sor, SOR_PWM_DIV);
value &= ~SOR_PWM_DIV_MASK;
value |= 0x400; /* period */
tegra_sor_writel(sor, value, SOR_PWM_DIV);
value = tegra_sor_readl(sor, SOR_PWM_CTL);
value &= ~SOR_PWM_CTL_DUTY_CYCLE_MASK;
value |= 0x400; /* duty cycle */
value &= ~SOR_PWM_CTL_CLK_SEL; /* clock source: PCLK */
value |= SOR_PWM_CTL_TRIGGER;
tegra_sor_writel(sor, value, SOR_PWM_CTL);
timeout = jiffies + msecs_to_jiffies(timeout);
while (time_before(jiffies, timeout)) {
value = tegra_sor_readl(sor, SOR_PWM_CTL);
if ((value & SOR_PWM_CTL_TRIGGER) == 0)
return 0;
usleep_range(25, 100);
}
return -ETIMEDOUT;
}
static int tegra_sor_attach(struct tegra_sor *sor)
{
unsigned long value, timeout;
/* wake up in normal mode */
value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
value |= SOR_SUPER_STATE_HEAD_MODE_AWAKE;
value |= SOR_SUPER_STATE_MODE_NORMAL;
tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
tegra_sor_super_update(sor);
/* attach */
value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
value |= SOR_SUPER_STATE_ATTACHED;
tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
tegra_sor_super_update(sor);
timeout = jiffies + msecs_to_jiffies(250);
while (time_before(jiffies, timeout)) {
value = tegra_sor_readl(sor, SOR_TEST);
if ((value & SOR_TEST_ATTACHED) != 0)
return 0;
usleep_range(25, 100);
}
return -ETIMEDOUT;
}
static int tegra_sor_wakeup(struct tegra_sor *sor)
{
unsigned long value, timeout;
timeout = jiffies + msecs_to_jiffies(250);
/* wait for head to wake up */
while (time_before(jiffies, timeout)) {
value = tegra_sor_readl(sor, SOR_TEST);
value &= SOR_TEST_HEAD_MODE_MASK;
if (value == SOR_TEST_HEAD_MODE_AWAKE)
return 0;
usleep_range(25, 100);
}
return -ETIMEDOUT;
}
static int tegra_sor_power_up(struct tegra_sor *sor, unsigned long timeout)
{
u32 value;
value = tegra_sor_readl(sor, SOR_PWR);
value |= SOR_PWR_TRIGGER | SOR_PWR_NORMAL_STATE_PU;
tegra_sor_writel(sor, value, SOR_PWR);
timeout = jiffies + msecs_to_jiffies(timeout);
while (time_before(jiffies, timeout)) {
value = tegra_sor_readl(sor, SOR_PWR);
if ((value & SOR_PWR_TRIGGER) == 0)
return 0;
usleep_range(25, 100);
}
return -ETIMEDOUT;
}
struct tegra_sor_params {
/* number of link clocks per line */
unsigned int num_clocks;
/* ratio between input and output */
u64 ratio;
/* precision factor */
u64 precision;
unsigned int active_polarity;
unsigned int active_count;
unsigned int active_frac;
unsigned int tu_size;
unsigned int error;
};
static int tegra_sor_compute_params(struct tegra_sor *sor,
struct tegra_sor_params *params,
unsigned int tu_size)
{
u64 active_sym, active_count, frac, approx;
u32 active_polarity, active_frac = 0;
const u64 f = params->precision;
s64 error;
active_sym = params->ratio * tu_size;
active_count = div_u64(active_sym, f) * f;
frac = active_sym - active_count;
/* fraction < 0.5 */
if (frac >= (f / 2)) {
active_polarity = 1;
frac = f - frac;
} else {
active_polarity = 0;
}
if (frac != 0) {
frac = div_u64(f * f, frac); /* 1/fraction */
if (frac <= (15 * f)) {
active_frac = div_u64(frac, f);
/* round up */
if (active_polarity)
active_frac++;
} else {
active_frac = active_polarity ? 1 : 15;
}
}
if (active_frac == 1)
active_polarity = 0;
if (active_polarity == 1) {
if (active_frac) {
approx = active_count + (active_frac * (f - 1)) * f;
approx = div_u64(approx, active_frac * f);
} else {
approx = active_count + f;
}
} else {
if (active_frac)
approx = active_count + div_u64(f, active_frac);
else
approx = active_count;
}
error = div_s64(active_sym - approx, tu_size);
error *= params->num_clocks;
if (error <= 0 && abs(error) < params->error) {
params->active_count = div_u64(active_count, f);
params->active_polarity = active_polarity;
params->active_frac = active_frac;
params->error = abs(error);
params->tu_size = tu_size;
if (error == 0)
return true;
}
return false;
}
static int tegra_sor_compute_config(struct tegra_sor *sor,
const struct drm_display_mode *mode,
struct tegra_sor_config *config,
struct drm_dp_link *link)
{
const u64 f = 100000, link_rate = link->rate * 1000;
const u64 pclk = mode->clock * 1000;
u64 input, output, watermark, num;
struct tegra_sor_params params;
u32 num_syms_per_line;
unsigned int i;
if (!link_rate || !link->num_lanes || !pclk || !config->bits_per_pixel)
return -EINVAL;
output = link_rate * 8 * link->num_lanes;
input = pclk * config->bits_per_pixel;
if (input >= output)
return -ERANGE;
memset(&params, 0, sizeof(params));
params.ratio = div64_u64(input * f, output);
params.num_clocks = div_u64(link_rate * mode->hdisplay, pclk);
params.precision = f;
params.error = 64 * f;
params.tu_size = 64;
for (i = params.tu_size; i >= 32; i--)
if (tegra_sor_compute_params(sor, &params, i))
break;
if (params.active_frac == 0) {
config->active_polarity = 0;
config->active_count = params.active_count;
if (!params.active_polarity)
config->active_count--;
config->tu_size = params.tu_size;
config->active_frac = 1;
} else {
config->active_polarity = params.active_polarity;
config->active_count = params.active_count;
config->active_frac = params.active_frac;
config->tu_size = params.tu_size;
}
dev_dbg(sor->dev,
"polarity: %d active count: %d tu size: %d active frac: %d\n",
config->active_polarity, config->active_count,
config->tu_size, config->active_frac);
watermark = params.ratio * config->tu_size * (f - params.ratio);
watermark = div_u64(watermark, f);
watermark = div_u64(watermark + params.error, f);
config->watermark = watermark + (config->bits_per_pixel / 8) + 2;
num_syms_per_line = (mode->hdisplay * config->bits_per_pixel) *
(link->num_lanes * 8);
if (config->watermark > 30) {
config->watermark = 30;
dev_err(sor->dev,
"unable to compute TU size, forcing watermark to %u\n",
config->watermark);
} else if (config->watermark > num_syms_per_line) {
config->watermark = num_syms_per_line;
dev_err(sor->dev, "watermark too high, forcing to %u\n",
config->watermark);
}
/* compute the number of symbols per horizontal blanking interval */
num = ((mode->htotal - mode->hdisplay) - 7) * link_rate;
config->hblank_symbols = div_u64(num, pclk);
if (link->capabilities & DP_LINK_CAP_ENHANCED_FRAMING)
config->hblank_symbols -= 3;
config->hblank_symbols -= 12 / link->num_lanes;
/* compute the number of symbols per vertical blanking interval */
num = (mode->hdisplay - 25) * link_rate;
config->vblank_symbols = div_u64(num, pclk);
config->vblank_symbols -= 36 / link->num_lanes + 4;
dev_dbg(sor->dev, "blank symbols: H:%u V:%u\n", config->hblank_symbols,
config->vblank_symbols);
return 0;
}
static void tegra_sor_apply_config(struct tegra_sor *sor,
const struct tegra_sor_config *config)
{
u32 value;
value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
value &= ~SOR_DP_LINKCTL_TU_SIZE_MASK;
value |= SOR_DP_LINKCTL_TU_SIZE(config->tu_size);
tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
value = tegra_sor_readl(sor, SOR_DP_CONFIG0);
value &= ~SOR_DP_CONFIG_WATERMARK_MASK;
value |= SOR_DP_CONFIG_WATERMARK(config->watermark);
value &= ~SOR_DP_CONFIG_ACTIVE_SYM_COUNT_MASK;
value |= SOR_DP_CONFIG_ACTIVE_SYM_COUNT(config->active_count);
value &= ~SOR_DP_CONFIG_ACTIVE_SYM_FRAC_MASK;
value |= SOR_DP_CONFIG_ACTIVE_SYM_FRAC(config->active_frac);
if (config->active_polarity)
value |= SOR_DP_CONFIG_ACTIVE_SYM_POLARITY;
else
value &= ~SOR_DP_CONFIG_ACTIVE_SYM_POLARITY;
value |= SOR_DP_CONFIG_ACTIVE_SYM_ENABLE;
value |= SOR_DP_CONFIG_DISPARITY_NEGATIVE;
tegra_sor_writel(sor, value, SOR_DP_CONFIG0);
value = tegra_sor_readl(sor, SOR_DP_AUDIO_HBLANK_SYMBOLS);
value &= ~SOR_DP_AUDIO_HBLANK_SYMBOLS_MASK;
value |= config->hblank_symbols & 0xffff;
tegra_sor_writel(sor, value, SOR_DP_AUDIO_HBLANK_SYMBOLS);
value = tegra_sor_readl(sor, SOR_DP_AUDIO_VBLANK_SYMBOLS);
value &= ~SOR_DP_AUDIO_VBLANK_SYMBOLS_MASK;
value |= config->vblank_symbols & 0xffff;
tegra_sor_writel(sor, value, SOR_DP_AUDIO_VBLANK_SYMBOLS);
}
static void tegra_sor_mode_set(struct tegra_sor *sor,
const struct drm_display_mode *mode,
struct tegra_sor_state *state)
{
struct tegra_dc *dc = to_tegra_dc(sor->output.encoder.crtc);
unsigned int vbe, vse, hbe, hse, vbs, hbs;
u32 value;
value = tegra_sor_readl(sor, SOR_STATE1);
value &= ~SOR_STATE_ASY_PIXELDEPTH_MASK;
value &= ~SOR_STATE_ASY_CRC_MODE_MASK;
value &= ~SOR_STATE_ASY_OWNER_MASK;
value |= SOR_STATE_ASY_CRC_MODE_COMPLETE |
SOR_STATE_ASY_OWNER(dc->pipe + 1);
if (mode->flags & DRM_MODE_FLAG_PHSYNC)
value &= ~SOR_STATE_ASY_HSYNCPOL;
if (mode->flags & DRM_MODE_FLAG_NHSYNC)
value |= SOR_STATE_ASY_HSYNCPOL;
if (mode->flags & DRM_MODE_FLAG_PVSYNC)
value &= ~SOR_STATE_ASY_VSYNCPOL;
if (mode->flags & DRM_MODE_FLAG_NVSYNC)
value |= SOR_STATE_ASY_VSYNCPOL;
switch (state->bpc) {
case 16:
value |= SOR_STATE_ASY_PIXELDEPTH_BPP_48_444;
break;
case 12:
value |= SOR_STATE_ASY_PIXELDEPTH_BPP_36_444;
break;
case 10:
value |= SOR_STATE_ASY_PIXELDEPTH_BPP_30_444;
break;
case 8:
value |= SOR_STATE_ASY_PIXELDEPTH_BPP_24_444;
break;
case 6:
value |= SOR_STATE_ASY_PIXELDEPTH_BPP_18_444;
break;
default:
value |= SOR_STATE_ASY_PIXELDEPTH_BPP_24_444;
break;
}
tegra_sor_writel(sor, value, SOR_STATE1);
/*
* TODO: The video timing programming below doesn't seem to match the
* register definitions.
*/
value = ((mode->vtotal & 0x7fff) << 16) | (mode->htotal & 0x7fff);
tegra_sor_writel(sor, value, sor->soc->regs->head_state1 + dc->pipe);
/* sync end = sync width - 1 */
vse = mode->vsync_end - mode->vsync_start - 1;
hse = mode->hsync_end - mode->hsync_start - 1;
value = ((vse & 0x7fff) << 16) | (hse & 0x7fff);
tegra_sor_writel(sor, value, sor->soc->regs->head_state2 + dc->pipe);
/* blank end = sync end + back porch */
vbe = vse + (mode->vtotal - mode->vsync_end);
hbe = hse + (mode->htotal - mode->hsync_end);
value = ((vbe & 0x7fff) << 16) | (hbe & 0x7fff);
tegra_sor_writel(sor, value, sor->soc->regs->head_state3 + dc->pipe);
/* blank start = blank end + active */
vbs = vbe + mode->vdisplay;
hbs = hbe + mode->hdisplay;
value = ((vbs & 0x7fff) << 16) | (hbs & 0x7fff);
tegra_sor_writel(sor, value, sor->soc->regs->head_state4 + dc->pipe);
/* XXX interlacing support */
tegra_sor_writel(sor, 0x001, sor->soc->regs->head_state5 + dc->pipe);
}
static int tegra_sor_detach(struct tegra_sor *sor)
{
unsigned long value, timeout;
/* switch to safe mode */
value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
value &= ~SOR_SUPER_STATE_MODE_NORMAL;
tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
tegra_sor_super_update(sor);
timeout = jiffies + msecs_to_jiffies(250);
while (time_before(jiffies, timeout)) {
value = tegra_sor_readl(sor, SOR_PWR);
if (value & SOR_PWR_MODE_SAFE)
break;
}
if ((value & SOR_PWR_MODE_SAFE) == 0)
return -ETIMEDOUT;
/* go to sleep */
value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
value &= ~SOR_SUPER_STATE_HEAD_MODE_MASK;
tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
tegra_sor_super_update(sor);
/* detach */
value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
value &= ~SOR_SUPER_STATE_ATTACHED;
tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
tegra_sor_super_update(sor);
timeout = jiffies + msecs_to_jiffies(250);
while (time_before(jiffies, timeout)) {
value = tegra_sor_readl(sor, SOR_TEST);
if ((value & SOR_TEST_ATTACHED) == 0)
break;
usleep_range(25, 100);
}
if ((value & SOR_TEST_ATTACHED) != 0)
return -ETIMEDOUT;
return 0;
}
static int tegra_sor_power_down(struct tegra_sor *sor)
{
unsigned long value, timeout;
int err;
value = tegra_sor_readl(sor, SOR_PWR);
value &= ~SOR_PWR_NORMAL_STATE_PU;
value |= SOR_PWR_TRIGGER;
tegra_sor_writel(sor, value, SOR_PWR);
timeout = jiffies + msecs_to_jiffies(250);
while (time_before(jiffies, timeout)) {
value = tegra_sor_readl(sor, SOR_PWR);
if ((value & SOR_PWR_TRIGGER) == 0)
return 0;
usleep_range(25, 100);
}
if ((value & SOR_PWR_TRIGGER) != 0)
return -ETIMEDOUT;
/* switch to safe parent clock */
err = tegra_sor_set_parent_clock(sor, sor->clk_safe);
if (err < 0) {
dev_err(sor->dev, "failed to set safe parent clock: %d\n", err);
return err;
}
value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
value &= ~(SOR_DP_PADCTL_PD_TXD_3 | SOR_DP_PADCTL_PD_TXD_0 |
SOR_DP_PADCTL_PD_TXD_1 | SOR_DP_PADCTL_PD_TXD_2);
tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
/* stop lane sequencer */
value = SOR_LANE_SEQ_CTL_TRIGGER | SOR_LANE_SEQ_CTL_SEQUENCE_UP |
SOR_LANE_SEQ_CTL_POWER_STATE_DOWN;
tegra_sor_writel(sor, value, SOR_LANE_SEQ_CTL);
timeout = jiffies + msecs_to_jiffies(250);
while (time_before(jiffies, timeout)) {
value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
if ((value & SOR_LANE_SEQ_CTL_TRIGGER) == 0)
break;
usleep_range(25, 100);
}
if ((value & SOR_LANE_SEQ_CTL_TRIGGER) != 0)
return -ETIMEDOUT;
value = tegra_sor_readl(sor, sor->soc->regs->pll2);
value |= SOR_PLL2_PORT_POWERDOWN;
tegra_sor_writel(sor, value, sor->soc->regs->pll2);
usleep_range(20, 100);
value = tegra_sor_readl(sor, sor->soc->regs->pll0);
value |= SOR_PLL0_VCOPD | SOR_PLL0_PWR;
tegra_sor_writel(sor, value, sor->soc->regs->pll0);
value = tegra_sor_readl(sor, sor->soc->regs->pll2);
value |= SOR_PLL2_SEQ_PLLCAPPD;
value |= SOR_PLL2_SEQ_PLLCAPPD_ENFORCE;
tegra_sor_writel(sor, value, sor->soc->regs->pll2);
usleep_range(20, 100);
return 0;
}
static int tegra_sor_crc_wait(struct tegra_sor *sor, unsigned long timeout)
{
u32 value;
timeout = jiffies + msecs_to_jiffies(timeout);
while (time_before(jiffies, timeout)) {
value = tegra_sor_readl(sor, SOR_CRCA);
if (value & SOR_CRCA_VALID)
return 0;
usleep_range(100, 200);
}
return -ETIMEDOUT;
}
static int tegra_sor_show_crc(struct seq_file *s, void *data)
{
struct drm_info_node *node = s->private;
struct tegra_sor *sor = node->info_ent->data;
struct drm_crtc *crtc = sor->output.encoder.crtc;
struct drm_device *drm = node->minor->dev;
int err = 0;
u32 value;
drm_modeset_lock_all(drm);
if (!crtc || !crtc->state->active) {
err = -EBUSY;
goto unlock;
}
value = tegra_sor_readl(sor, SOR_STATE1);
value &= ~SOR_STATE_ASY_CRC_MODE_MASK;
tegra_sor_writel(sor, value, SOR_STATE1);
value = tegra_sor_readl(sor, SOR_CRC_CNTRL);
value |= SOR_CRC_CNTRL_ENABLE;
tegra_sor_writel(sor, value, SOR_CRC_CNTRL);
value = tegra_sor_readl(sor, SOR_TEST);
value &= ~SOR_TEST_CRC_POST_SERIALIZE;
tegra_sor_writel(sor, value, SOR_TEST);
err = tegra_sor_crc_wait(sor, 100);
if (err < 0)
goto unlock;
tegra_sor_writel(sor, SOR_CRCA_RESET, SOR_CRCA);
value = tegra_sor_readl(sor, SOR_CRCB);
seq_printf(s, "%08x\n", value);
unlock:
drm_modeset_unlock_all(drm);
return err;
}
#define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
static const struct debugfs_reg32 tegra_sor_regs[] = {
DEBUGFS_REG32(SOR_CTXSW),
DEBUGFS_REG32(SOR_SUPER_STATE0),
DEBUGFS_REG32(SOR_SUPER_STATE1),
DEBUGFS_REG32(SOR_STATE0),
DEBUGFS_REG32(SOR_STATE1),
DEBUGFS_REG32(SOR_HEAD_STATE0(0)),
DEBUGFS_REG32(SOR_HEAD_STATE0(1)),
DEBUGFS_REG32(SOR_HEAD_STATE1(0)),
DEBUGFS_REG32(SOR_HEAD_STATE1(1)),
DEBUGFS_REG32(SOR_HEAD_STATE2(0)),
DEBUGFS_REG32(SOR_HEAD_STATE2(1)),
DEBUGFS_REG32(SOR_HEAD_STATE3(0)),
DEBUGFS_REG32(SOR_HEAD_STATE3(1)),
DEBUGFS_REG32(SOR_HEAD_STATE4(0)),
DEBUGFS_REG32(SOR_HEAD_STATE4(1)),
DEBUGFS_REG32(SOR_HEAD_STATE5(0)),
DEBUGFS_REG32(SOR_HEAD_STATE5(1)),
DEBUGFS_REG32(SOR_CRC_CNTRL),
DEBUGFS_REG32(SOR_DP_DEBUG_MVID),
DEBUGFS_REG32(SOR_CLK_CNTRL),
DEBUGFS_REG32(SOR_CAP),
DEBUGFS_REG32(SOR_PWR),
DEBUGFS_REG32(SOR_TEST),
DEBUGFS_REG32(SOR_PLL0),
DEBUGFS_REG32(SOR_PLL1),
DEBUGFS_REG32(SOR_PLL2),
DEBUGFS_REG32(SOR_PLL3),
DEBUGFS_REG32(SOR_CSTM),
DEBUGFS_REG32(SOR_LVDS),
DEBUGFS_REG32(SOR_CRCA),
DEBUGFS_REG32(SOR_CRCB),
DEBUGFS_REG32(SOR_BLANK),
DEBUGFS_REG32(SOR_SEQ_CTL),
DEBUGFS_REG32(SOR_LANE_SEQ_CTL),
DEBUGFS_REG32(SOR_SEQ_INST(0)),
DEBUGFS_REG32(SOR_SEQ_INST(1)),
DEBUGFS_REG32(SOR_SEQ_INST(2)),
DEBUGFS_REG32(SOR_SEQ_INST(3)),
DEBUGFS_REG32(SOR_SEQ_INST(4)),
DEBUGFS_REG32(SOR_SEQ_INST(5)),
DEBUGFS_REG32(SOR_SEQ_INST(6)),
DEBUGFS_REG32(SOR_SEQ_INST(7)),
DEBUGFS_REG32(SOR_SEQ_INST(8)),
DEBUGFS_REG32(SOR_SEQ_INST(9)),
DEBUGFS_REG32(SOR_SEQ_INST(10)),
DEBUGFS_REG32(SOR_SEQ_INST(11)),
DEBUGFS_REG32(SOR_SEQ_INST(12)),
DEBUGFS_REG32(SOR_SEQ_INST(13)),
DEBUGFS_REG32(SOR_SEQ_INST(14)),
DEBUGFS_REG32(SOR_SEQ_INST(15)),
DEBUGFS_REG32(SOR_PWM_DIV),
DEBUGFS_REG32(SOR_PWM_CTL),
DEBUGFS_REG32(SOR_VCRC_A0),
DEBUGFS_REG32(SOR_VCRC_A1),
DEBUGFS_REG32(SOR_VCRC_B0),
DEBUGFS_REG32(SOR_VCRC_B1),
DEBUGFS_REG32(SOR_CCRC_A0),
DEBUGFS_REG32(SOR_CCRC_A1),
DEBUGFS_REG32(SOR_CCRC_B0),
DEBUGFS_REG32(SOR_CCRC_B1),
DEBUGFS_REG32(SOR_EDATA_A0),
DEBUGFS_REG32(SOR_EDATA_A1),
DEBUGFS_REG32(SOR_EDATA_B0),
DEBUGFS_REG32(SOR_EDATA_B1),
DEBUGFS_REG32(SOR_COUNT_A0),
DEBUGFS_REG32(SOR_COUNT_A1),
DEBUGFS_REG32(SOR_COUNT_B0),
DEBUGFS_REG32(SOR_COUNT_B1),
DEBUGFS_REG32(SOR_DEBUG_A0),
DEBUGFS_REG32(SOR_DEBUG_A1),
DEBUGFS_REG32(SOR_DEBUG_B0),
DEBUGFS_REG32(SOR_DEBUG_B1),
DEBUGFS_REG32(SOR_TRIG),
DEBUGFS_REG32(SOR_MSCHECK),
DEBUGFS_REG32(SOR_XBAR_CTRL),
DEBUGFS_REG32(SOR_XBAR_POL),
DEBUGFS_REG32(SOR_DP_LINKCTL0),
DEBUGFS_REG32(SOR_DP_LINKCTL1),
DEBUGFS_REG32(SOR_LANE_DRIVE_CURRENT0),
DEBUGFS_REG32(SOR_LANE_DRIVE_CURRENT1),
DEBUGFS_REG32(SOR_LANE4_DRIVE_CURRENT0),
DEBUGFS_REG32(SOR_LANE4_DRIVE_CURRENT1),
DEBUGFS_REG32(SOR_LANE_PREEMPHASIS0),
DEBUGFS_REG32(SOR_LANE_PREEMPHASIS1),
DEBUGFS_REG32(SOR_LANE4_PREEMPHASIS0),
DEBUGFS_REG32(SOR_LANE4_PREEMPHASIS1),
DEBUGFS_REG32(SOR_LANE_POSTCURSOR0),
DEBUGFS_REG32(SOR_LANE_POSTCURSOR1),
DEBUGFS_REG32(SOR_DP_CONFIG0),
DEBUGFS_REG32(SOR_DP_CONFIG1),
DEBUGFS_REG32(SOR_DP_MN0),
DEBUGFS_REG32(SOR_DP_MN1),
DEBUGFS_REG32(SOR_DP_PADCTL0),
DEBUGFS_REG32(SOR_DP_PADCTL1),
DEBUGFS_REG32(SOR_DP_PADCTL2),
DEBUGFS_REG32(SOR_DP_DEBUG0),
DEBUGFS_REG32(SOR_DP_DEBUG1),
DEBUGFS_REG32(SOR_DP_SPARE0),
DEBUGFS_REG32(SOR_DP_SPARE1),
DEBUGFS_REG32(SOR_DP_AUDIO_CTRL),
DEBUGFS_REG32(SOR_DP_AUDIO_HBLANK_SYMBOLS),
DEBUGFS_REG32(SOR_DP_AUDIO_VBLANK_SYMBOLS),
DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_HEADER),
DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK0),
DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK1),
DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK2),
DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK3),
DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK4),
DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK5),
DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK6),
DEBUGFS_REG32(SOR_DP_TPG),
DEBUGFS_REG32(SOR_DP_TPG_CONFIG),
DEBUGFS_REG32(SOR_DP_LQ_CSTM0),
DEBUGFS_REG32(SOR_DP_LQ_CSTM1),
DEBUGFS_REG32(SOR_DP_LQ_CSTM2),
};
static int tegra_sor_show_regs(struct seq_file *s, void *data)
{
struct drm_info_node *node = s->private;
struct tegra_sor *sor = node->info_ent->data;
struct drm_crtc *crtc = sor->output.encoder.crtc;
struct drm_device *drm = node->minor->dev;
unsigned int i;
int err = 0;
drm_modeset_lock_all(drm);
if (!crtc || !crtc->state->active) {
err = -EBUSY;
goto unlock;
}
for (i = 0; i < ARRAY_SIZE(tegra_sor_regs); i++) {
unsigned int offset = tegra_sor_regs[i].offset;
seq_printf(s, "%-38s %#05x %08x\n", tegra_sor_regs[i].name,
offset, tegra_sor_readl(sor, offset));
}
unlock:
drm_modeset_unlock_all(drm);
return err;
}
static const struct drm_info_list debugfs_files[] = {
{ "crc", tegra_sor_show_crc, 0, NULL },
{ "regs", tegra_sor_show_regs, 0, NULL },
};
static int tegra_sor_late_register(struct drm_connector *connector)
{
struct tegra_output *output = connector_to_output(connector);
unsigned int i, count = ARRAY_SIZE(debugfs_files);
struct drm_minor *minor = connector->dev->primary;
struct dentry *root = connector->debugfs_entry;
struct tegra_sor *sor = to_sor(output);
int err;
sor->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
GFP_KERNEL);
if (!sor->debugfs_files)
return -ENOMEM;
for (i = 0; i < count; i++)
sor->debugfs_files[i].data = sor;
err = drm_debugfs_create_files(sor->debugfs_files, count, root, minor);
if (err < 0)
goto free;
return 0;
free:
kfree(sor->debugfs_files);
sor->debugfs_files = NULL;
return err;
}
static void tegra_sor_early_unregister(struct drm_connector *connector)
{
struct tegra_output *output = connector_to_output(connector);
unsigned int count = ARRAY_SIZE(debugfs_files);
struct tegra_sor *sor = to_sor(output);
drm_debugfs_remove_files(sor->debugfs_files, count,
connector->dev->primary);
kfree(sor->debugfs_files);
sor->debugfs_files = NULL;
}
static void tegra_sor_connector_reset(struct drm_connector *connector)
{
struct tegra_sor_state *state;
state = kzalloc(sizeof(*state), GFP_KERNEL);
if (!state)
return;
if (connector->state) {
__drm_atomic_helper_connector_destroy_state(connector->state);
kfree(connector->state);
}
__drm_atomic_helper_connector_reset(connector, &state->base);
}
static enum drm_connector_status
tegra_sor_connector_detect(struct drm_connector *connector, bool force)
{
struct tegra_output *output = connector_to_output(connector);
struct tegra_sor *sor = to_sor(output);
if (sor->aux)
return drm_dp_aux_detect(sor->aux);
return tegra_output_connector_detect(connector, force);
}
static struct drm_connector_state *
tegra_sor_connector_duplicate_state(struct drm_connector *connector)
{
struct tegra_sor_state *state = to_sor_state(connector->state);
struct tegra_sor_state *copy;
copy = kmemdup(state, sizeof(*state), GFP_KERNEL);
if (!copy)
return NULL;
__drm_atomic_helper_connector_duplicate_state(connector, &copy->base);
return &copy->base;
}
static const struct drm_connector_funcs tegra_sor_connector_funcs = {
.reset = tegra_sor_connector_reset,
.detect = tegra_sor_connector_detect,
.fill_modes = drm_helper_probe_single_connector_modes,
.destroy = tegra_output_connector_destroy,
.atomic_duplicate_state = tegra_sor_connector_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
.late_register = tegra_sor_late_register,
.early_unregister = tegra_sor_early_unregister,
};
static int tegra_sor_connector_get_modes(struct drm_connector *connector)
{
struct tegra_output *output = connector_to_output(connector);
struct tegra_sor *sor = to_sor(output);
int err;
if (sor->aux)
drm_dp_aux_enable(sor->aux);
err = tegra_output_connector_get_modes(connector);
if (sor->aux)
drm_dp_aux_disable(sor->aux);
return err;
}
static enum drm_mode_status
tegra_sor_connector_mode_valid(struct drm_connector *connector,
struct drm_display_mode *mode)
{
return MODE_OK;
}
static const struct drm_connector_helper_funcs tegra_sor_connector_helper_funcs = {
.get_modes = tegra_sor_connector_get_modes,
.mode_valid = tegra_sor_connector_mode_valid,
};
static const struct drm_encoder_funcs tegra_sor_encoder_funcs = {
.destroy = tegra_output_encoder_destroy,
};
static void tegra_sor_edp_disable(struct drm_encoder *encoder)
{
struct tegra_output *output = encoder_to_output(encoder);
struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
struct tegra_sor *sor = to_sor(output);
u32 value;
int err;
if (output->panel)
drm_panel_disable(output->panel);
err = tegra_sor_detach(sor);
if (err < 0)
dev_err(sor->dev, "failed to detach SOR: %d\n", err);
tegra_sor_writel(sor, 0, SOR_STATE1);
tegra_sor_update(sor);
/*
* The following accesses registers of the display controller, so make
* sure it's only executed when the output is attached to one.
*/
if (dc) {
value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
value &= ~SOR_ENABLE(0);
tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
tegra_dc_commit(dc);
}
err = tegra_sor_power_down(sor);
if (err < 0)
dev_err(sor->dev, "failed to power down SOR: %d\n", err);
if (sor->aux) {
err = drm_dp_aux_disable(sor->aux);
if (err < 0)
dev_err(sor->dev, "failed to disable DP: %d\n", err);
}
err = tegra_io_pad_power_disable(sor->pad);
if (err < 0)
dev_err(sor->dev, "failed to power off I/O pad: %d\n", err);
if (output->panel)
drm_panel_unprepare(output->panel);
pm_runtime_put(sor->dev);
}
#if 0
static int calc_h_ref_to_sync(const struct drm_display_mode *mode,
unsigned int *value)
{
unsigned int hfp, hsw, hbp, a = 0, b;
hfp = mode->hsync_start - mode->hdisplay;
hsw = mode->hsync_end - mode->hsync_start;
hbp = mode->htotal - mode->hsync_end;
pr_info("hfp: %u, hsw: %u, hbp: %u\n", hfp, hsw, hbp);
b = hfp - 1;
pr_info("a: %u, b: %u\n", a, b);
pr_info("a + hsw + hbp = %u\n", a + hsw + hbp);
if (a + hsw + hbp <= 11) {
a = 1 + 11 - hsw - hbp;
pr_info("a: %u\n", a);
}
if (a > b)
return -EINVAL;
if (hsw < 1)
return -EINVAL;
if (mode->hdisplay < 16)
return -EINVAL;
if (value) {
if (b > a && a % 2)
*value = a + 1;
else
*value = a;
}
return 0;
}
#endif
static void tegra_sor_edp_enable(struct drm_encoder *encoder)
{
struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode;
struct tegra_output *output = encoder_to_output(encoder);
struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
struct tegra_sor *sor = to_sor(output);
struct tegra_sor_config config;
struct tegra_sor_state *state;
struct drm_dp_link link;
u8 rate, lanes;
unsigned int i;
int err = 0;
u32 value;
state = to_sor_state(output->connector.state);
pm_runtime_get_sync(sor->dev);
if (output->panel)
drm_panel_prepare(output->panel);
err = drm_dp_aux_enable(sor->aux);
if (err < 0)
dev_err(sor->dev, "failed to enable DP: %d\n", err);
err = drm_dp_link_probe(sor->aux, &link);
if (err < 0) {
dev_err(sor->dev, "failed to probe eDP link: %d\n", err);
return;
}
/* switch to safe parent clock */
err = tegra_sor_set_parent_clock(sor, sor->clk_safe);
if (err < 0)
dev_err(sor->dev, "failed to set safe parent clock: %d\n", err);
memset(&config, 0, sizeof(config));
config.bits_per_pixel = state->bpc * 3;
err = tegra_sor_compute_config(sor, mode, &config, &link);
if (err < 0)
dev_err(sor->dev, "failed to compute configuration: %d\n", err);
value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
value &= ~SOR_CLK_CNTRL_DP_CLK_SEL_MASK;
value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_DPCLK;
tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
value = tegra_sor_readl(sor, sor->soc->regs->pll2);
value &= ~SOR_PLL2_BANDGAP_POWERDOWN;
tegra_sor_writel(sor, value, sor->soc->regs->pll2);
usleep_range(20, 100);
value = tegra_sor_readl(sor, sor->soc->regs->pll3);
value |= SOR_PLL3_PLL_VDD_MODE_3V3;
tegra_sor_writel(sor, value, sor->soc->regs->pll3);
value = SOR_PLL0_ICHPMP(0xf) | SOR_PLL0_VCOCAP_RST |
SOR_PLL0_PLLREG_LEVEL_V45 | SOR_PLL0_RESISTOR_EXT;
tegra_sor_writel(sor, value, sor->soc->regs->pll0);
value = tegra_sor_readl(sor, sor->soc->regs->pll2);
value |= SOR_PLL2_SEQ_PLLCAPPD;
value &= ~SOR_PLL2_SEQ_PLLCAPPD_ENFORCE;
value |= SOR_PLL2_LVDS_ENABLE;
tegra_sor_writel(sor, value, sor->soc->regs->pll2);
value = SOR_PLL1_TERM_COMPOUT | SOR_PLL1_TMDS_TERM;
tegra_sor_writel(sor, value, sor->soc->regs->pll1);
while (true) {
value = tegra_sor_readl(sor, sor->soc->regs->pll2);
if ((value & SOR_PLL2_SEQ_PLLCAPPD_ENFORCE) == 0)
break;
usleep_range(250, 1000);
}
value = tegra_sor_readl(sor, sor->soc->regs->pll2);
value &= ~SOR_PLL2_POWERDOWN_OVERRIDE;
value &= ~SOR_PLL2_PORT_POWERDOWN;
tegra_sor_writel(sor, value, sor->soc->regs->pll2);
/*
* power up
*/
/* set safe link bandwidth (1.62 Gbps) */
value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
value &= ~SOR_CLK_CNTRL_DP_LINK_SPEED_MASK;
value |= SOR_CLK_CNTRL_DP_LINK_SPEED_G1_62;
tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
/* step 1 */
value = tegra_sor_readl(sor, sor->soc->regs->pll2);
value |= SOR_PLL2_SEQ_PLLCAPPD_ENFORCE | SOR_PLL2_PORT_POWERDOWN |
SOR_PLL2_BANDGAP_POWERDOWN;
tegra_sor_writel(sor, value, sor->soc->regs->pll2);
value = tegra_sor_readl(sor, sor->soc->regs->pll0);
value |= SOR_PLL0_VCOPD | SOR_PLL0_PWR;
tegra_sor_writel(sor, value, sor->soc->regs->pll0);
value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
value &= ~SOR_DP_PADCTL_PAD_CAL_PD;
tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
/* step 2 */
err = tegra_io_pad_power_enable(sor->pad);
if (err < 0)
dev_err(sor->dev, "failed to power on I/O pad: %d\n", err);
usleep_range(5, 100);
/* step 3 */
value = tegra_sor_readl(sor, sor->soc->regs->pll2);
value &= ~SOR_PLL2_BANDGAP_POWERDOWN;
tegra_sor_writel(sor, value, sor->soc->regs->pll2);
usleep_range(20, 100);
/* step 4 */
value = tegra_sor_readl(sor, sor->soc->regs->pll0);
value &= ~SOR_PLL0_VCOPD;
value &= ~SOR_PLL0_PWR;
tegra_sor_writel(sor, value, sor->soc->regs->pll0);
value = tegra_sor_readl(sor, sor->soc->regs->pll2);
value &= ~SOR_PLL2_SEQ_PLLCAPPD_ENFORCE;
tegra_sor_writel(sor, value, sor->soc->regs->pll2);
usleep_range(200, 1000);
/* step 5 */
value = tegra_sor_readl(sor, sor->soc->regs->pll2);
value &= ~SOR_PLL2_PORT_POWERDOWN;
tegra_sor_writel(sor, value, sor->soc->regs->pll2);
/* XXX not in TRM */
for (value = 0, i = 0; i < 5; i++)
value |= SOR_XBAR_CTRL_LINK0_XSEL(i, sor->xbar_cfg[i]) |
SOR_XBAR_CTRL_LINK1_XSEL(i, i);
tegra_sor_writel(sor, 0x00000000, SOR_XBAR_POL);
tegra_sor_writel(sor, value, SOR_XBAR_CTRL);
/* switch to DP parent clock */
err = tegra_sor_set_parent_clock(sor, sor->clk_dp);
if (err < 0)
dev_err(sor->dev, "failed to set parent clock: %d\n", err);
/* power DP lanes */
value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
if (link.num_lanes <= 2)
value &= ~(SOR_DP_PADCTL_PD_TXD_3 | SOR_DP_PADCTL_PD_TXD_2);
else
value |= SOR_DP_PADCTL_PD_TXD_3 | SOR_DP_PADCTL_PD_TXD_2;
if (link.num_lanes <= 1)
value &= ~SOR_DP_PADCTL_PD_TXD_1;
else
value |= SOR_DP_PADCTL_PD_TXD_1;
if (link.num_lanes == 0)
value &= ~SOR_DP_PADCTL_PD_TXD_0;
else
value |= SOR_DP_PADCTL_PD_TXD_0;
tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
value &= ~SOR_DP_LINKCTL_LANE_COUNT_MASK;
value |= SOR_DP_LINKCTL_LANE_COUNT(link.num_lanes);
tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
/* start lane sequencer */
value = SOR_LANE_SEQ_CTL_TRIGGER | SOR_LANE_SEQ_CTL_SEQUENCE_DOWN |
SOR_LANE_SEQ_CTL_POWER_STATE_UP;
tegra_sor_writel(sor, value, SOR_LANE_SEQ_CTL);
while (true) {
value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
if ((value & SOR_LANE_SEQ_CTL_TRIGGER) == 0)
break;
usleep_range(250, 1000);
}
/* set link bandwidth */
value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
value &= ~SOR_CLK_CNTRL_DP_LINK_SPEED_MASK;
value |= drm_dp_link_rate_to_bw_code(link.rate) << 2;
tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
tegra_sor_apply_config(sor, &config);
/* enable link */
value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
value |= SOR_DP_LINKCTL_ENABLE;
value |= SOR_DP_LINKCTL_ENHANCED_FRAME;
tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
for (i = 0, value = 0; i < 4; i++) {
unsigned long lane = SOR_DP_TPG_CHANNEL_CODING |
SOR_DP_TPG_SCRAMBLER_GALIOS |
SOR_DP_TPG_PATTERN_NONE;
value = (value << 8) | lane;
}
tegra_sor_writel(sor, value, SOR_DP_TPG);
/* enable pad calibration logic */
value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
value |= SOR_DP_PADCTL_PAD_CAL_PD;
tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
err = drm_dp_link_probe(sor->aux, &link);
if (err < 0)
dev_err(sor->dev, "failed to probe eDP link: %d\n", err);
err = drm_dp_link_power_up(sor->aux, &link);
if (err < 0)
dev_err(sor->dev, "failed to power up eDP link: %d\n", err);
err = drm_dp_link_configure(sor->aux, &link);
if (err < 0)
dev_err(sor->dev, "failed to configure eDP link: %d\n", err);
rate = drm_dp_link_rate_to_bw_code(link.rate);
lanes = link.num_lanes;
value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
value &= ~SOR_CLK_CNTRL_DP_LINK_SPEED_MASK;
value |= SOR_CLK_CNTRL_DP_LINK_SPEED(rate);
tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
value &= ~SOR_DP_LINKCTL_LANE_COUNT_MASK;
value |= SOR_DP_LINKCTL_LANE_COUNT(lanes);
if (link.capabilities & DP_LINK_CAP_ENHANCED_FRAMING)
value |= SOR_DP_LINKCTL_ENHANCED_FRAME;
tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
/* disable training pattern generator */
for (i = 0; i < link.num_lanes; i++) {
unsigned long lane = SOR_DP_TPG_CHANNEL_CODING |
SOR_DP_TPG_SCRAMBLER_GALIOS |
SOR_DP_TPG_PATTERN_NONE;
value = (value << 8) | lane;
}
tegra_sor_writel(sor, value, SOR_DP_TPG);
err = tegra_sor_dp_train_fast(sor, &link);
if (err < 0)
dev_err(sor->dev, "DP fast link training failed: %d\n", err);
dev_dbg(sor->dev, "fast link training succeeded\n");
err = tegra_sor_power_up(sor, 250);
if (err < 0)
dev_err(sor->dev, "failed to power up SOR: %d\n", err);
/* CSTM (LVDS, link A/B, upper) */
value = SOR_CSTM_LVDS | SOR_CSTM_LINK_ACT_A | SOR_CSTM_LINK_ACT_B |
SOR_CSTM_UPPER;
tegra_sor_writel(sor, value, SOR_CSTM);
/* use DP-A protocol */
value = tegra_sor_readl(sor, SOR_STATE1);
value &= ~SOR_STATE_ASY_PROTOCOL_MASK;
value |= SOR_STATE_ASY_PROTOCOL_DP_A;
tegra_sor_writel(sor, value, SOR_STATE1);
tegra_sor_mode_set(sor, mode, state);
/* PWM setup */
err = tegra_sor_setup_pwm(sor, 250);
if (err < 0)
dev_err(sor->dev, "failed to setup PWM: %d\n", err);
tegra_sor_update(sor);
value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
value |= SOR_ENABLE(0);
tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
tegra_dc_commit(dc);
err = tegra_sor_attach(sor);
if (err < 0)
dev_err(sor->dev, "failed to attach SOR: %d\n", err);
err = tegra_sor_wakeup(sor);
if (err < 0)
dev_err(sor->dev, "failed to enable DC: %d\n", err);
if (output->panel)
drm_panel_enable(output->panel);
}
static int
tegra_sor_encoder_atomic_check(struct drm_encoder *encoder,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
struct tegra_output *output = encoder_to_output(encoder);
struct tegra_sor_state *state = to_sor_state(conn_state);
struct tegra_dc *dc = to_tegra_dc(conn_state->crtc);
unsigned long pclk = crtc_state->mode.clock * 1000;
struct tegra_sor *sor = to_sor(output);
struct drm_display_info *info;
int err;
info = &output->connector.display_info;
/*
* For HBR2 modes, the SOR brick needs to use the x20 multiplier, so
* the pixel clock must be corrected accordingly.
*/
if (pclk >= 340000000) {
state->link_speed = 20;
state->pclk = pclk / 2;
} else {
state->link_speed = 10;
state->pclk = pclk;
}
err = tegra_dc_state_setup_clock(dc, crtc_state, sor->clk_parent,
pclk, 0);
if (err < 0) {
dev_err(output->dev, "failed to setup CRTC state: %d\n", err);
return err;
}
switch (info->bpc) {
case 8:
case 6:
state->bpc = info->bpc;
break;
default:
DRM_DEBUG_KMS("%u bits-per-color not supported\n", info->bpc);
state->bpc = 8;
break;
}
return 0;
}
static const struct drm_encoder_helper_funcs tegra_sor_edp_helpers = {
.disable = tegra_sor_edp_disable,
.enable = tegra_sor_edp_enable,
.atomic_check = tegra_sor_encoder_atomic_check,
};
static inline u32 tegra_sor_hdmi_subpack(const u8 *ptr, size_t size)
{
u32 value = 0;
size_t i;
for (i = size; i > 0; i--)
value = (value << 8) | ptr[i - 1];
return value;
}
static void tegra_sor_hdmi_write_infopack(struct tegra_sor *sor,
const void *data, size_t size)
{
const u8 *ptr = data;
unsigned long offset;
size_t i, j;
u32 value;
switch (ptr[0]) {
case HDMI_INFOFRAME_TYPE_AVI:
offset = SOR_HDMI_AVI_INFOFRAME_HEADER;
break;
case HDMI_INFOFRAME_TYPE_AUDIO:
offset = SOR_HDMI_AUDIO_INFOFRAME_HEADER;
break;
case HDMI_INFOFRAME_TYPE_VENDOR:
offset = SOR_HDMI_VSI_INFOFRAME_HEADER;
break;
default:
dev_err(sor->dev, "unsupported infoframe type: %02x\n",
ptr[0]);
return;
}
value = INFOFRAME_HEADER_TYPE(ptr[0]) |
INFOFRAME_HEADER_VERSION(ptr[1]) |
INFOFRAME_HEADER_LEN(ptr[2]);
tegra_sor_writel(sor, value, offset);
offset++;
/*
* Each subpack contains 7 bytes, divided into:
* - subpack_low: bytes 0 - 3
* - subpack_high: bytes 4 - 6 (with byte 7 padded to 0x00)
*/
for (i = 3, j = 0; i < size; i += 7, j += 8) {
size_t rem = size - i, num = min_t(size_t, rem, 4);
value = tegra_sor_hdmi_subpack(&ptr[i], num);
tegra_sor_writel(sor, value, offset++);
num = min_t(size_t, rem - num, 3);
value = tegra_sor_hdmi_subpack(&ptr[i + 4], num);
tegra_sor_writel(sor, value, offset++);
}
}
static int
tegra_sor_hdmi_setup_avi_infoframe(struct tegra_sor *sor,
const struct drm_display_mode *mode)
{
u8 buffer[HDMI_INFOFRAME_SIZE(AVI)];
struct hdmi_avi_infoframe frame;
u32 value;
int err;
/* disable AVI infoframe */
value = tegra_sor_readl(sor, SOR_HDMI_AVI_INFOFRAME_CTRL);
value &= ~INFOFRAME_CTRL_SINGLE;
value &= ~INFOFRAME_CTRL_OTHER;
value &= ~INFOFRAME_CTRL_ENABLE;
tegra_sor_writel(sor, value, SOR_HDMI_AVI_INFOFRAME_CTRL);
err = drm_hdmi_avi_infoframe_from_display_mode(&frame,
&sor->output.connector, mode);
if (err < 0) {
dev_err(sor->dev, "failed to setup AVI infoframe: %d\n", err);
return err;
}
err = hdmi_avi_infoframe_pack(&frame, buffer, sizeof(buffer));
if (err < 0) {
dev_err(sor->dev, "failed to pack AVI infoframe: %d\n", err);
return err;
}
tegra_sor_hdmi_write_infopack(sor, buffer, err);
/* enable AVI infoframe */
value = tegra_sor_readl(sor, SOR_HDMI_AVI_INFOFRAME_CTRL);
value |= INFOFRAME_CTRL_CHECKSUM_ENABLE;
value |= INFOFRAME_CTRL_ENABLE;
tegra_sor_writel(sor, value, SOR_HDMI_AVI_INFOFRAME_CTRL);
return 0;
}
static void tegra_sor_write_eld(struct tegra_sor *sor)
{
size_t length = drm_eld_size(sor->output.connector.eld), i;
for (i = 0; i < length; i++)
tegra_sor_writel(sor, i << 8 | sor->output.connector.eld[i],
SOR_AUDIO_HDA_ELD_BUFWR);
/*
* The HDA codec will always report an ELD buffer size of 96 bytes and
* the HDA codec driver will check that each byte read from the buffer
* is valid. Therefore every byte must be written, even if no 96 bytes
* were parsed from EDID.
*/
for (i = length; i < 96; i++)
tegra_sor_writel(sor, i << 8 | 0, SOR_AUDIO_HDA_ELD_BUFWR);
}
static void tegra_sor_audio_prepare(struct tegra_sor *sor)
{
u32 value;
tegra_sor_write_eld(sor);
value = SOR_AUDIO_HDA_PRESENSE_ELDV | SOR_AUDIO_HDA_PRESENSE_PD;
tegra_sor_writel(sor, value, SOR_AUDIO_HDA_PRESENSE);
}
static void tegra_sor_audio_unprepare(struct tegra_sor *sor)
{
tegra_sor_writel(sor, 0, SOR_AUDIO_HDA_PRESENSE);
}
static int tegra_sor_hdmi_enable_audio_infoframe(struct tegra_sor *sor)
{
u8 buffer[HDMI_INFOFRAME_SIZE(AUDIO)];
struct hdmi_audio_infoframe frame;
u32 value;
int err;
err = hdmi_audio_infoframe_init(&frame);
if (err < 0) {
dev_err(sor->dev, "failed to setup audio infoframe: %d\n", err);
return err;
}
frame.channels = sor->format.channels;
err = hdmi_audio_infoframe_pack(&frame, buffer, sizeof(buffer));
if (err < 0) {
dev_err(sor->dev, "failed to pack audio infoframe: %d\n", err);
return err;
}
tegra_sor_hdmi_write_infopack(sor, buffer, err);
value = tegra_sor_readl(sor, SOR_HDMI_AUDIO_INFOFRAME_CTRL);
value |= INFOFRAME_CTRL_CHECKSUM_ENABLE;
value |= INFOFRAME_CTRL_ENABLE;
tegra_sor_writel(sor, value, SOR_HDMI_AUDIO_INFOFRAME_CTRL);
return 0;
}
static void tegra_sor_hdmi_audio_enable(struct tegra_sor *sor)
{
u32 value;
value = tegra_sor_readl(sor, SOR_AUDIO_CNTRL);
/* select HDA audio input */
value &= ~SOR_AUDIO_CNTRL_SOURCE_SELECT(SOURCE_SELECT_MASK);
value |= SOR_AUDIO_CNTRL_SOURCE_SELECT(SOURCE_SELECT_HDA);
/* inject null samples */
if (sor->format.channels != 2)
value &= ~SOR_AUDIO_CNTRL_INJECT_NULLSMPL;
else
value |= SOR_AUDIO_CNTRL_INJECT_NULLSMPL;
value |= SOR_AUDIO_CNTRL_AFIFO_FLUSH;
tegra_sor_writel(sor, value, SOR_AUDIO_CNTRL);
/* enable advertising HBR capability */
tegra_sor_writel(sor, SOR_AUDIO_SPARE_HBR_ENABLE, SOR_AUDIO_SPARE);
tegra_sor_writel(sor, 0, SOR_HDMI_ACR_CTRL);
value = SOR_HDMI_SPARE_ACR_PRIORITY_HIGH |
SOR_HDMI_SPARE_CTS_RESET(1) |
SOR_HDMI_SPARE_HW_CTS_ENABLE;
tegra_sor_writel(sor, value, SOR_HDMI_SPARE);
/* enable HW CTS */
value = SOR_HDMI_ACR_SUBPACK_LOW_SB1(0);
tegra_sor_writel(sor, value, SOR_HDMI_ACR_0441_SUBPACK_LOW);
/* allow packet to be sent */
value = SOR_HDMI_ACR_SUBPACK_HIGH_ENABLE;
tegra_sor_writel(sor, value, SOR_HDMI_ACR_0441_SUBPACK_HIGH);
/* reset N counter and enable lookup */
value = SOR_HDMI_AUDIO_N_RESET | SOR_HDMI_AUDIO_N_LOOKUP;
tegra_sor_writel(sor, value, SOR_HDMI_AUDIO_N);
value = (24000 * 4096) / (128 * sor->format.sample_rate / 1000);
tegra_sor_writel(sor, value, SOR_AUDIO_AVAL_0320);
tegra_sor_writel(sor, 4096, SOR_AUDIO_NVAL_0320);
tegra_sor_writel(sor, 20000, SOR_AUDIO_AVAL_0441);
tegra_sor_writel(sor, 4704, SOR_AUDIO_NVAL_0441);
tegra_sor_writel(sor, 20000, SOR_AUDIO_AVAL_0882);
tegra_sor_writel(sor, 9408, SOR_AUDIO_NVAL_0882);
tegra_sor_writel(sor, 20000, SOR_AUDIO_AVAL_1764);
tegra_sor_writel(sor, 18816, SOR_AUDIO_NVAL_1764);
value = (24000 * 6144) / (128 * sor->format.sample_rate / 1000);
tegra_sor_writel(sor, value, SOR_AUDIO_AVAL_0480);
tegra_sor_writel(sor, 6144, SOR_AUDIO_NVAL_0480);
value = (24000 * 12288) / (128 * sor->format.sample_rate / 1000);
tegra_sor_writel(sor, value, SOR_AUDIO_AVAL_0960);
tegra_sor_writel(sor, 12288, SOR_AUDIO_NVAL_0960);
value = (24000 * 24576) / (128 * sor->format.sample_rate / 1000);
tegra_sor_writel(sor, value, SOR_AUDIO_AVAL_1920);
tegra_sor_writel(sor, 24576, SOR_AUDIO_NVAL_1920);
value = tegra_sor_readl(sor, SOR_HDMI_AUDIO_N);
value &= ~SOR_HDMI_AUDIO_N_RESET;
tegra_sor_writel(sor, value, SOR_HDMI_AUDIO_N);
tegra_sor_hdmi_enable_audio_infoframe(sor);
}
static void tegra_sor_hdmi_disable_audio_infoframe(struct tegra_sor *sor)
{
u32 value;
value = tegra_sor_readl(sor, SOR_HDMI_AUDIO_INFOFRAME_CTRL);
value &= ~INFOFRAME_CTRL_ENABLE;
tegra_sor_writel(sor, value, SOR_HDMI_AUDIO_INFOFRAME_CTRL);
}
static void tegra_sor_hdmi_audio_disable(struct tegra_sor *sor)
{
tegra_sor_hdmi_disable_audio_infoframe(sor);
}
static struct tegra_sor_hdmi_settings *
tegra_sor_hdmi_find_settings(struct tegra_sor *sor, unsigned long frequency)
{
unsigned int i;
for (i = 0; i < sor->num_settings; i++)
if (frequency <= sor->settings[i].frequency)
return &sor->settings[i];
return NULL;
}
static void tegra_sor_hdmi_disable_scrambling(struct tegra_sor *sor)
{
u32 value;
value = tegra_sor_readl(sor, SOR_HDMI2_CTRL);
value &= ~SOR_HDMI2_CTRL_CLOCK_MODE_DIV_BY_4;
value &= ~SOR_HDMI2_CTRL_SCRAMBLE;
tegra_sor_writel(sor, value, SOR_HDMI2_CTRL);
}
static void tegra_sor_hdmi_scdc_disable(struct tegra_sor *sor)
{
struct i2c_adapter *ddc = sor->output.ddc;
drm_scdc_set_high_tmds_clock_ratio(ddc, false);
drm_scdc_set_scrambling(ddc, false);
tegra_sor_hdmi_disable_scrambling(sor);
}
static void tegra_sor_hdmi_scdc_stop(struct tegra_sor *sor)
{
if (sor->scdc_enabled) {
cancel_delayed_work_sync(&sor->scdc);
tegra_sor_hdmi_scdc_disable(sor);
}
}
static void tegra_sor_hdmi_enable_scrambling(struct tegra_sor *sor)
{
u32 value;
value = tegra_sor_readl(sor, SOR_HDMI2_CTRL);
value |= SOR_HDMI2_CTRL_CLOCK_MODE_DIV_BY_4;
value |= SOR_HDMI2_CTRL_SCRAMBLE;
tegra_sor_writel(sor, value, SOR_HDMI2_CTRL);
}
static void tegra_sor_hdmi_scdc_enable(struct tegra_sor *sor)
{
struct i2c_adapter *ddc = sor->output.ddc;
drm_scdc_set_high_tmds_clock_ratio(ddc, true);
drm_scdc_set_scrambling(ddc, true);
tegra_sor_hdmi_enable_scrambling(sor);
}
static void tegra_sor_hdmi_scdc_work(struct work_struct *work)
{
struct tegra_sor *sor = container_of(work, struct tegra_sor, scdc.work);
struct i2c_adapter *ddc = sor->output.ddc;
if (!drm_scdc_get_scrambling_status(ddc)) {
DRM_DEBUG_KMS("SCDC not scrambled\n");
tegra_sor_hdmi_scdc_enable(sor);
}
schedule_delayed_work(&sor->scdc, msecs_to_jiffies(5000));
}
static void tegra_sor_hdmi_scdc_start(struct tegra_sor *sor)
{
struct drm_scdc *scdc = &sor->output.connector.display_info.hdmi.scdc;
struct drm_display_mode *mode;
mode = &sor->output.encoder.crtc->state->adjusted_mode;
if (mode->clock >= 340000 && scdc->supported) {
schedule_delayed_work(&sor->scdc, msecs_to_jiffies(5000));
tegra_sor_hdmi_scdc_enable(sor);
sor->scdc_enabled = true;
}
}
static void tegra_sor_hdmi_disable(struct drm_encoder *encoder)
{
struct tegra_output *output = encoder_to_output(encoder);
struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
struct tegra_sor *sor = to_sor(output);
u32 value;
int err;
tegra_sor_audio_unprepare(sor);
tegra_sor_hdmi_scdc_stop(sor);
err = tegra_sor_detach(sor);
if (err < 0)
dev_err(sor->dev, "failed to detach SOR: %d\n", err);
tegra_sor_writel(sor, 0, SOR_STATE1);
tegra_sor_update(sor);
/* disable display to SOR clock */
value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
if (!sor->soc->has_nvdisplay)
value &= ~(SOR1_TIMING_CYA | SOR_ENABLE(1));
else
value &= ~SOR_ENABLE(sor->index);
tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
tegra_dc_commit(dc);
err = tegra_sor_power_down(sor);
if (err < 0)
dev_err(sor->dev, "failed to power down SOR: %d\n", err);
err = tegra_io_pad_power_disable(sor->pad);
if (err < 0)
dev_err(sor->dev, "failed to power off I/O pad: %d\n", err);
pm_runtime_put(sor->dev);
}
static void tegra_sor_hdmi_enable(struct drm_encoder *encoder)
{
struct tegra_output *output = encoder_to_output(encoder);
unsigned int h_ref_to_sync = 1, pulse_start, max_ac;
struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
struct tegra_sor_hdmi_settings *settings;
struct tegra_sor *sor = to_sor(output);
struct tegra_sor_state *state;
struct drm_display_mode *mode;
unsigned long rate, pclk;
unsigned int div, i;
u32 value;
int err;
state = to_sor_state(output->connector.state);
mode = &encoder->crtc->state->adjusted_mode;
pclk = mode->clock * 1000;
pm_runtime_get_sync(sor->dev);
/* switch to safe parent clock */
err = tegra_sor_set_parent_clock(sor, sor->clk_safe);
if (err < 0) {
dev_err(sor->dev, "failed to set safe parent clock: %d\n", err);
return;
}
div = clk_get_rate(sor->clk) / 1000000 * 4;
err = tegra_io_pad_power_enable(sor->pad);
if (err < 0)
dev_err(sor->dev, "failed to power on I/O pad: %d\n", err);
usleep_range(20, 100);
value = tegra_sor_readl(sor, sor->soc->regs->pll2);
value &= ~SOR_PLL2_BANDGAP_POWERDOWN;
tegra_sor_writel(sor, value, sor->soc->regs->pll2);
usleep_range(20, 100);
value = tegra_sor_readl(sor, sor->soc->regs->pll3);
value &= ~SOR_PLL3_PLL_VDD_MODE_3V3;
tegra_sor_writel(sor, value, sor->soc->regs->pll3);
value = tegra_sor_readl(sor, sor->soc->regs->pll0);
value &= ~SOR_PLL0_VCOPD;
value &= ~SOR_PLL0_PWR;
tegra_sor_writel(sor, value, sor->soc->regs->pll0);
value = tegra_sor_readl(sor, sor->soc->regs->pll2);
value &= ~SOR_PLL2_SEQ_PLLCAPPD_ENFORCE;
tegra_sor_writel(sor, value, sor->soc->regs->pll2);
usleep_range(200, 400);
value = tegra_sor_readl(sor, sor->soc->regs->pll2);
value &= ~SOR_PLL2_POWERDOWN_OVERRIDE;
value &= ~SOR_PLL2_PORT_POWERDOWN;
tegra_sor_writel(sor, value, sor->soc->regs->pll2);
usleep_range(20, 100);
value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
value |= SOR_DP_PADCTL_PD_TXD_3 | SOR_DP_PADCTL_PD_TXD_0 |
SOR_DP_PADCTL_PD_TXD_1 | SOR_DP_PADCTL_PD_TXD_2;
tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
while (true) {
value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
if ((value & SOR_LANE_SEQ_CTL_STATE_BUSY) == 0)
break;
usleep_range(250, 1000);
}
value = SOR_LANE_SEQ_CTL_TRIGGER | SOR_LANE_SEQ_CTL_SEQUENCE_DOWN |
SOR_LANE_SEQ_CTL_POWER_STATE_UP | SOR_LANE_SEQ_CTL_DELAY(5);
tegra_sor_writel(sor, value, SOR_LANE_SEQ_CTL);
while (true) {
value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
if ((value & SOR_LANE_SEQ_CTL_TRIGGER) == 0)
break;
usleep_range(250, 1000);
}
value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
value &= ~SOR_CLK_CNTRL_DP_LINK_SPEED_MASK;
value &= ~SOR_CLK_CNTRL_DP_CLK_SEL_MASK;
if (mode->clock < 340000) {
DRM_DEBUG_KMS("setting 2.7 GHz link speed\n");
value |= SOR_CLK_CNTRL_DP_LINK_SPEED_G2_70;
} else {
DRM_DEBUG_KMS("setting 5.4 GHz link speed\n");
value |= SOR_CLK_CNTRL_DP_LINK_SPEED_G5_40;
}
value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_PCLK;
tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
/* SOR pad PLL stabilization time */
usleep_range(250, 1000);
value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
value &= ~SOR_DP_LINKCTL_LANE_COUNT_MASK;
value |= SOR_DP_LINKCTL_LANE_COUNT(4);
tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
value = tegra_sor_readl(sor, SOR_DP_SPARE0);
value &= ~SOR_DP_SPARE_DISP_VIDEO_PREAMBLE;
value &= ~SOR_DP_SPARE_PANEL_INTERNAL;
value &= ~SOR_DP_SPARE_SEQ_ENABLE;
value &= ~SOR_DP_SPARE_MACRO_SOR_CLK;
tegra_sor_writel(sor, value, SOR_DP_SPARE0);
value = SOR_SEQ_CTL_PU_PC(0) | SOR_SEQ_CTL_PU_PC_ALT(0) |
SOR_SEQ_CTL_PD_PC(8) | SOR_SEQ_CTL_PD_PC_ALT(8);
tegra_sor_writel(sor, value, SOR_SEQ_CTL);
value = SOR_SEQ_INST_DRIVE_PWM_OUT_LO | SOR_SEQ_INST_HALT |
SOR_SEQ_INST_WAIT_VSYNC | SOR_SEQ_INST_WAIT(1);
tegra_sor_writel(sor, value, SOR_SEQ_INST(0));
tegra_sor_writel(sor, value, SOR_SEQ_INST(8));
if (!sor->soc->has_nvdisplay) {
/* program the reference clock */
value = SOR_REFCLK_DIV_INT(div) | SOR_REFCLK_DIV_FRAC(div);
tegra_sor_writel(sor, value, SOR_REFCLK);
}
/* XXX not in TRM */
for (value = 0, i = 0; i < 5; i++)
value |= SOR_XBAR_CTRL_LINK0_XSEL(i, sor->xbar_cfg[i]) |
SOR_XBAR_CTRL_LINK1_XSEL(i, i);
tegra_sor_writel(sor, 0x00000000, SOR_XBAR_POL);
tegra_sor_writel(sor, value, SOR_XBAR_CTRL);
/* switch to parent clock */
err = clk_set_parent(sor->clk, sor->clk_parent);
if (err < 0) {
dev_err(sor->dev, "failed to set parent clock: %d\n", err);
return;
}
err = tegra_sor_set_parent_clock(sor, sor->clk_pad);
if (err < 0) {
dev_err(sor->dev, "failed to set pad clock: %d\n", err);
return;
}
/* adjust clock rate for HDMI 2.0 modes */
rate = clk_get_rate(sor->clk_parent);
if (mode->clock >= 340000)
rate /= 2;
DRM_DEBUG_KMS("setting clock to %lu Hz, mode: %lu Hz\n", rate, pclk);
clk_set_rate(sor->clk, rate);
if (!sor->soc->has_nvdisplay) {
value = SOR_INPUT_CONTROL_HDMI_SRC_SELECT(dc->pipe);
/* XXX is this the proper check? */
if (mode->clock < 75000)
value |= SOR_INPUT_CONTROL_ARM_VIDEO_RANGE_LIMITED;
tegra_sor_writel(sor, value, SOR_INPUT_CONTROL);
}
max_ac = ((mode->htotal - mode->hdisplay) - SOR_REKEY - 18) / 32;
value = SOR_HDMI_CTRL_ENABLE | SOR_HDMI_CTRL_MAX_AC_PACKET(max_ac) |
SOR_HDMI_CTRL_AUDIO_LAYOUT | SOR_HDMI_CTRL_REKEY(SOR_REKEY);
tegra_sor_writel(sor, value, SOR_HDMI_CTRL);
if (!dc->soc->has_nvdisplay) {
/* H_PULSE2 setup */
pulse_start = h_ref_to_sync +
(mode->hsync_end - mode->hsync_start) +
(mode->htotal - mode->hsync_end) - 10;
value = PULSE_LAST_END_A | PULSE_QUAL_VACTIVE |
PULSE_POLARITY_HIGH | PULSE_MODE_NORMAL;
tegra_dc_writel(dc, value, DC_DISP_H_PULSE2_CONTROL);
value = PULSE_END(pulse_start + 8) | PULSE_START(pulse_start);
tegra_dc_writel(dc, value, DC_DISP_H_PULSE2_POSITION_A);
value = tegra_dc_readl(dc, DC_DISP_DISP_SIGNAL_OPTIONS0);
value |= H_PULSE2_ENABLE;
tegra_dc_writel(dc, value, DC_DISP_DISP_SIGNAL_OPTIONS0);
}
/* infoframe setup */
err = tegra_sor_hdmi_setup_avi_infoframe(sor, mode);
if (err < 0)
dev_err(sor->dev, "failed to setup AVI infoframe: %d\n", err);
/* XXX HDMI audio support not implemented yet */
tegra_sor_hdmi_disable_audio_infoframe(sor);
/* use single TMDS protocol */
value = tegra_sor_readl(sor, SOR_STATE1);
value &= ~SOR_STATE_ASY_PROTOCOL_MASK;
value |= SOR_STATE_ASY_PROTOCOL_SINGLE_TMDS_A;
tegra_sor_writel(sor, value, SOR_STATE1);
/* power up pad calibration */
value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
value &= ~SOR_DP_PADCTL_PAD_CAL_PD;
tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
/* production settings */
settings = tegra_sor_hdmi_find_settings(sor, mode->clock * 1000);
if (!settings) {
dev_err(sor->dev, "no settings for pixel clock %d Hz\n",
mode->clock * 1000);
return;
}
value = tegra_sor_readl(sor, sor->soc->regs->pll0);
value &= ~SOR_PLL0_ICHPMP_MASK;
value &= ~SOR_PLL0_FILTER_MASK;
value &= ~SOR_PLL0_VCOCAP_MASK;
value |= SOR_PLL0_ICHPMP(settings->ichpmp);
value |= SOR_PLL0_FILTER(settings->filter);
value |= SOR_PLL0_VCOCAP(settings->vcocap);
tegra_sor_writel(sor, value, sor->soc->regs->pll0);
/* XXX not in TRM */
value = tegra_sor_readl(sor, sor->soc->regs->pll1);
value &= ~SOR_PLL1_LOADADJ_MASK;
value &= ~SOR_PLL1_TMDS_TERMADJ_MASK;
value |= SOR_PLL1_LOADADJ(settings->loadadj);
value |= SOR_PLL1_TMDS_TERMADJ(settings->tmds_termadj);
value |= SOR_PLL1_TMDS_TERM;
tegra_sor_writel(sor, value, sor->soc->regs->pll1);
value = tegra_sor_readl(sor, sor->soc->regs->pll3);
value &= ~SOR_PLL3_BG_TEMP_COEF_MASK;
value &= ~SOR_PLL3_BG_VREF_LEVEL_MASK;
value &= ~SOR_PLL3_AVDD10_LEVEL_MASK;
value &= ~SOR_PLL3_AVDD14_LEVEL_MASK;
value |= SOR_PLL3_BG_TEMP_COEF(settings->bg_temp_coef);
value |= SOR_PLL3_BG_VREF_LEVEL(settings->bg_vref_level);
value |= SOR_PLL3_AVDD10_LEVEL(settings->avdd10_level);
value |= SOR_PLL3_AVDD14_LEVEL(settings->avdd14_level);
tegra_sor_writel(sor, value, sor->soc->regs->pll3);
value = settings->drive_current[3] << 24 |
settings->drive_current[2] << 16 |
settings->drive_current[1] << 8 |
settings->drive_current[0] << 0;
tegra_sor_writel(sor, value, SOR_LANE_DRIVE_CURRENT0);
value = settings->preemphasis[3] << 24 |
settings->preemphasis[2] << 16 |
settings->preemphasis[1] << 8 |
settings->preemphasis[0] << 0;
tegra_sor_writel(sor, value, SOR_LANE_PREEMPHASIS0);
value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
value &= ~SOR_DP_PADCTL_TX_PU_MASK;
value |= SOR_DP_PADCTL_TX_PU_ENABLE;
value |= SOR_DP_PADCTL_TX_PU(settings->tx_pu_value);
tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl2);
value &= ~SOR_DP_PADCTL_SPAREPLL_MASK;
value |= SOR_DP_PADCTL_SPAREPLL(settings->sparepll);
tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl2);
/* power down pad calibration */
value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
value |= SOR_DP_PADCTL_PAD_CAL_PD;
tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
if (!dc->soc->has_nvdisplay) {
/* miscellaneous display controller settings */
value = VSYNC_H_POSITION(1);
tegra_dc_writel(dc, value, DC_DISP_DISP_TIMING_OPTIONS);
}
value = tegra_dc_readl(dc, DC_DISP_DISP_COLOR_CONTROL);
value &= ~DITHER_CONTROL_MASK;
value &= ~BASE_COLOR_SIZE_MASK;
switch (state->bpc) {
case 6:
value |= BASE_COLOR_SIZE_666;
break;
case 8:
value |= BASE_COLOR_SIZE_888;
break;
case 10:
value |= BASE_COLOR_SIZE_101010;
break;
case 12:
value |= BASE_COLOR_SIZE_121212;
break;
default:
WARN(1, "%u bits-per-color not supported\n", state->bpc);
value |= BASE_COLOR_SIZE_888;
break;
}
tegra_dc_writel(dc, value, DC_DISP_DISP_COLOR_CONTROL);
/* XXX set display head owner */
value = tegra_sor_readl(sor, SOR_STATE1);
value &= ~SOR_STATE_ASY_OWNER_MASK;
value |= SOR_STATE_ASY_OWNER(1 + dc->pipe);
tegra_sor_writel(sor, value, SOR_STATE1);
err = tegra_sor_power_up(sor, 250);
if (err < 0)
dev_err(sor->dev, "failed to power up SOR: %d\n", err);
/* configure dynamic range of output */
value = tegra_sor_readl(sor, sor->soc->regs->head_state0 + dc->pipe);
value &= ~SOR_HEAD_STATE_RANGECOMPRESS_MASK;
value &= ~SOR_HEAD_STATE_DYNRANGE_MASK;
tegra_sor_writel(sor, value, sor->soc->regs->head_state0 + dc->pipe);
/* configure colorspace */
value = tegra_sor_readl(sor, sor->soc->regs->head_state0 + dc->pipe);
value &= ~SOR_HEAD_STATE_COLORSPACE_MASK;
value |= SOR_HEAD_STATE_COLORSPACE_RGB;
tegra_sor_writel(sor, value, sor->soc->regs->head_state0 + dc->pipe);
tegra_sor_mode_set(sor, mode, state);
tegra_sor_update(sor);
/* program preamble timing in SOR (XXX) */
value = tegra_sor_readl(sor, SOR_DP_SPARE0);
value &= ~SOR_DP_SPARE_DISP_VIDEO_PREAMBLE;
tegra_sor_writel(sor, value, SOR_DP_SPARE0);
err = tegra_sor_attach(sor);
if (err < 0)
dev_err(sor->dev, "failed to attach SOR: %d\n", err);
/* enable display to SOR clock and generate HDMI preamble */
value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
if (!sor->soc->has_nvdisplay)
value |= SOR_ENABLE(1) | SOR1_TIMING_CYA;
else
value |= SOR_ENABLE(sor->index);
tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
if (dc->soc->has_nvdisplay) {
value = tegra_dc_readl(dc, DC_DISP_CORE_SOR_SET_CONTROL(sor->index));
value &= ~PROTOCOL_MASK;
value |= PROTOCOL_SINGLE_TMDS_A;
tegra_dc_writel(dc, value, DC_DISP_CORE_SOR_SET_CONTROL(sor->index));
}
tegra_dc_commit(dc);
err = tegra_sor_wakeup(sor);
if (err < 0)
dev_err(sor->dev, "failed to wakeup SOR: %d\n", err);
tegra_sor_hdmi_scdc_start(sor);
tegra_sor_audio_prepare(sor);
}
static const struct drm_encoder_helper_funcs tegra_sor_hdmi_helpers = {
.disable = tegra_sor_hdmi_disable,
.enable = tegra_sor_hdmi_enable,
.atomic_check = tegra_sor_encoder_atomic_check,
};
static int tegra_sor_init(struct host1x_client *client)
{
struct drm_device *drm = dev_get_drvdata(client->parent);
const struct drm_encoder_helper_funcs *helpers = NULL;
struct tegra_sor *sor = host1x_client_to_sor(client);
int connector = DRM_MODE_CONNECTOR_Unknown;
int encoder = DRM_MODE_ENCODER_NONE;
u32 value;
int err;
if (!sor->aux) {
if (sor->soc->supports_hdmi) {
connector = DRM_MODE_CONNECTOR_HDMIA;
encoder = DRM_MODE_ENCODER_TMDS;
helpers = &tegra_sor_hdmi_helpers;
} else if (sor->soc->supports_lvds) {
connector = DRM_MODE_CONNECTOR_LVDS;
encoder = DRM_MODE_ENCODER_LVDS;
}
} else {
if (sor->soc->supports_edp) {
connector = DRM_MODE_CONNECTOR_eDP;
encoder = DRM_MODE_ENCODER_TMDS;
helpers = &tegra_sor_edp_helpers;
} else if (sor->soc->supports_dp) {
connector = DRM_MODE_CONNECTOR_DisplayPort;
encoder = DRM_MODE_ENCODER_TMDS;
}
}
sor->output.dev = sor->dev;
drm_connector_init(drm, &sor->output.connector,
&tegra_sor_connector_funcs,
connector);
drm_connector_helper_add(&sor->output.connector,
&tegra_sor_connector_helper_funcs);
sor->output.connector.dpms = DRM_MODE_DPMS_OFF;
drm_encoder_init(drm, &sor->output.encoder, &tegra_sor_encoder_funcs,
encoder, NULL);
drm_encoder_helper_add(&sor->output.encoder, helpers);
drm_connector_attach_encoder(&sor->output.connector,
&sor->output.encoder);
drm_connector_register(&sor->output.connector);
err = tegra_output_init(drm, &sor->output);
if (err < 0) {
dev_err(client->dev, "failed to initialize output: %d\n", err);
return err;
}
tegra_output_find_possible_crtcs(&sor->output, drm);
if (sor->aux) {
err = drm_dp_aux_attach(sor->aux, &sor->output);
if (err < 0) {
dev_err(sor->dev, "failed to attach DP: %d\n", err);
return err;
}
}
/*
* XXX: Remove this reset once proper hand-over from firmware to
* kernel is possible.
*/
if (sor->rst) {
err = reset_control_assert(sor->rst);
if (err < 0) {
dev_err(sor->dev, "failed to assert SOR reset: %d\n",
err);
return err;
}
}
err = clk_prepare_enable(sor->clk);
if (err < 0) {
dev_err(sor->dev, "failed to enable clock: %d\n", err);
return err;
}
usleep_range(1000, 3000);
if (sor->rst) {
err = reset_control_deassert(sor->rst);
if (err < 0) {
dev_err(sor->dev, "failed to deassert SOR reset: %d\n",
err);
return err;
}
}
err = clk_prepare_enable(sor->clk_safe);
if (err < 0)
return err;
err = clk_prepare_enable(sor->clk_dp);
if (err < 0)
return err;
/*
* Enable and unmask the HDA codec SCRATCH0 register interrupt. This
* is used for interoperability between the HDA codec driver and the
* HDMI/DP driver.
*/
value = SOR_INT_CODEC_SCRATCH1 | SOR_INT_CODEC_SCRATCH0;
tegra_sor_writel(sor, value, SOR_INT_ENABLE);
tegra_sor_writel(sor, value, SOR_INT_MASK);
return 0;
}
static int tegra_sor_exit(struct host1x_client *client)
{
struct tegra_sor *sor = host1x_client_to_sor(client);
int err;
tegra_sor_writel(sor, 0, SOR_INT_MASK);
tegra_sor_writel(sor, 0, SOR_INT_ENABLE);
tegra_output_exit(&sor->output);
if (sor->aux) {
err = drm_dp_aux_detach(sor->aux);
if (err < 0) {
dev_err(sor->dev, "failed to detach DP: %d\n", err);
return err;
}
}
clk_disable_unprepare(sor->clk_safe);
clk_disable_unprepare(sor->clk_dp);
clk_disable_unprepare(sor->clk);
return 0;
}
static const struct host1x_client_ops sor_client_ops = {
.init = tegra_sor_init,
.exit = tegra_sor_exit,
};
static const struct tegra_sor_ops tegra_sor_edp_ops = {
.name = "eDP",
};
static int tegra_sor_hdmi_probe(struct tegra_sor *sor)
{
int err;
sor->avdd_io_supply = devm_regulator_get(sor->dev, "avdd-io");
if (IS_ERR(sor->avdd_io_supply)) {
dev_err(sor->dev, "cannot get AVDD I/O supply: %ld\n",
PTR_ERR(sor->avdd_io_supply));
return PTR_ERR(sor->avdd_io_supply);
}
err = regulator_enable(sor->avdd_io_supply);
if (err < 0) {
dev_err(sor->dev, "failed to enable AVDD I/O supply: %d\n",
err);
return err;
}
sor->vdd_pll_supply = devm_regulator_get(sor->dev, "vdd-pll");
if (IS_ERR(sor->vdd_pll_supply)) {
dev_err(sor->dev, "cannot get VDD PLL supply: %ld\n",
PTR_ERR(sor->vdd_pll_supply));
return PTR_ERR(sor->vdd_pll_supply);
}
err = regulator_enable(sor->vdd_pll_supply);
if (err < 0) {
dev_err(sor->dev, "failed to enable VDD PLL supply: %d\n",
err);
return err;
}
sor->hdmi_supply = devm_regulator_get(sor->dev, "hdmi");
if (IS_ERR(sor->hdmi_supply)) {
dev_err(sor->dev, "cannot get HDMI supply: %ld\n",
PTR_ERR(sor->hdmi_supply));
return PTR_ERR(sor->hdmi_supply);
}
err = regulator_enable(sor->hdmi_supply);
if (err < 0) {
dev_err(sor->dev, "failed to enable HDMI supply: %d\n", err);
return err;
}
INIT_DELAYED_WORK(&sor->scdc, tegra_sor_hdmi_scdc_work);
return 0;
}
static int tegra_sor_hdmi_remove(struct tegra_sor *sor)
{
regulator_disable(sor->hdmi_supply);
regulator_disable(sor->vdd_pll_supply);
regulator_disable(sor->avdd_io_supply);
return 0;
}
static const struct tegra_sor_ops tegra_sor_hdmi_ops = {
.name = "HDMI",
.probe = tegra_sor_hdmi_probe,
.remove = tegra_sor_hdmi_remove,
};
static const u8 tegra124_sor_xbar_cfg[5] = {
0, 1, 2, 3, 4
};
static const struct tegra_sor_regs tegra124_sor_regs = {
.head_state0 = 0x05,
.head_state1 = 0x07,
.head_state2 = 0x09,
.head_state3 = 0x0b,
.head_state4 = 0x0d,
.head_state5 = 0x0f,
.pll0 = 0x17,
.pll1 = 0x18,
.pll2 = 0x19,
.pll3 = 0x1a,
.dp_padctl0 = 0x5c,
.dp_padctl2 = 0x73,
};
static const struct tegra_sor_soc tegra124_sor = {
.supports_edp = true,
.supports_lvds = true,
.supports_hdmi = false,
.supports_dp = false,
.regs = &tegra124_sor_regs,
.has_nvdisplay = false,
.xbar_cfg = tegra124_sor_xbar_cfg,
};
static const struct tegra_sor_regs tegra210_sor_regs = {
.head_state0 = 0x05,
.head_state1 = 0x07,
.head_state2 = 0x09,
.head_state3 = 0x0b,
.head_state4 = 0x0d,
.head_state5 = 0x0f,
.pll0 = 0x17,
.pll1 = 0x18,
.pll2 = 0x19,
.pll3 = 0x1a,
.dp_padctl0 = 0x5c,
.dp_padctl2 = 0x73,
};
static const struct tegra_sor_soc tegra210_sor = {
.supports_edp = true,
.supports_lvds = false,
.supports_hdmi = false,
.supports_dp = false,
.regs = &tegra210_sor_regs,
.has_nvdisplay = false,
.xbar_cfg = tegra124_sor_xbar_cfg,
};
static const u8 tegra210_sor_xbar_cfg[5] = {
2, 1, 0, 3, 4
};
static const struct tegra_sor_soc tegra210_sor1 = {
.supports_edp = false,
.supports_lvds = false,
.supports_hdmi = true,
.supports_dp = true,
.regs = &tegra210_sor_regs,
.has_nvdisplay = false,
.num_settings = ARRAY_SIZE(tegra210_sor_hdmi_defaults),
.settings = tegra210_sor_hdmi_defaults,
.xbar_cfg = tegra210_sor_xbar_cfg,
};
static const struct tegra_sor_regs tegra186_sor_regs = {
.head_state0 = 0x151,
.head_state1 = 0x154,
.head_state2 = 0x157,
.head_state3 = 0x15a,
.head_state4 = 0x15d,
.head_state5 = 0x160,
.pll0 = 0x163,
.pll1 = 0x164,
.pll2 = 0x165,
.pll3 = 0x166,
.dp_padctl0 = 0x168,
.dp_padctl2 = 0x16a,
};
static const struct tegra_sor_soc tegra186_sor = {
.supports_edp = false,
.supports_lvds = false,
.supports_hdmi = false,
.supports_dp = true,
.regs = &tegra186_sor_regs,
.has_nvdisplay = true,
.xbar_cfg = tegra124_sor_xbar_cfg,
};
static const struct tegra_sor_soc tegra186_sor1 = {
.supports_edp = false,
.supports_lvds = false,
.supports_hdmi = true,
.supports_dp = true,
.regs = &tegra186_sor_regs,
.has_nvdisplay = true,
.num_settings = ARRAY_SIZE(tegra186_sor_hdmi_defaults),
.settings = tegra186_sor_hdmi_defaults,
.xbar_cfg = tegra124_sor_xbar_cfg,
};
static const struct tegra_sor_regs tegra194_sor_regs = {
.head_state0 = 0x151,
.head_state1 = 0x155,
.head_state2 = 0x159,
.head_state3 = 0x15d,
.head_state4 = 0x161,
.head_state5 = 0x165,
.pll0 = 0x169,
.pll1 = 0x16a,
.pll2 = 0x16b,
.pll3 = 0x16c,
.dp_padctl0 = 0x16e,
.dp_padctl2 = 0x16f,
};
static const struct tegra_sor_soc tegra194_sor = {
.supports_edp = true,
.supports_lvds = false,
.supports_hdmi = true,
.supports_dp = true,
.regs = &tegra194_sor_regs,
.has_nvdisplay = true,
.num_settings = ARRAY_SIZE(tegra194_sor_hdmi_defaults),
.settings = tegra194_sor_hdmi_defaults,
.xbar_cfg = tegra210_sor_xbar_cfg,
};
static const struct of_device_id tegra_sor_of_match[] = {
{ .compatible = "nvidia,tegra194-sor", .data = &tegra194_sor },
{ .compatible = "nvidia,tegra186-sor1", .data = &tegra186_sor1 },
{ .compatible = "nvidia,tegra186-sor", .data = &tegra186_sor },
{ .compatible = "nvidia,tegra210-sor1", .data = &tegra210_sor1 },
{ .compatible = "nvidia,tegra210-sor", .data = &tegra210_sor },
{ .compatible = "nvidia,tegra124-sor", .data = &tegra124_sor },
{ },
};
MODULE_DEVICE_TABLE(of, tegra_sor_of_match);
static int tegra_sor_parse_dt(struct tegra_sor *sor)
{
struct device_node *np = sor->dev->of_node;
u32 xbar_cfg[5];
unsigned int i;
u32 value;
int err;
if (sor->soc->has_nvdisplay) {
err = of_property_read_u32(np, "nvidia,interface", &value);
if (err < 0)
return err;
sor->index = value;
/*
* override the default that we already set for Tegra210 and
* earlier
*/
sor->pad = TEGRA_IO_PAD_HDMI_DP0 + sor->index;
}
err = of_property_read_u32_array(np, "nvidia,xbar-cfg", xbar_cfg, 5);
if (err < 0) {
/* fall back to default per-SoC XBAR configuration */
for (i = 0; i < 5; i++)
sor->xbar_cfg[i] = sor->soc->xbar_cfg[i];
} else {
/* copy cells to SOR XBAR configuration */
for (i = 0; i < 5; i++)
sor->xbar_cfg[i] = xbar_cfg[i];
}
return 0;
}
static irqreturn_t tegra_sor_irq(int irq, void *data)
{
struct tegra_sor *sor = data;
u32 value;
value = tegra_sor_readl(sor, SOR_INT_STATUS);
tegra_sor_writel(sor, value, SOR_INT_STATUS);
if (value & SOR_INT_CODEC_SCRATCH0) {
value = tegra_sor_readl(sor, SOR_AUDIO_HDA_CODEC_SCRATCH0);
if (value & SOR_AUDIO_HDA_CODEC_SCRATCH0_VALID) {
unsigned int format;
format = value & SOR_AUDIO_HDA_CODEC_SCRATCH0_FMT_MASK;
tegra_hda_parse_format(format, &sor->format);
tegra_sor_hdmi_audio_enable(sor);
} else {
tegra_sor_hdmi_audio_disable(sor);
}
}
return IRQ_HANDLED;
}
static int tegra_sor_probe(struct platform_device *pdev)
{
struct device_node *np;
struct tegra_sor *sor;
struct resource *regs;
int err;
sor = devm_kzalloc(&pdev->dev, sizeof(*sor), GFP_KERNEL);
if (!sor)
return -ENOMEM;
sor->soc = of_device_get_match_data(&pdev->dev);
sor->output.dev = sor->dev = &pdev->dev;
sor->settings = devm_kmemdup(&pdev->dev, sor->soc->settings,
sor->soc->num_settings *
sizeof(*sor->settings),
GFP_KERNEL);
if (!sor->settings)
return -ENOMEM;
sor->num_settings = sor->soc->num_settings;
np = of_parse_phandle(pdev->dev.of_node, "nvidia,dpaux", 0);
if (np) {
sor->aux = drm_dp_aux_find_by_of_node(np);
of_node_put(np);
if (!sor->aux)
return -EPROBE_DEFER;
}
if (!sor->aux) {
if (sor->soc->supports_hdmi) {
sor->ops = &tegra_sor_hdmi_ops;
sor->pad = TEGRA_IO_PAD_HDMI;
} else if (sor->soc->supports_lvds) {
dev_err(&pdev->dev, "LVDS not supported yet\n");
return -ENODEV;
} else {
dev_err(&pdev->dev, "unknown (non-DP) support\n");
return -ENODEV;
}
} else {
if (sor->soc->supports_edp) {
sor->ops = &tegra_sor_edp_ops;
sor->pad = TEGRA_IO_PAD_LVDS;
} else if (sor->soc->supports_dp) {
dev_err(&pdev->dev, "DisplayPort not supported yet\n");
return -ENODEV;
} else {
dev_err(&pdev->dev, "unknown (DP) support\n");
return -ENODEV;
}
}
err = tegra_sor_parse_dt(sor);
if (err < 0)
return err;
err = tegra_output_probe(&sor->output);
if (err < 0) {
dev_err(&pdev->dev, "failed to probe output: %d\n", err);
return err;
}
if (sor->ops && sor->ops->probe) {
err = sor->ops->probe(sor);
if (err < 0) {
dev_err(&pdev->dev, "failed to probe %s: %d\n",
sor->ops->name, err);
goto output;
}
}
regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
sor->regs = devm_ioremap_resource(&pdev->dev, regs);
if (IS_ERR(sor->regs)) {
err = PTR_ERR(sor->regs);
goto remove;
}
err = platform_get_irq(pdev, 0);
if (err < 0) {
dev_err(&pdev->dev, "failed to get IRQ: %d\n", err);
goto remove;
}
sor->irq = err;
err = devm_request_irq(sor->dev, sor->irq, tegra_sor_irq, 0,
dev_name(sor->dev), sor);
if (err < 0) {
dev_err(&pdev->dev, "failed to request IRQ: %d\n", err);
goto remove;
}
sor->rst = devm_reset_control_get(&pdev->dev, "sor");
if (IS_ERR(sor->rst)) {
err = PTR_ERR(sor->rst);
if (err != -EBUSY || WARN_ON(!pdev->dev.pm_domain)) {
dev_err(&pdev->dev, "failed to get reset control: %d\n",
err);
goto remove;
}
/*
* At this point, the reset control is most likely being used
* by the generic power domain implementation. With any luck
* the power domain will have taken care of resetting the SOR
* and we don't have to do anything.
*/
sor->rst = NULL;
}
sor->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(sor->clk)) {
err = PTR_ERR(sor->clk);
dev_err(&pdev->dev, "failed to get module clock: %d\n", err);
goto remove;
}
if (sor->soc->supports_hdmi || sor->soc->supports_dp) {
struct device_node *np = pdev->dev.of_node;
const char *name;
/*
* For backwards compatibility with Tegra210 device trees,
* fall back to the old clock name "source" if the new "out"
* clock is not available.
*/
if (of_property_match_string(np, "clock-names", "out") < 0)
name = "source";
else
name = "out";
sor->clk_out = devm_clk_get(&pdev->dev, name);
if (IS_ERR(sor->clk_out)) {
err = PTR_ERR(sor->clk_out);
dev_err(sor->dev, "failed to get %s clock: %d\n",
name, err);
goto remove;
}
} else {
/* fall back to the module clock on SOR0 (eDP/LVDS only) */
sor->clk_out = sor->clk;
}
sor->clk_parent = devm_clk_get(&pdev->dev, "parent");
if (IS_ERR(sor->clk_parent)) {
err = PTR_ERR(sor->clk_parent);
dev_err(&pdev->dev, "failed to get parent clock: %d\n", err);
goto remove;
}
sor->clk_safe = devm_clk_get(&pdev->dev, "safe");
if (IS_ERR(sor->clk_safe)) {
err = PTR_ERR(sor->clk_safe);
dev_err(&pdev->dev, "failed to get safe clock: %d\n", err);
goto remove;
}
sor->clk_dp = devm_clk_get(&pdev->dev, "dp");
if (IS_ERR(sor->clk_dp)) {
err = PTR_ERR(sor->clk_dp);
dev_err(&pdev->dev, "failed to get DP clock: %d\n", err);
goto remove;
}
/*
* Starting with Tegra186, the BPMP provides an implementation for
* the pad output clock, so we have to look it up from device tree.
*/
sor->clk_pad = devm_clk_get(&pdev->dev, "pad");
if (IS_ERR(sor->clk_pad)) {
if (sor->clk_pad != ERR_PTR(-ENOENT)) {
err = PTR_ERR(sor->clk_pad);
goto remove;
}
/*
* If the pad output clock is not available, then we assume
* we're on Tegra210 or earlier and have to provide our own
* implementation.
*/
sor->clk_pad = NULL;
}
/*
* The bootloader may have set up the SOR such that it's module clock
* is sourced by one of the display PLLs. However, that doesn't work
* without properly having set up other bits of the SOR.
*/
err = clk_set_parent(sor->clk_out, sor->clk_safe);
if (err < 0) {
dev_err(&pdev->dev, "failed to use safe clock: %d\n", err);
goto remove;
}
platform_set_drvdata(pdev, sor);
pm_runtime_enable(&pdev->dev);
/*
* On Tegra210 and earlier, provide our own implementation for the
* pad output clock.
*/
if (!sor->clk_pad) {
err = pm_runtime_get_sync(&pdev->dev);
if (err < 0) {
dev_err(&pdev->dev, "failed to get runtime PM: %d\n",
err);
goto remove;
}
sor->clk_pad = tegra_clk_sor_pad_register(sor,
"sor1_pad_clkout");
pm_runtime_put(&pdev->dev);
}
if (IS_ERR(sor->clk_pad)) {
err = PTR_ERR(sor->clk_pad);
dev_err(&pdev->dev, "failed to register SOR pad clock: %d\n",
err);
goto remove;
}
INIT_LIST_HEAD(&sor->client.list);
sor->client.ops = &sor_client_ops;
sor->client.dev = &pdev->dev;
err = host1x_client_register(&sor->client);
if (err < 0) {
dev_err(&pdev->dev, "failed to register host1x client: %d\n",
err);
goto remove;
}
return 0;
remove:
if (sor->ops && sor->ops->remove)
sor->ops->remove(sor);
output:
tegra_output_remove(&sor->output);
return err;
}
static int tegra_sor_remove(struct platform_device *pdev)
{
struct tegra_sor *sor = platform_get_drvdata(pdev);
int err;
pm_runtime_disable(&pdev->dev);
err = host1x_client_unregister(&sor->client);
if (err < 0) {
dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
err);
return err;
}
if (sor->ops && sor->ops->remove) {
err = sor->ops->remove(sor);
if (err < 0)
dev_err(&pdev->dev, "failed to remove SOR: %d\n", err);
}
tegra_output_remove(&sor->output);
return 0;
}
#ifdef CONFIG_PM
static int tegra_sor_suspend(struct device *dev)
{
struct tegra_sor *sor = dev_get_drvdata(dev);
int err;
if (sor->rst) {
err = reset_control_assert(sor->rst);
if (err < 0) {
dev_err(dev, "failed to assert reset: %d\n", err);
return err;
}
}
usleep_range(1000, 2000);
clk_disable_unprepare(sor->clk);
return 0;
}
static int tegra_sor_resume(struct device *dev)
{
struct tegra_sor *sor = dev_get_drvdata(dev);
int err;
err = clk_prepare_enable(sor->clk);
if (err < 0) {
dev_err(dev, "failed to enable clock: %d\n", err);
return err;
}
usleep_range(1000, 2000);
if (sor->rst) {
err = reset_control_deassert(sor->rst);
if (err < 0) {
dev_err(dev, "failed to deassert reset: %d\n", err);
clk_disable_unprepare(sor->clk);
return err;
}
}
return 0;
}
#endif
static const struct dev_pm_ops tegra_sor_pm_ops = {
SET_RUNTIME_PM_OPS(tegra_sor_suspend, tegra_sor_resume, NULL)
};
struct platform_driver tegra_sor_driver = {
.driver = {
.name = "tegra-sor",
.of_match_table = tegra_sor_of_match,
.pm = &tegra_sor_pm_ops,
},
.probe = tegra_sor_probe,
.remove = tegra_sor_remove,
};