linux/drivers/sh/clk/core.c

787 lines
16 KiB
C

/*
* SuperH clock framework
*
* Copyright (C) 2005 - 2010 Paul Mundt
*
* This clock framework is derived from the OMAP version by:
*
* Copyright (C) 2004 - 2008 Nokia Corporation
* Written by Tuukka Tikkanen <tuukka.tikkanen@elektrobit.com>
*
* Modified for omap shared clock framework by Tony Lindgren <tony@atomide.com>
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*/
#define pr_fmt(fmt) "clock: " fmt
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/list.h>
#include <linux/kobject.h>
#include <linux/sysdev.h>
#include <linux/seq_file.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/debugfs.h>
#include <linux/cpufreq.h>
#include <linux/clk.h>
#include <linux/sh_clk.h>
static LIST_HEAD(clock_list);
static DEFINE_SPINLOCK(clock_lock);
static DEFINE_MUTEX(clock_list_sem);
void clk_rate_table_build(struct clk *clk,
struct cpufreq_frequency_table *freq_table,
int nr_freqs,
struct clk_div_mult_table *src_table,
unsigned long *bitmap)
{
unsigned long mult, div;
unsigned long freq;
int i;
clk->nr_freqs = nr_freqs;
for (i = 0; i < nr_freqs; i++) {
div = 1;
mult = 1;
if (src_table->divisors && i < src_table->nr_divisors)
div = src_table->divisors[i];
if (src_table->multipliers && i < src_table->nr_multipliers)
mult = src_table->multipliers[i];
if (!div || !mult || (bitmap && !test_bit(i, bitmap)))
freq = CPUFREQ_ENTRY_INVALID;
else
freq = clk->parent->rate * mult / div;
freq_table[i].index = i;
freq_table[i].frequency = freq;
}
/* Termination entry */
freq_table[i].index = i;
freq_table[i].frequency = CPUFREQ_TABLE_END;
}
struct clk_rate_round_data;
struct clk_rate_round_data {
unsigned long rate;
unsigned int min, max;
long (*func)(unsigned int, struct clk_rate_round_data *);
void *arg;
};
#define for_each_frequency(pos, r, freq) \
for (pos = r->min, freq = r->func(pos, r); \
pos <= r->max; pos++, freq = r->func(pos, r)) \
if (unlikely(freq == 0)) \
; \
else
static long clk_rate_round_helper(struct clk_rate_round_data *rounder)
{
unsigned long rate_error, rate_error_prev = ~0UL;
unsigned long highest, lowest, freq;
long rate_best_fit = -ENOENT;
int i;
highest = 0;
lowest = ~0UL;
for_each_frequency(i, rounder, freq) {
if (freq > highest)
highest = freq;
if (freq < lowest)
lowest = freq;
rate_error = abs(freq - rounder->rate);
if (rate_error < rate_error_prev) {
rate_best_fit = freq;
rate_error_prev = rate_error;
}
if (rate_error == 0)
break;
}
if (rounder->rate >= highest)
rate_best_fit = highest;
if (rounder->rate <= lowest)
rate_best_fit = lowest;
return rate_best_fit;
}
static long clk_rate_table_iter(unsigned int pos,
struct clk_rate_round_data *rounder)
{
struct cpufreq_frequency_table *freq_table = rounder->arg;
unsigned long freq = freq_table[pos].frequency;
if (freq == CPUFREQ_ENTRY_INVALID)
freq = 0;
return freq;
}
long clk_rate_table_round(struct clk *clk,
struct cpufreq_frequency_table *freq_table,
unsigned long rate)
{
struct clk_rate_round_data table_round = {
.min = 0,
.max = clk->nr_freqs - 1,
.func = clk_rate_table_iter,
.arg = freq_table,
.rate = rate,
};
if (clk->nr_freqs < 1)
return -ENOSYS;
return clk_rate_round_helper(&table_round);
}
static long clk_rate_div_range_iter(unsigned int pos,
struct clk_rate_round_data *rounder)
{
return clk_get_rate(rounder->arg) / pos;
}
long clk_rate_div_range_round(struct clk *clk, unsigned int div_min,
unsigned int div_max, unsigned long rate)
{
struct clk_rate_round_data div_range_round = {
.min = div_min,
.max = div_max,
.func = clk_rate_div_range_iter,
.arg = clk_get_parent(clk),
.rate = rate,
};
return clk_rate_round_helper(&div_range_round);
}
int clk_rate_table_find(struct clk *clk,
struct cpufreq_frequency_table *freq_table,
unsigned long rate)
{
int i;
for (i = 0; freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
unsigned long freq = freq_table[i].frequency;
if (freq == CPUFREQ_ENTRY_INVALID)
continue;
if (freq == rate)
return i;
}
return -ENOENT;
}
/* Used for clocks that always have same value as the parent clock */
unsigned long followparent_recalc(struct clk *clk)
{
return clk->parent ? clk->parent->rate : 0;
}
int clk_reparent(struct clk *child, struct clk *parent)
{
list_del_init(&child->sibling);
if (parent)
list_add(&child->sibling, &parent->children);
child->parent = parent;
/* now do the debugfs renaming to reattach the child
to the proper parent */
return 0;
}
/* Propagate rate to children */
void propagate_rate(struct clk *tclk)
{
struct clk *clkp;
list_for_each_entry(clkp, &tclk->children, sibling) {
if (clkp->ops && clkp->ops->recalc)
clkp->rate = clkp->ops->recalc(clkp);
propagate_rate(clkp);
}
}
static void __clk_disable(struct clk *clk)
{
if (WARN(!clk->usecount, "Trying to disable clock %p with 0 usecount\n",
clk))
return;
if (!(--clk->usecount)) {
if (likely(clk->ops && clk->ops->disable))
clk->ops->disable(clk);
if (likely(clk->parent))
__clk_disable(clk->parent);
}
}
void clk_disable(struct clk *clk)
{
unsigned long flags;
if (!clk)
return;
spin_lock_irqsave(&clock_lock, flags);
__clk_disable(clk);
spin_unlock_irqrestore(&clock_lock, flags);
}
EXPORT_SYMBOL_GPL(clk_disable);
static int __clk_enable(struct clk *clk)
{
int ret = 0;
if (clk->usecount++ == 0) {
if (clk->parent) {
ret = __clk_enable(clk->parent);
if (unlikely(ret))
goto err;
}
if (clk->ops && clk->ops->enable) {
ret = clk->ops->enable(clk);
if (ret) {
if (clk->parent)
__clk_disable(clk->parent);
goto err;
}
}
}
return ret;
err:
clk->usecount--;
return ret;
}
int clk_enable(struct clk *clk)
{
unsigned long flags;
int ret;
if (!clk)
return -EINVAL;
spin_lock_irqsave(&clock_lock, flags);
ret = __clk_enable(clk);
spin_unlock_irqrestore(&clock_lock, flags);
return ret;
}
EXPORT_SYMBOL_GPL(clk_enable);
static LIST_HEAD(root_clks);
/**
* recalculate_root_clocks - recalculate and propagate all root clocks
*
* Recalculates all root clocks (clocks with no parent), which if the
* clock's .recalc is set correctly, should also propagate their rates.
* Called at init.
*/
void recalculate_root_clocks(void)
{
struct clk *clkp;
list_for_each_entry(clkp, &root_clks, sibling) {
if (clkp->ops && clkp->ops->recalc)
clkp->rate = clkp->ops->recalc(clkp);
propagate_rate(clkp);
}
}
static struct clk_mapping dummy_mapping;
static struct clk *lookup_root_clock(struct clk *clk)
{
while (clk->parent)
clk = clk->parent;
return clk;
}
static int clk_establish_mapping(struct clk *clk)
{
struct clk_mapping *mapping = clk->mapping;
/*
* Propagate mappings.
*/
if (!mapping) {
struct clk *clkp;
/*
* dummy mapping for root clocks with no specified ranges
*/
if (!clk->parent) {
clk->mapping = &dummy_mapping;
return 0;
}
/*
* If we're on a child clock and it provides no mapping of its
* own, inherit the mapping from its root clock.
*/
clkp = lookup_root_clock(clk);
mapping = clkp->mapping;
BUG_ON(!mapping);
}
/*
* Establish initial mapping.
*/
if (!mapping->base && mapping->phys) {
kref_init(&mapping->ref);
mapping->base = ioremap_nocache(mapping->phys, mapping->len);
if (unlikely(!mapping->base))
return -ENXIO;
} else if (mapping->base) {
/*
* Bump the refcount for an existing mapping
*/
kref_get(&mapping->ref);
}
clk->mapping = mapping;
return 0;
}
static void clk_destroy_mapping(struct kref *kref)
{
struct clk_mapping *mapping;
mapping = container_of(kref, struct clk_mapping, ref);
iounmap(mapping->base);
}
static void clk_teardown_mapping(struct clk *clk)
{
struct clk_mapping *mapping = clk->mapping;
/* Nothing to do */
if (mapping == &dummy_mapping)
return;
kref_put(&mapping->ref, clk_destroy_mapping);
clk->mapping = NULL;
}
int clk_register(struct clk *clk)
{
int ret;
if (clk == NULL || IS_ERR(clk))
return -EINVAL;
/*
* trap out already registered clocks
*/
if (clk->node.next || clk->node.prev)
return 0;
mutex_lock(&clock_list_sem);
INIT_LIST_HEAD(&clk->children);
clk->usecount = 0;
ret = clk_establish_mapping(clk);
if (unlikely(ret))
goto out_unlock;
if (clk->parent)
list_add(&clk->sibling, &clk->parent->children);
else
list_add(&clk->sibling, &root_clks);
list_add(&clk->node, &clock_list);
if (clk->ops && clk->ops->init)
clk->ops->init(clk);
out_unlock:
mutex_unlock(&clock_list_sem);
return ret;
}
EXPORT_SYMBOL_GPL(clk_register);
void clk_unregister(struct clk *clk)
{
mutex_lock(&clock_list_sem);
list_del(&clk->sibling);
list_del(&clk->node);
clk_teardown_mapping(clk);
mutex_unlock(&clock_list_sem);
}
EXPORT_SYMBOL_GPL(clk_unregister);
void clk_enable_init_clocks(void)
{
struct clk *clkp;
list_for_each_entry(clkp, &clock_list, node)
if (clkp->flags & CLK_ENABLE_ON_INIT)
clk_enable(clkp);
}
unsigned long clk_get_rate(struct clk *clk)
{
return clk->rate;
}
EXPORT_SYMBOL_GPL(clk_get_rate);
int clk_set_rate(struct clk *clk, unsigned long rate)
{
return clk_set_rate_ex(clk, rate, 0);
}
EXPORT_SYMBOL_GPL(clk_set_rate);
int clk_set_rate_ex(struct clk *clk, unsigned long rate, int algo_id)
{
int ret = -EOPNOTSUPP;
unsigned long flags;
spin_lock_irqsave(&clock_lock, flags);
if (likely(clk->ops && clk->ops->set_rate)) {
ret = clk->ops->set_rate(clk, rate, algo_id);
if (ret != 0)
goto out_unlock;
} else {
clk->rate = rate;
ret = 0;
}
if (clk->ops && clk->ops->recalc)
clk->rate = clk->ops->recalc(clk);
propagate_rate(clk);
out_unlock:
spin_unlock_irqrestore(&clock_lock, flags);
return ret;
}
EXPORT_SYMBOL_GPL(clk_set_rate_ex);
int clk_set_parent(struct clk *clk, struct clk *parent)
{
unsigned long flags;
int ret = -EINVAL;
if (!parent || !clk)
return ret;
if (clk->parent == parent)
return 0;
spin_lock_irqsave(&clock_lock, flags);
if (clk->usecount == 0) {
if (clk->ops->set_parent)
ret = clk->ops->set_parent(clk, parent);
else
ret = clk_reparent(clk, parent);
if (ret == 0) {
if (clk->ops->recalc)
clk->rate = clk->ops->recalc(clk);
pr_debug("set parent of %p to %p (new rate %ld)\n",
clk, clk->parent, clk->rate);
propagate_rate(clk);
}
} else
ret = -EBUSY;
spin_unlock_irqrestore(&clock_lock, flags);
return ret;
}
EXPORT_SYMBOL_GPL(clk_set_parent);
struct clk *clk_get_parent(struct clk *clk)
{
return clk->parent;
}
EXPORT_SYMBOL_GPL(clk_get_parent);
long clk_round_rate(struct clk *clk, unsigned long rate)
{
if (likely(clk->ops && clk->ops->round_rate)) {
unsigned long flags, rounded;
spin_lock_irqsave(&clock_lock, flags);
rounded = clk->ops->round_rate(clk, rate);
spin_unlock_irqrestore(&clock_lock, flags);
return rounded;
}
return clk_get_rate(clk);
}
EXPORT_SYMBOL_GPL(clk_round_rate);
long clk_round_parent(struct clk *clk, unsigned long target,
unsigned long *best_freq, unsigned long *parent_freq,
unsigned int div_min, unsigned int div_max)
{
struct cpufreq_frequency_table *freq, *best = NULL;
unsigned long error = ULONG_MAX, freq_high, freq_low, div;
struct clk *parent = clk_get_parent(clk);
if (!parent) {
*parent_freq = 0;
*best_freq = clk_round_rate(clk, target);
return abs(target - *best_freq);
}
for (freq = parent->freq_table; freq->frequency != CPUFREQ_TABLE_END;
freq++) {
if (freq->frequency == CPUFREQ_ENTRY_INVALID)
continue;
if (unlikely(freq->frequency / target <= div_min - 1)) {
unsigned long freq_max;
freq_max = (freq->frequency + div_min / 2) / div_min;
if (error > target - freq_max) {
error = target - freq_max;
best = freq;
if (best_freq)
*best_freq = freq_max;
}
pr_debug("too low freq %u, error %lu\n", freq->frequency,
target - freq_max);
if (!error)
break;
continue;
}
if (unlikely(freq->frequency / target >= div_max)) {
unsigned long freq_min;
freq_min = (freq->frequency + div_max / 2) / div_max;
if (error > freq_min - target) {
error = freq_min - target;
best = freq;
if (best_freq)
*best_freq = freq_min;
}
pr_debug("too high freq %u, error %lu\n", freq->frequency,
freq_min - target);
if (!error)
break;
continue;
}
div = freq->frequency / target;
freq_high = freq->frequency / div;
freq_low = freq->frequency / (div + 1);
if (freq_high - target < error) {
error = freq_high - target;
best = freq;
if (best_freq)
*best_freq = freq_high;
}
if (target - freq_low < error) {
error = target - freq_low;
best = freq;
if (best_freq)
*best_freq = freq_low;
}
pr_debug("%u / %lu = %lu, / %lu = %lu, best %lu, parent %u\n",
freq->frequency, div, freq_high, div + 1, freq_low,
*best_freq, best->frequency);
if (!error)
break;
}
if (parent_freq)
*parent_freq = best->frequency;
return error;
}
EXPORT_SYMBOL_GPL(clk_round_parent);
#ifdef CONFIG_PM
static int clks_sysdev_suspend(struct sys_device *dev, pm_message_t state)
{
static pm_message_t prev_state;
struct clk *clkp;
switch (state.event) {
case PM_EVENT_ON:
/* Resumeing from hibernation */
if (prev_state.event != PM_EVENT_FREEZE)
break;
list_for_each_entry(clkp, &clock_list, node) {
if (likely(clkp->ops)) {
unsigned long rate = clkp->rate;
if (likely(clkp->ops->set_parent))
clkp->ops->set_parent(clkp,
clkp->parent);
if (likely(clkp->ops->set_rate))
clkp->ops->set_rate(clkp,
rate, NO_CHANGE);
else if (likely(clkp->ops->recalc))
clkp->rate = clkp->ops->recalc(clkp);
}
}
break;
case PM_EVENT_FREEZE:
break;
case PM_EVENT_SUSPEND:
break;
}
prev_state = state;
return 0;
}
static int clks_sysdev_resume(struct sys_device *dev)
{
return clks_sysdev_suspend(dev, PMSG_ON);
}
static struct sysdev_class clks_sysdev_class = {
.name = "clks",
};
static struct sysdev_driver clks_sysdev_driver = {
.suspend = clks_sysdev_suspend,
.resume = clks_sysdev_resume,
};
static struct sys_device clks_sysdev_dev = {
.cls = &clks_sysdev_class,
};
static int __init clk_sysdev_init(void)
{
sysdev_class_register(&clks_sysdev_class);
sysdev_driver_register(&clks_sysdev_class, &clks_sysdev_driver);
sysdev_register(&clks_sysdev_dev);
return 0;
}
subsys_initcall(clk_sysdev_init);
#endif
/*
* debugfs support to trace clock tree hierarchy and attributes
*/
static struct dentry *clk_debugfs_root;
static int clk_debugfs_register_one(struct clk *c)
{
int err;
struct dentry *d, *child, *child_tmp;
struct clk *pa = c->parent;
char s[255];
char *p = s;
p += sprintf(p, "%p", c);
d = debugfs_create_dir(s, pa ? pa->dentry : clk_debugfs_root);
if (!d)
return -ENOMEM;
c->dentry = d;
d = debugfs_create_u8("usecount", S_IRUGO, c->dentry, (u8 *)&c->usecount);
if (!d) {
err = -ENOMEM;
goto err_out;
}
d = debugfs_create_u32("rate", S_IRUGO, c->dentry, (u32 *)&c->rate);
if (!d) {
err = -ENOMEM;
goto err_out;
}
d = debugfs_create_x32("flags", S_IRUGO, c->dentry, (u32 *)&c->flags);
if (!d) {
err = -ENOMEM;
goto err_out;
}
return 0;
err_out:
d = c->dentry;
list_for_each_entry_safe(child, child_tmp, &d->d_subdirs, d_u.d_child)
debugfs_remove(child);
debugfs_remove(c->dentry);
return err;
}
static int clk_debugfs_register(struct clk *c)
{
int err;
struct clk *pa = c->parent;
if (pa && !pa->dentry) {
err = clk_debugfs_register(pa);
if (err)
return err;
}
if (!c->dentry) {
err = clk_debugfs_register_one(c);
if (err)
return err;
}
return 0;
}
static int __init clk_debugfs_init(void)
{
struct clk *c;
struct dentry *d;
int err;
d = debugfs_create_dir("clock", NULL);
if (!d)
return -ENOMEM;
clk_debugfs_root = d;
list_for_each_entry(c, &clock_list, node) {
err = clk_debugfs_register(c);
if (err)
goto err_out;
}
return 0;
err_out:
debugfs_remove_recursive(clk_debugfs_root);
return err;
}
late_initcall(clk_debugfs_init);