mirror of https://gitee.com/openkylin/linux.git
4183 lines
113 KiB
C
4183 lines
113 KiB
C
/*
|
|
* Copyright (C) 2007 Oracle. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public
|
|
* License v2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public
|
|
* License along with this program; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 021110-1307, USA.
|
|
*/
|
|
|
|
#include <linux/fs.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/radix-tree.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/buffer_head.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/freezer.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/migrate.h>
|
|
#include <linux/ratelimit.h>
|
|
#include <linux/uuid.h>
|
|
#include <linux/semaphore.h>
|
|
#include <asm/unaligned.h>
|
|
#include "ctree.h"
|
|
#include "disk-io.h"
|
|
#include "hash.h"
|
|
#include "transaction.h"
|
|
#include "btrfs_inode.h"
|
|
#include "volumes.h"
|
|
#include "print-tree.h"
|
|
#include "async-thread.h"
|
|
#include "locking.h"
|
|
#include "tree-log.h"
|
|
#include "free-space-cache.h"
|
|
#include "inode-map.h"
|
|
#include "check-integrity.h"
|
|
#include "rcu-string.h"
|
|
#include "dev-replace.h"
|
|
#include "raid56.h"
|
|
#include "sysfs.h"
|
|
#include "qgroup.h"
|
|
|
|
#ifdef CONFIG_X86
|
|
#include <asm/cpufeature.h>
|
|
#endif
|
|
|
|
static struct extent_io_ops btree_extent_io_ops;
|
|
static void end_workqueue_fn(struct btrfs_work *work);
|
|
static void free_fs_root(struct btrfs_root *root);
|
|
static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
|
|
int read_only);
|
|
static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
|
|
struct btrfs_root *root);
|
|
static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
|
|
static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
|
|
struct btrfs_root *root);
|
|
static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
|
|
static int btrfs_destroy_marked_extents(struct btrfs_root *root,
|
|
struct extent_io_tree *dirty_pages,
|
|
int mark);
|
|
static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
|
|
struct extent_io_tree *pinned_extents);
|
|
static int btrfs_cleanup_transaction(struct btrfs_root *root);
|
|
static void btrfs_error_commit_super(struct btrfs_root *root);
|
|
|
|
/*
|
|
* end_io_wq structs are used to do processing in task context when an IO is
|
|
* complete. This is used during reads to verify checksums, and it is used
|
|
* by writes to insert metadata for new file extents after IO is complete.
|
|
*/
|
|
struct end_io_wq {
|
|
struct bio *bio;
|
|
bio_end_io_t *end_io;
|
|
void *private;
|
|
struct btrfs_fs_info *info;
|
|
int error;
|
|
int metadata;
|
|
struct list_head list;
|
|
struct btrfs_work work;
|
|
};
|
|
|
|
/*
|
|
* async submit bios are used to offload expensive checksumming
|
|
* onto the worker threads. They checksum file and metadata bios
|
|
* just before they are sent down the IO stack.
|
|
*/
|
|
struct async_submit_bio {
|
|
struct inode *inode;
|
|
struct bio *bio;
|
|
struct list_head list;
|
|
extent_submit_bio_hook_t *submit_bio_start;
|
|
extent_submit_bio_hook_t *submit_bio_done;
|
|
int rw;
|
|
int mirror_num;
|
|
unsigned long bio_flags;
|
|
/*
|
|
* bio_offset is optional, can be used if the pages in the bio
|
|
* can't tell us where in the file the bio should go
|
|
*/
|
|
u64 bio_offset;
|
|
struct btrfs_work work;
|
|
int error;
|
|
};
|
|
|
|
/*
|
|
* Lockdep class keys for extent_buffer->lock's in this root. For a given
|
|
* eb, the lockdep key is determined by the btrfs_root it belongs to and
|
|
* the level the eb occupies in the tree.
|
|
*
|
|
* Different roots are used for different purposes and may nest inside each
|
|
* other and they require separate keysets. As lockdep keys should be
|
|
* static, assign keysets according to the purpose of the root as indicated
|
|
* by btrfs_root->objectid. This ensures that all special purpose roots
|
|
* have separate keysets.
|
|
*
|
|
* Lock-nesting across peer nodes is always done with the immediate parent
|
|
* node locked thus preventing deadlock. As lockdep doesn't know this, use
|
|
* subclass to avoid triggering lockdep warning in such cases.
|
|
*
|
|
* The key is set by the readpage_end_io_hook after the buffer has passed
|
|
* csum validation but before the pages are unlocked. It is also set by
|
|
* btrfs_init_new_buffer on freshly allocated blocks.
|
|
*
|
|
* We also add a check to make sure the highest level of the tree is the
|
|
* same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
|
|
* needs update as well.
|
|
*/
|
|
#ifdef CONFIG_DEBUG_LOCK_ALLOC
|
|
# if BTRFS_MAX_LEVEL != 8
|
|
# error
|
|
# endif
|
|
|
|
static struct btrfs_lockdep_keyset {
|
|
u64 id; /* root objectid */
|
|
const char *name_stem; /* lock name stem */
|
|
char names[BTRFS_MAX_LEVEL + 1][20];
|
|
struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
|
|
} btrfs_lockdep_keysets[] = {
|
|
{ .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
|
|
{ .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
|
|
{ .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
|
|
{ .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
|
|
{ .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
|
|
{ .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
|
|
{ .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
|
|
{ .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
|
|
{ .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
|
|
{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
|
|
{ .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
|
|
{ .id = 0, .name_stem = "tree" },
|
|
};
|
|
|
|
void __init btrfs_init_lockdep(void)
|
|
{
|
|
int i, j;
|
|
|
|
/* initialize lockdep class names */
|
|
for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
|
|
struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
|
|
|
|
for (j = 0; j < ARRAY_SIZE(ks->names); j++)
|
|
snprintf(ks->names[j], sizeof(ks->names[j]),
|
|
"btrfs-%s-%02d", ks->name_stem, j);
|
|
}
|
|
}
|
|
|
|
void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
|
|
int level)
|
|
{
|
|
struct btrfs_lockdep_keyset *ks;
|
|
|
|
BUG_ON(level >= ARRAY_SIZE(ks->keys));
|
|
|
|
/* find the matching keyset, id 0 is the default entry */
|
|
for (ks = btrfs_lockdep_keysets; ks->id; ks++)
|
|
if (ks->id == objectid)
|
|
break;
|
|
|
|
lockdep_set_class_and_name(&eb->lock,
|
|
&ks->keys[level], ks->names[level]);
|
|
}
|
|
|
|
#endif
|
|
|
|
/*
|
|
* extents on the btree inode are pretty simple, there's one extent
|
|
* that covers the entire device
|
|
*/
|
|
static struct extent_map *btree_get_extent(struct inode *inode,
|
|
struct page *page, size_t pg_offset, u64 start, u64 len,
|
|
int create)
|
|
{
|
|
struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
|
|
struct extent_map *em;
|
|
int ret;
|
|
|
|
read_lock(&em_tree->lock);
|
|
em = lookup_extent_mapping(em_tree, start, len);
|
|
if (em) {
|
|
em->bdev =
|
|
BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
|
|
read_unlock(&em_tree->lock);
|
|
goto out;
|
|
}
|
|
read_unlock(&em_tree->lock);
|
|
|
|
em = alloc_extent_map();
|
|
if (!em) {
|
|
em = ERR_PTR(-ENOMEM);
|
|
goto out;
|
|
}
|
|
em->start = 0;
|
|
em->len = (u64)-1;
|
|
em->block_len = (u64)-1;
|
|
em->block_start = 0;
|
|
em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
|
|
|
|
write_lock(&em_tree->lock);
|
|
ret = add_extent_mapping(em_tree, em, 0);
|
|
if (ret == -EEXIST) {
|
|
free_extent_map(em);
|
|
em = lookup_extent_mapping(em_tree, start, len);
|
|
if (!em)
|
|
em = ERR_PTR(-EIO);
|
|
} else if (ret) {
|
|
free_extent_map(em);
|
|
em = ERR_PTR(ret);
|
|
}
|
|
write_unlock(&em_tree->lock);
|
|
|
|
out:
|
|
return em;
|
|
}
|
|
|
|
u32 btrfs_csum_data(char *data, u32 seed, size_t len)
|
|
{
|
|
return btrfs_crc32c(seed, data, len);
|
|
}
|
|
|
|
void btrfs_csum_final(u32 crc, char *result)
|
|
{
|
|
put_unaligned_le32(~crc, result);
|
|
}
|
|
|
|
/*
|
|
* compute the csum for a btree block, and either verify it or write it
|
|
* into the csum field of the block.
|
|
*/
|
|
static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
|
|
int verify)
|
|
{
|
|
u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
|
|
char *result = NULL;
|
|
unsigned long len;
|
|
unsigned long cur_len;
|
|
unsigned long offset = BTRFS_CSUM_SIZE;
|
|
char *kaddr;
|
|
unsigned long map_start;
|
|
unsigned long map_len;
|
|
int err;
|
|
u32 crc = ~(u32)0;
|
|
unsigned long inline_result;
|
|
|
|
len = buf->len - offset;
|
|
while (len > 0) {
|
|
err = map_private_extent_buffer(buf, offset, 32,
|
|
&kaddr, &map_start, &map_len);
|
|
if (err)
|
|
return 1;
|
|
cur_len = min(len, map_len - (offset - map_start));
|
|
crc = btrfs_csum_data(kaddr + offset - map_start,
|
|
crc, cur_len);
|
|
len -= cur_len;
|
|
offset += cur_len;
|
|
}
|
|
if (csum_size > sizeof(inline_result)) {
|
|
result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
|
|
if (!result)
|
|
return 1;
|
|
} else {
|
|
result = (char *)&inline_result;
|
|
}
|
|
|
|
btrfs_csum_final(crc, result);
|
|
|
|
if (verify) {
|
|
if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
|
|
u32 val;
|
|
u32 found = 0;
|
|
memcpy(&found, result, csum_size);
|
|
|
|
read_extent_buffer(buf, &val, 0, csum_size);
|
|
printk_ratelimited(KERN_INFO
|
|
"BTRFS: %s checksum verify failed on %llu wanted %X found %X "
|
|
"level %d\n",
|
|
root->fs_info->sb->s_id, buf->start,
|
|
val, found, btrfs_header_level(buf));
|
|
if (result != (char *)&inline_result)
|
|
kfree(result);
|
|
return 1;
|
|
}
|
|
} else {
|
|
write_extent_buffer(buf, result, 0, csum_size);
|
|
}
|
|
if (result != (char *)&inline_result)
|
|
kfree(result);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* we can't consider a given block up to date unless the transid of the
|
|
* block matches the transid in the parent node's pointer. This is how we
|
|
* detect blocks that either didn't get written at all or got written
|
|
* in the wrong place.
|
|
*/
|
|
static int verify_parent_transid(struct extent_io_tree *io_tree,
|
|
struct extent_buffer *eb, u64 parent_transid,
|
|
int atomic)
|
|
{
|
|
struct extent_state *cached_state = NULL;
|
|
int ret;
|
|
bool need_lock = (current->journal_info ==
|
|
(void *)BTRFS_SEND_TRANS_STUB);
|
|
|
|
if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
|
|
return 0;
|
|
|
|
if (atomic)
|
|
return -EAGAIN;
|
|
|
|
if (need_lock) {
|
|
btrfs_tree_read_lock(eb);
|
|
btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
|
|
}
|
|
|
|
lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
|
|
0, &cached_state);
|
|
if (extent_buffer_uptodate(eb) &&
|
|
btrfs_header_generation(eb) == parent_transid) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
printk_ratelimited("parent transid verify failed on %llu wanted %llu "
|
|
"found %llu\n",
|
|
eb->start, parent_transid, btrfs_header_generation(eb));
|
|
ret = 1;
|
|
|
|
/*
|
|
* Things reading via commit roots that don't have normal protection,
|
|
* like send, can have a really old block in cache that may point at a
|
|
* block that has been free'd and re-allocated. So don't clear uptodate
|
|
* if we find an eb that is under IO (dirty/writeback) because we could
|
|
* end up reading in the stale data and then writing it back out and
|
|
* making everybody very sad.
|
|
*/
|
|
if (!extent_buffer_under_io(eb))
|
|
clear_extent_buffer_uptodate(eb);
|
|
out:
|
|
unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
|
|
&cached_state, GFP_NOFS);
|
|
if (need_lock)
|
|
btrfs_tree_read_unlock_blocking(eb);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Return 0 if the superblock checksum type matches the checksum value of that
|
|
* algorithm. Pass the raw disk superblock data.
|
|
*/
|
|
static int btrfs_check_super_csum(char *raw_disk_sb)
|
|
{
|
|
struct btrfs_super_block *disk_sb =
|
|
(struct btrfs_super_block *)raw_disk_sb;
|
|
u16 csum_type = btrfs_super_csum_type(disk_sb);
|
|
int ret = 0;
|
|
|
|
if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
|
|
u32 crc = ~(u32)0;
|
|
const int csum_size = sizeof(crc);
|
|
char result[csum_size];
|
|
|
|
/*
|
|
* The super_block structure does not span the whole
|
|
* BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
|
|
* is filled with zeros and is included in the checkum.
|
|
*/
|
|
crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
|
|
crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
|
|
btrfs_csum_final(crc, result);
|
|
|
|
if (memcmp(raw_disk_sb, result, csum_size))
|
|
ret = 1;
|
|
|
|
if (ret && btrfs_super_generation(disk_sb) < 10) {
|
|
printk(KERN_WARNING
|
|
"BTRFS: super block crcs don't match, older mkfs detected\n");
|
|
ret = 0;
|
|
}
|
|
}
|
|
|
|
if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
|
|
printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
|
|
csum_type);
|
|
ret = 1;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* helper to read a given tree block, doing retries as required when
|
|
* the checksums don't match and we have alternate mirrors to try.
|
|
*/
|
|
static int btree_read_extent_buffer_pages(struct btrfs_root *root,
|
|
struct extent_buffer *eb,
|
|
u64 start, u64 parent_transid)
|
|
{
|
|
struct extent_io_tree *io_tree;
|
|
int failed = 0;
|
|
int ret;
|
|
int num_copies = 0;
|
|
int mirror_num = 0;
|
|
int failed_mirror = 0;
|
|
|
|
clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
|
|
io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
|
|
while (1) {
|
|
ret = read_extent_buffer_pages(io_tree, eb, start,
|
|
WAIT_COMPLETE,
|
|
btree_get_extent, mirror_num);
|
|
if (!ret) {
|
|
if (!verify_parent_transid(io_tree, eb,
|
|
parent_transid, 0))
|
|
break;
|
|
else
|
|
ret = -EIO;
|
|
}
|
|
|
|
/*
|
|
* This buffer's crc is fine, but its contents are corrupted, so
|
|
* there is no reason to read the other copies, they won't be
|
|
* any less wrong.
|
|
*/
|
|
if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
|
|
break;
|
|
|
|
num_copies = btrfs_num_copies(root->fs_info,
|
|
eb->start, eb->len);
|
|
if (num_copies == 1)
|
|
break;
|
|
|
|
if (!failed_mirror) {
|
|
failed = 1;
|
|
failed_mirror = eb->read_mirror;
|
|
}
|
|
|
|
mirror_num++;
|
|
if (mirror_num == failed_mirror)
|
|
mirror_num++;
|
|
|
|
if (mirror_num > num_copies)
|
|
break;
|
|
}
|
|
|
|
if (failed && !ret && failed_mirror)
|
|
repair_eb_io_failure(root, eb, failed_mirror);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* checksum a dirty tree block before IO. This has extra checks to make sure
|
|
* we only fill in the checksum field in the first page of a multi-page block
|
|
*/
|
|
|
|
static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
|
|
{
|
|
u64 start = page_offset(page);
|
|
u64 found_start;
|
|
struct extent_buffer *eb;
|
|
|
|
eb = (struct extent_buffer *)page->private;
|
|
if (page != eb->pages[0])
|
|
return 0;
|
|
found_start = btrfs_header_bytenr(eb);
|
|
if (WARN_ON(found_start != start || !PageUptodate(page)))
|
|
return 0;
|
|
csum_tree_block(root, eb, 0);
|
|
return 0;
|
|
}
|
|
|
|
static int check_tree_block_fsid(struct btrfs_root *root,
|
|
struct extent_buffer *eb)
|
|
{
|
|
struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
|
|
u8 fsid[BTRFS_UUID_SIZE];
|
|
int ret = 1;
|
|
|
|
read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
|
|
while (fs_devices) {
|
|
if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
|
|
ret = 0;
|
|
break;
|
|
}
|
|
fs_devices = fs_devices->seed;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
#define CORRUPT(reason, eb, root, slot) \
|
|
btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
|
|
"root=%llu, slot=%d", reason, \
|
|
btrfs_header_bytenr(eb), root->objectid, slot)
|
|
|
|
static noinline int check_leaf(struct btrfs_root *root,
|
|
struct extent_buffer *leaf)
|
|
{
|
|
struct btrfs_key key;
|
|
struct btrfs_key leaf_key;
|
|
u32 nritems = btrfs_header_nritems(leaf);
|
|
int slot;
|
|
|
|
if (nritems == 0)
|
|
return 0;
|
|
|
|
/* Check the 0 item */
|
|
if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
|
|
BTRFS_LEAF_DATA_SIZE(root)) {
|
|
CORRUPT("invalid item offset size pair", leaf, root, 0);
|
|
return -EIO;
|
|
}
|
|
|
|
/*
|
|
* Check to make sure each items keys are in the correct order and their
|
|
* offsets make sense. We only have to loop through nritems-1 because
|
|
* we check the current slot against the next slot, which verifies the
|
|
* next slot's offset+size makes sense and that the current's slot
|
|
* offset is correct.
|
|
*/
|
|
for (slot = 0; slot < nritems - 1; slot++) {
|
|
btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
|
|
btrfs_item_key_to_cpu(leaf, &key, slot + 1);
|
|
|
|
/* Make sure the keys are in the right order */
|
|
if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
|
|
CORRUPT("bad key order", leaf, root, slot);
|
|
return -EIO;
|
|
}
|
|
|
|
/*
|
|
* Make sure the offset and ends are right, remember that the
|
|
* item data starts at the end of the leaf and grows towards the
|
|
* front.
|
|
*/
|
|
if (btrfs_item_offset_nr(leaf, slot) !=
|
|
btrfs_item_end_nr(leaf, slot + 1)) {
|
|
CORRUPT("slot offset bad", leaf, root, slot);
|
|
return -EIO;
|
|
}
|
|
|
|
/*
|
|
* Check to make sure that we don't point outside of the leaf,
|
|
* just incase all the items are consistent to eachother, but
|
|
* all point outside of the leaf.
|
|
*/
|
|
if (btrfs_item_end_nr(leaf, slot) >
|
|
BTRFS_LEAF_DATA_SIZE(root)) {
|
|
CORRUPT("slot end outside of leaf", leaf, root, slot);
|
|
return -EIO;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
|
|
u64 phy_offset, struct page *page,
|
|
u64 start, u64 end, int mirror)
|
|
{
|
|
u64 found_start;
|
|
int found_level;
|
|
struct extent_buffer *eb;
|
|
struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
|
|
int ret = 0;
|
|
int reads_done;
|
|
|
|
if (!page->private)
|
|
goto out;
|
|
|
|
eb = (struct extent_buffer *)page->private;
|
|
|
|
/* the pending IO might have been the only thing that kept this buffer
|
|
* in memory. Make sure we have a ref for all this other checks
|
|
*/
|
|
extent_buffer_get(eb);
|
|
|
|
reads_done = atomic_dec_and_test(&eb->io_pages);
|
|
if (!reads_done)
|
|
goto err;
|
|
|
|
eb->read_mirror = mirror;
|
|
if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
|
|
ret = -EIO;
|
|
goto err;
|
|
}
|
|
|
|
found_start = btrfs_header_bytenr(eb);
|
|
if (found_start != eb->start) {
|
|
printk_ratelimited(KERN_INFO "BTRFS: bad tree block start "
|
|
"%llu %llu\n",
|
|
found_start, eb->start);
|
|
ret = -EIO;
|
|
goto err;
|
|
}
|
|
if (check_tree_block_fsid(root, eb)) {
|
|
printk_ratelimited(KERN_INFO "BTRFS: bad fsid on block %llu\n",
|
|
eb->start);
|
|
ret = -EIO;
|
|
goto err;
|
|
}
|
|
found_level = btrfs_header_level(eb);
|
|
if (found_level >= BTRFS_MAX_LEVEL) {
|
|
btrfs_info(root->fs_info, "bad tree block level %d",
|
|
(int)btrfs_header_level(eb));
|
|
ret = -EIO;
|
|
goto err;
|
|
}
|
|
|
|
btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
|
|
eb, found_level);
|
|
|
|
ret = csum_tree_block(root, eb, 1);
|
|
if (ret) {
|
|
ret = -EIO;
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
* If this is a leaf block and it is corrupt, set the corrupt bit so
|
|
* that we don't try and read the other copies of this block, just
|
|
* return -EIO.
|
|
*/
|
|
if (found_level == 0 && check_leaf(root, eb)) {
|
|
set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
|
|
ret = -EIO;
|
|
}
|
|
|
|
if (!ret)
|
|
set_extent_buffer_uptodate(eb);
|
|
err:
|
|
if (reads_done &&
|
|
test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
|
|
btree_readahead_hook(root, eb, eb->start, ret);
|
|
|
|
if (ret) {
|
|
/*
|
|
* our io error hook is going to dec the io pages
|
|
* again, we have to make sure it has something
|
|
* to decrement
|
|
*/
|
|
atomic_inc(&eb->io_pages);
|
|
clear_extent_buffer_uptodate(eb);
|
|
}
|
|
free_extent_buffer(eb);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static int btree_io_failed_hook(struct page *page, int failed_mirror)
|
|
{
|
|
struct extent_buffer *eb;
|
|
struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
|
|
|
|
eb = (struct extent_buffer *)page->private;
|
|
set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
|
|
eb->read_mirror = failed_mirror;
|
|
atomic_dec(&eb->io_pages);
|
|
if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
|
|
btree_readahead_hook(root, eb, eb->start, -EIO);
|
|
return -EIO; /* we fixed nothing */
|
|
}
|
|
|
|
static void end_workqueue_bio(struct bio *bio, int err)
|
|
{
|
|
struct end_io_wq *end_io_wq = bio->bi_private;
|
|
struct btrfs_fs_info *fs_info;
|
|
|
|
fs_info = end_io_wq->info;
|
|
end_io_wq->error = err;
|
|
btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
|
|
|
|
if (bio->bi_rw & REQ_WRITE) {
|
|
if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
|
|
btrfs_queue_work(fs_info->endio_meta_write_workers,
|
|
&end_io_wq->work);
|
|
else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
|
|
btrfs_queue_work(fs_info->endio_freespace_worker,
|
|
&end_io_wq->work);
|
|
else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
|
|
btrfs_queue_work(fs_info->endio_raid56_workers,
|
|
&end_io_wq->work);
|
|
else
|
|
btrfs_queue_work(fs_info->endio_write_workers,
|
|
&end_io_wq->work);
|
|
} else {
|
|
if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
|
|
btrfs_queue_work(fs_info->endio_raid56_workers,
|
|
&end_io_wq->work);
|
|
else if (end_io_wq->metadata)
|
|
btrfs_queue_work(fs_info->endio_meta_workers,
|
|
&end_io_wq->work);
|
|
else
|
|
btrfs_queue_work(fs_info->endio_workers,
|
|
&end_io_wq->work);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* For the metadata arg you want
|
|
*
|
|
* 0 - if data
|
|
* 1 - if normal metadta
|
|
* 2 - if writing to the free space cache area
|
|
* 3 - raid parity work
|
|
*/
|
|
int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
|
|
int metadata)
|
|
{
|
|
struct end_io_wq *end_io_wq;
|
|
end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
|
|
if (!end_io_wq)
|
|
return -ENOMEM;
|
|
|
|
end_io_wq->private = bio->bi_private;
|
|
end_io_wq->end_io = bio->bi_end_io;
|
|
end_io_wq->info = info;
|
|
end_io_wq->error = 0;
|
|
end_io_wq->bio = bio;
|
|
end_io_wq->metadata = metadata;
|
|
|
|
bio->bi_private = end_io_wq;
|
|
bio->bi_end_io = end_workqueue_bio;
|
|
return 0;
|
|
}
|
|
|
|
unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
|
|
{
|
|
unsigned long limit = min_t(unsigned long,
|
|
info->thread_pool_size,
|
|
info->fs_devices->open_devices);
|
|
return 256 * limit;
|
|
}
|
|
|
|
static void run_one_async_start(struct btrfs_work *work)
|
|
{
|
|
struct async_submit_bio *async;
|
|
int ret;
|
|
|
|
async = container_of(work, struct async_submit_bio, work);
|
|
ret = async->submit_bio_start(async->inode, async->rw, async->bio,
|
|
async->mirror_num, async->bio_flags,
|
|
async->bio_offset);
|
|
if (ret)
|
|
async->error = ret;
|
|
}
|
|
|
|
static void run_one_async_done(struct btrfs_work *work)
|
|
{
|
|
struct btrfs_fs_info *fs_info;
|
|
struct async_submit_bio *async;
|
|
int limit;
|
|
|
|
async = container_of(work, struct async_submit_bio, work);
|
|
fs_info = BTRFS_I(async->inode)->root->fs_info;
|
|
|
|
limit = btrfs_async_submit_limit(fs_info);
|
|
limit = limit * 2 / 3;
|
|
|
|
if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
|
|
waitqueue_active(&fs_info->async_submit_wait))
|
|
wake_up(&fs_info->async_submit_wait);
|
|
|
|
/* If an error occured we just want to clean up the bio and move on */
|
|
if (async->error) {
|
|
bio_endio(async->bio, async->error);
|
|
return;
|
|
}
|
|
|
|
async->submit_bio_done(async->inode, async->rw, async->bio,
|
|
async->mirror_num, async->bio_flags,
|
|
async->bio_offset);
|
|
}
|
|
|
|
static void run_one_async_free(struct btrfs_work *work)
|
|
{
|
|
struct async_submit_bio *async;
|
|
|
|
async = container_of(work, struct async_submit_bio, work);
|
|
kfree(async);
|
|
}
|
|
|
|
int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
|
|
int rw, struct bio *bio, int mirror_num,
|
|
unsigned long bio_flags,
|
|
u64 bio_offset,
|
|
extent_submit_bio_hook_t *submit_bio_start,
|
|
extent_submit_bio_hook_t *submit_bio_done)
|
|
{
|
|
struct async_submit_bio *async;
|
|
|
|
async = kmalloc(sizeof(*async), GFP_NOFS);
|
|
if (!async)
|
|
return -ENOMEM;
|
|
|
|
async->inode = inode;
|
|
async->rw = rw;
|
|
async->bio = bio;
|
|
async->mirror_num = mirror_num;
|
|
async->submit_bio_start = submit_bio_start;
|
|
async->submit_bio_done = submit_bio_done;
|
|
|
|
btrfs_init_work(&async->work, run_one_async_start,
|
|
run_one_async_done, run_one_async_free);
|
|
|
|
async->bio_flags = bio_flags;
|
|
async->bio_offset = bio_offset;
|
|
|
|
async->error = 0;
|
|
|
|
atomic_inc(&fs_info->nr_async_submits);
|
|
|
|
if (rw & REQ_SYNC)
|
|
btrfs_set_work_high_priority(&async->work);
|
|
|
|
btrfs_queue_work(fs_info->workers, &async->work);
|
|
|
|
while (atomic_read(&fs_info->async_submit_draining) &&
|
|
atomic_read(&fs_info->nr_async_submits)) {
|
|
wait_event(fs_info->async_submit_wait,
|
|
(atomic_read(&fs_info->nr_async_submits) == 0));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btree_csum_one_bio(struct bio *bio)
|
|
{
|
|
struct bio_vec *bvec;
|
|
struct btrfs_root *root;
|
|
int i, ret = 0;
|
|
|
|
bio_for_each_segment_all(bvec, bio, i) {
|
|
root = BTRFS_I(bvec->bv_page->mapping->host)->root;
|
|
ret = csum_dirty_buffer(root, bvec->bv_page);
|
|
if (ret)
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int __btree_submit_bio_start(struct inode *inode, int rw,
|
|
struct bio *bio, int mirror_num,
|
|
unsigned long bio_flags,
|
|
u64 bio_offset)
|
|
{
|
|
/*
|
|
* when we're called for a write, we're already in the async
|
|
* submission context. Just jump into btrfs_map_bio
|
|
*/
|
|
return btree_csum_one_bio(bio);
|
|
}
|
|
|
|
static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
|
|
int mirror_num, unsigned long bio_flags,
|
|
u64 bio_offset)
|
|
{
|
|
int ret;
|
|
|
|
/*
|
|
* when we're called for a write, we're already in the async
|
|
* submission context. Just jump into btrfs_map_bio
|
|
*/
|
|
ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
|
|
if (ret)
|
|
bio_endio(bio, ret);
|
|
return ret;
|
|
}
|
|
|
|
static int check_async_write(struct inode *inode, unsigned long bio_flags)
|
|
{
|
|
if (bio_flags & EXTENT_BIO_TREE_LOG)
|
|
return 0;
|
|
#ifdef CONFIG_X86
|
|
if (cpu_has_xmm4_2)
|
|
return 0;
|
|
#endif
|
|
return 1;
|
|
}
|
|
|
|
static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
|
|
int mirror_num, unsigned long bio_flags,
|
|
u64 bio_offset)
|
|
{
|
|
int async = check_async_write(inode, bio_flags);
|
|
int ret;
|
|
|
|
if (!(rw & REQ_WRITE)) {
|
|
/*
|
|
* called for a read, do the setup so that checksum validation
|
|
* can happen in the async kernel threads
|
|
*/
|
|
ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
|
|
bio, 1);
|
|
if (ret)
|
|
goto out_w_error;
|
|
ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
|
|
mirror_num, 0);
|
|
} else if (!async) {
|
|
ret = btree_csum_one_bio(bio);
|
|
if (ret)
|
|
goto out_w_error;
|
|
ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
|
|
mirror_num, 0);
|
|
} else {
|
|
/*
|
|
* kthread helpers are used to submit writes so that
|
|
* checksumming can happen in parallel across all CPUs
|
|
*/
|
|
ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
|
|
inode, rw, bio, mirror_num, 0,
|
|
bio_offset,
|
|
__btree_submit_bio_start,
|
|
__btree_submit_bio_done);
|
|
}
|
|
|
|
if (ret) {
|
|
out_w_error:
|
|
bio_endio(bio, ret);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_MIGRATION
|
|
static int btree_migratepage(struct address_space *mapping,
|
|
struct page *newpage, struct page *page,
|
|
enum migrate_mode mode)
|
|
{
|
|
/*
|
|
* we can't safely write a btree page from here,
|
|
* we haven't done the locking hook
|
|
*/
|
|
if (PageDirty(page))
|
|
return -EAGAIN;
|
|
/*
|
|
* Buffers may be managed in a filesystem specific way.
|
|
* We must have no buffers or drop them.
|
|
*/
|
|
if (page_has_private(page) &&
|
|
!try_to_release_page(page, GFP_KERNEL))
|
|
return -EAGAIN;
|
|
return migrate_page(mapping, newpage, page, mode);
|
|
}
|
|
#endif
|
|
|
|
|
|
static int btree_writepages(struct address_space *mapping,
|
|
struct writeback_control *wbc)
|
|
{
|
|
struct btrfs_fs_info *fs_info;
|
|
int ret;
|
|
|
|
if (wbc->sync_mode == WB_SYNC_NONE) {
|
|
|
|
if (wbc->for_kupdate)
|
|
return 0;
|
|
|
|
fs_info = BTRFS_I(mapping->host)->root->fs_info;
|
|
/* this is a bit racy, but that's ok */
|
|
ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
|
|
BTRFS_DIRTY_METADATA_THRESH);
|
|
if (ret < 0)
|
|
return 0;
|
|
}
|
|
return btree_write_cache_pages(mapping, wbc);
|
|
}
|
|
|
|
static int btree_readpage(struct file *file, struct page *page)
|
|
{
|
|
struct extent_io_tree *tree;
|
|
tree = &BTRFS_I(page->mapping->host)->io_tree;
|
|
return extent_read_full_page(tree, page, btree_get_extent, 0);
|
|
}
|
|
|
|
static int btree_releasepage(struct page *page, gfp_t gfp_flags)
|
|
{
|
|
if (PageWriteback(page) || PageDirty(page))
|
|
return 0;
|
|
|
|
return try_release_extent_buffer(page);
|
|
}
|
|
|
|
static void btree_invalidatepage(struct page *page, unsigned int offset,
|
|
unsigned int length)
|
|
{
|
|
struct extent_io_tree *tree;
|
|
tree = &BTRFS_I(page->mapping->host)->io_tree;
|
|
extent_invalidatepage(tree, page, offset);
|
|
btree_releasepage(page, GFP_NOFS);
|
|
if (PagePrivate(page)) {
|
|
btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
|
|
"page private not zero on page %llu",
|
|
(unsigned long long)page_offset(page));
|
|
ClearPagePrivate(page);
|
|
set_page_private(page, 0);
|
|
page_cache_release(page);
|
|
}
|
|
}
|
|
|
|
static int btree_set_page_dirty(struct page *page)
|
|
{
|
|
#ifdef DEBUG
|
|
struct extent_buffer *eb;
|
|
|
|
BUG_ON(!PagePrivate(page));
|
|
eb = (struct extent_buffer *)page->private;
|
|
BUG_ON(!eb);
|
|
BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
|
|
BUG_ON(!atomic_read(&eb->refs));
|
|
btrfs_assert_tree_locked(eb);
|
|
#endif
|
|
return __set_page_dirty_nobuffers(page);
|
|
}
|
|
|
|
static const struct address_space_operations btree_aops = {
|
|
.readpage = btree_readpage,
|
|
.writepages = btree_writepages,
|
|
.releasepage = btree_releasepage,
|
|
.invalidatepage = btree_invalidatepage,
|
|
#ifdef CONFIG_MIGRATION
|
|
.migratepage = btree_migratepage,
|
|
#endif
|
|
.set_page_dirty = btree_set_page_dirty,
|
|
};
|
|
|
|
int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
|
|
u64 parent_transid)
|
|
{
|
|
struct extent_buffer *buf = NULL;
|
|
struct inode *btree_inode = root->fs_info->btree_inode;
|
|
int ret = 0;
|
|
|
|
buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
|
|
if (!buf)
|
|
return 0;
|
|
read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
|
|
buf, 0, WAIT_NONE, btree_get_extent, 0);
|
|
free_extent_buffer(buf);
|
|
return ret;
|
|
}
|
|
|
|
int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
|
|
int mirror_num, struct extent_buffer **eb)
|
|
{
|
|
struct extent_buffer *buf = NULL;
|
|
struct inode *btree_inode = root->fs_info->btree_inode;
|
|
struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
|
|
int ret;
|
|
|
|
buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
|
|
if (!buf)
|
|
return 0;
|
|
|
|
set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
|
|
|
|
ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
|
|
btree_get_extent, mirror_num);
|
|
if (ret) {
|
|
free_extent_buffer(buf);
|
|
return ret;
|
|
}
|
|
|
|
if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
|
|
free_extent_buffer(buf);
|
|
return -EIO;
|
|
} else if (extent_buffer_uptodate(buf)) {
|
|
*eb = buf;
|
|
} else {
|
|
free_extent_buffer(buf);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
|
|
u64 bytenr, u32 blocksize)
|
|
{
|
|
return find_extent_buffer(root->fs_info, bytenr);
|
|
}
|
|
|
|
struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
|
|
u64 bytenr, u32 blocksize)
|
|
{
|
|
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
|
|
if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state)))
|
|
return alloc_test_extent_buffer(root->fs_info, bytenr,
|
|
blocksize);
|
|
#endif
|
|
return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
|
|
}
|
|
|
|
|
|
int btrfs_write_tree_block(struct extent_buffer *buf)
|
|
{
|
|
return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
|
|
buf->start + buf->len - 1);
|
|
}
|
|
|
|
int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
|
|
{
|
|
return filemap_fdatawait_range(buf->pages[0]->mapping,
|
|
buf->start, buf->start + buf->len - 1);
|
|
}
|
|
|
|
struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
|
|
u32 blocksize, u64 parent_transid)
|
|
{
|
|
struct extent_buffer *buf = NULL;
|
|
int ret;
|
|
|
|
buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
|
|
if (!buf)
|
|
return NULL;
|
|
|
|
ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
|
|
if (ret) {
|
|
free_extent_buffer(buf);
|
|
return NULL;
|
|
}
|
|
return buf;
|
|
|
|
}
|
|
|
|
void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
|
|
struct extent_buffer *buf)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
|
|
if (btrfs_header_generation(buf) ==
|
|
fs_info->running_transaction->transid) {
|
|
btrfs_assert_tree_locked(buf);
|
|
|
|
if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
|
|
__percpu_counter_add(&fs_info->dirty_metadata_bytes,
|
|
-buf->len,
|
|
fs_info->dirty_metadata_batch);
|
|
/* ugh, clear_extent_buffer_dirty needs to lock the page */
|
|
btrfs_set_lock_blocking(buf);
|
|
clear_extent_buffer_dirty(buf);
|
|
}
|
|
}
|
|
}
|
|
|
|
static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
|
|
{
|
|
struct btrfs_subvolume_writers *writers;
|
|
int ret;
|
|
|
|
writers = kmalloc(sizeof(*writers), GFP_NOFS);
|
|
if (!writers)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
ret = percpu_counter_init(&writers->counter, 0);
|
|
if (ret < 0) {
|
|
kfree(writers);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
init_waitqueue_head(&writers->wait);
|
|
return writers;
|
|
}
|
|
|
|
static void
|
|
btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
|
|
{
|
|
percpu_counter_destroy(&writers->counter);
|
|
kfree(writers);
|
|
}
|
|
|
|
static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
|
|
u32 stripesize, struct btrfs_root *root,
|
|
struct btrfs_fs_info *fs_info,
|
|
u64 objectid)
|
|
{
|
|
root->node = NULL;
|
|
root->commit_root = NULL;
|
|
root->sectorsize = sectorsize;
|
|
root->nodesize = nodesize;
|
|
root->leafsize = leafsize;
|
|
root->stripesize = stripesize;
|
|
root->state = 0;
|
|
root->orphan_cleanup_state = 0;
|
|
|
|
root->objectid = objectid;
|
|
root->last_trans = 0;
|
|
root->highest_objectid = 0;
|
|
root->nr_delalloc_inodes = 0;
|
|
root->nr_ordered_extents = 0;
|
|
root->name = NULL;
|
|
root->inode_tree = RB_ROOT;
|
|
INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
|
|
root->block_rsv = NULL;
|
|
root->orphan_block_rsv = NULL;
|
|
|
|
INIT_LIST_HEAD(&root->dirty_list);
|
|
INIT_LIST_HEAD(&root->root_list);
|
|
INIT_LIST_HEAD(&root->delalloc_inodes);
|
|
INIT_LIST_HEAD(&root->delalloc_root);
|
|
INIT_LIST_HEAD(&root->ordered_extents);
|
|
INIT_LIST_HEAD(&root->ordered_root);
|
|
INIT_LIST_HEAD(&root->logged_list[0]);
|
|
INIT_LIST_HEAD(&root->logged_list[1]);
|
|
spin_lock_init(&root->orphan_lock);
|
|
spin_lock_init(&root->inode_lock);
|
|
spin_lock_init(&root->delalloc_lock);
|
|
spin_lock_init(&root->ordered_extent_lock);
|
|
spin_lock_init(&root->accounting_lock);
|
|
spin_lock_init(&root->log_extents_lock[0]);
|
|
spin_lock_init(&root->log_extents_lock[1]);
|
|
mutex_init(&root->objectid_mutex);
|
|
mutex_init(&root->log_mutex);
|
|
mutex_init(&root->ordered_extent_mutex);
|
|
mutex_init(&root->delalloc_mutex);
|
|
init_waitqueue_head(&root->log_writer_wait);
|
|
init_waitqueue_head(&root->log_commit_wait[0]);
|
|
init_waitqueue_head(&root->log_commit_wait[1]);
|
|
INIT_LIST_HEAD(&root->log_ctxs[0]);
|
|
INIT_LIST_HEAD(&root->log_ctxs[1]);
|
|
atomic_set(&root->log_commit[0], 0);
|
|
atomic_set(&root->log_commit[1], 0);
|
|
atomic_set(&root->log_writers, 0);
|
|
atomic_set(&root->log_batch, 0);
|
|
atomic_set(&root->orphan_inodes, 0);
|
|
atomic_set(&root->refs, 1);
|
|
atomic_set(&root->will_be_snapshoted, 0);
|
|
root->log_transid = 0;
|
|
root->log_transid_committed = -1;
|
|
root->last_log_commit = 0;
|
|
if (fs_info)
|
|
extent_io_tree_init(&root->dirty_log_pages,
|
|
fs_info->btree_inode->i_mapping);
|
|
|
|
memset(&root->root_key, 0, sizeof(root->root_key));
|
|
memset(&root->root_item, 0, sizeof(root->root_item));
|
|
memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
|
|
memset(&root->root_kobj, 0, sizeof(root->root_kobj));
|
|
if (fs_info)
|
|
root->defrag_trans_start = fs_info->generation;
|
|
else
|
|
root->defrag_trans_start = 0;
|
|
init_completion(&root->kobj_unregister);
|
|
root->root_key.objectid = objectid;
|
|
root->anon_dev = 0;
|
|
|
|
spin_lock_init(&root->root_item_lock);
|
|
}
|
|
|
|
static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
|
|
if (root)
|
|
root->fs_info = fs_info;
|
|
return root;
|
|
}
|
|
|
|
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
|
|
/* Should only be used by the testing infrastructure */
|
|
struct btrfs_root *btrfs_alloc_dummy_root(void)
|
|
{
|
|
struct btrfs_root *root;
|
|
|
|
root = btrfs_alloc_root(NULL);
|
|
if (!root)
|
|
return ERR_PTR(-ENOMEM);
|
|
__setup_root(4096, 4096, 4096, 4096, root, NULL, 1);
|
|
set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
|
|
root->alloc_bytenr = 0;
|
|
|
|
return root;
|
|
}
|
|
#endif
|
|
|
|
struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
|
|
struct btrfs_fs_info *fs_info,
|
|
u64 objectid)
|
|
{
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_root *tree_root = fs_info->tree_root;
|
|
struct btrfs_root *root;
|
|
struct btrfs_key key;
|
|
int ret = 0;
|
|
uuid_le uuid;
|
|
|
|
root = btrfs_alloc_root(fs_info);
|
|
if (!root)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
__setup_root(tree_root->nodesize, tree_root->leafsize,
|
|
tree_root->sectorsize, tree_root->stripesize,
|
|
root, fs_info, objectid);
|
|
root->root_key.objectid = objectid;
|
|
root->root_key.type = BTRFS_ROOT_ITEM_KEY;
|
|
root->root_key.offset = 0;
|
|
|
|
leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
|
|
0, objectid, NULL, 0, 0, 0);
|
|
if (IS_ERR(leaf)) {
|
|
ret = PTR_ERR(leaf);
|
|
leaf = NULL;
|
|
goto fail;
|
|
}
|
|
|
|
memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
|
|
btrfs_set_header_bytenr(leaf, leaf->start);
|
|
btrfs_set_header_generation(leaf, trans->transid);
|
|
btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
|
|
btrfs_set_header_owner(leaf, objectid);
|
|
root->node = leaf;
|
|
|
|
write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
|
|
BTRFS_FSID_SIZE);
|
|
write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
|
|
btrfs_header_chunk_tree_uuid(leaf),
|
|
BTRFS_UUID_SIZE);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
|
|
root->commit_root = btrfs_root_node(root);
|
|
set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
|
|
|
|
root->root_item.flags = 0;
|
|
root->root_item.byte_limit = 0;
|
|
btrfs_set_root_bytenr(&root->root_item, leaf->start);
|
|
btrfs_set_root_generation(&root->root_item, trans->transid);
|
|
btrfs_set_root_level(&root->root_item, 0);
|
|
btrfs_set_root_refs(&root->root_item, 1);
|
|
btrfs_set_root_used(&root->root_item, leaf->len);
|
|
btrfs_set_root_last_snapshot(&root->root_item, 0);
|
|
btrfs_set_root_dirid(&root->root_item, 0);
|
|
uuid_le_gen(&uuid);
|
|
memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
|
|
root->root_item.drop_level = 0;
|
|
|
|
key.objectid = objectid;
|
|
key.type = BTRFS_ROOT_ITEM_KEY;
|
|
key.offset = 0;
|
|
ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
|
|
if (ret)
|
|
goto fail;
|
|
|
|
btrfs_tree_unlock(leaf);
|
|
|
|
return root;
|
|
|
|
fail:
|
|
if (leaf) {
|
|
btrfs_tree_unlock(leaf);
|
|
free_extent_buffer(root->commit_root);
|
|
free_extent_buffer(leaf);
|
|
}
|
|
kfree(root);
|
|
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
|
|
struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_root *root;
|
|
struct btrfs_root *tree_root = fs_info->tree_root;
|
|
struct extent_buffer *leaf;
|
|
|
|
root = btrfs_alloc_root(fs_info);
|
|
if (!root)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
__setup_root(tree_root->nodesize, tree_root->leafsize,
|
|
tree_root->sectorsize, tree_root->stripesize,
|
|
root, fs_info, BTRFS_TREE_LOG_OBJECTID);
|
|
|
|
root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
|
|
root->root_key.type = BTRFS_ROOT_ITEM_KEY;
|
|
root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
|
|
|
|
/*
|
|
* DON'T set REF_COWS for log trees
|
|
*
|
|
* log trees do not get reference counted because they go away
|
|
* before a real commit is actually done. They do store pointers
|
|
* to file data extents, and those reference counts still get
|
|
* updated (along with back refs to the log tree).
|
|
*/
|
|
|
|
leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
|
|
BTRFS_TREE_LOG_OBJECTID, NULL,
|
|
0, 0, 0);
|
|
if (IS_ERR(leaf)) {
|
|
kfree(root);
|
|
return ERR_CAST(leaf);
|
|
}
|
|
|
|
memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
|
|
btrfs_set_header_bytenr(leaf, leaf->start);
|
|
btrfs_set_header_generation(leaf, trans->transid);
|
|
btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
|
|
btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
|
|
root->node = leaf;
|
|
|
|
write_extent_buffer(root->node, root->fs_info->fsid,
|
|
btrfs_header_fsid(), BTRFS_FSID_SIZE);
|
|
btrfs_mark_buffer_dirty(root->node);
|
|
btrfs_tree_unlock(root->node);
|
|
return root;
|
|
}
|
|
|
|
int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
|
|
struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_root *log_root;
|
|
|
|
log_root = alloc_log_tree(trans, fs_info);
|
|
if (IS_ERR(log_root))
|
|
return PTR_ERR(log_root);
|
|
WARN_ON(fs_info->log_root_tree);
|
|
fs_info->log_root_tree = log_root;
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
struct btrfs_root *log_root;
|
|
struct btrfs_inode_item *inode_item;
|
|
|
|
log_root = alloc_log_tree(trans, root->fs_info);
|
|
if (IS_ERR(log_root))
|
|
return PTR_ERR(log_root);
|
|
|
|
log_root->last_trans = trans->transid;
|
|
log_root->root_key.offset = root->root_key.objectid;
|
|
|
|
inode_item = &log_root->root_item.inode;
|
|
btrfs_set_stack_inode_generation(inode_item, 1);
|
|
btrfs_set_stack_inode_size(inode_item, 3);
|
|
btrfs_set_stack_inode_nlink(inode_item, 1);
|
|
btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
|
|
btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
|
|
|
|
btrfs_set_root_node(&log_root->root_item, log_root->node);
|
|
|
|
WARN_ON(root->log_root);
|
|
root->log_root = log_root;
|
|
root->log_transid = 0;
|
|
root->log_transid_committed = -1;
|
|
root->last_log_commit = 0;
|
|
return 0;
|
|
}
|
|
|
|
static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
|
|
struct btrfs_key *key)
|
|
{
|
|
struct btrfs_root *root;
|
|
struct btrfs_fs_info *fs_info = tree_root->fs_info;
|
|
struct btrfs_path *path;
|
|
u64 generation;
|
|
u32 blocksize;
|
|
int ret;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
root = btrfs_alloc_root(fs_info);
|
|
if (!root) {
|
|
ret = -ENOMEM;
|
|
goto alloc_fail;
|
|
}
|
|
|
|
__setup_root(tree_root->nodesize, tree_root->leafsize,
|
|
tree_root->sectorsize, tree_root->stripesize,
|
|
root, fs_info, key->objectid);
|
|
|
|
ret = btrfs_find_root(tree_root, key, path,
|
|
&root->root_item, &root->root_key);
|
|
if (ret) {
|
|
if (ret > 0)
|
|
ret = -ENOENT;
|
|
goto find_fail;
|
|
}
|
|
|
|
generation = btrfs_root_generation(&root->root_item);
|
|
blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
|
|
root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
|
|
blocksize, generation);
|
|
if (!root->node) {
|
|
ret = -ENOMEM;
|
|
goto find_fail;
|
|
} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
|
|
ret = -EIO;
|
|
goto read_fail;
|
|
}
|
|
root->commit_root = btrfs_root_node(root);
|
|
out:
|
|
btrfs_free_path(path);
|
|
return root;
|
|
|
|
read_fail:
|
|
free_extent_buffer(root->node);
|
|
find_fail:
|
|
kfree(root);
|
|
alloc_fail:
|
|
root = ERR_PTR(ret);
|
|
goto out;
|
|
}
|
|
|
|
struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
|
|
struct btrfs_key *location)
|
|
{
|
|
struct btrfs_root *root;
|
|
|
|
root = btrfs_read_tree_root(tree_root, location);
|
|
if (IS_ERR(root))
|
|
return root;
|
|
|
|
if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
|
|
set_bit(BTRFS_ROOT_REF_COWS, &root->state);
|
|
btrfs_check_and_init_root_item(&root->root_item);
|
|
}
|
|
|
|
return root;
|
|
}
|
|
|
|
int btrfs_init_fs_root(struct btrfs_root *root)
|
|
{
|
|
int ret;
|
|
struct btrfs_subvolume_writers *writers;
|
|
|
|
root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
|
|
root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
|
|
GFP_NOFS);
|
|
if (!root->free_ino_pinned || !root->free_ino_ctl) {
|
|
ret = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
writers = btrfs_alloc_subvolume_writers();
|
|
if (IS_ERR(writers)) {
|
|
ret = PTR_ERR(writers);
|
|
goto fail;
|
|
}
|
|
root->subv_writers = writers;
|
|
|
|
btrfs_init_free_ino_ctl(root);
|
|
spin_lock_init(&root->cache_lock);
|
|
init_waitqueue_head(&root->cache_wait);
|
|
|
|
ret = get_anon_bdev(&root->anon_dev);
|
|
if (ret)
|
|
goto free_writers;
|
|
return 0;
|
|
|
|
free_writers:
|
|
btrfs_free_subvolume_writers(root->subv_writers);
|
|
fail:
|
|
kfree(root->free_ino_ctl);
|
|
kfree(root->free_ino_pinned);
|
|
return ret;
|
|
}
|
|
|
|
static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
|
|
u64 root_id)
|
|
{
|
|
struct btrfs_root *root;
|
|
|
|
spin_lock(&fs_info->fs_roots_radix_lock);
|
|
root = radix_tree_lookup(&fs_info->fs_roots_radix,
|
|
(unsigned long)root_id);
|
|
spin_unlock(&fs_info->fs_roots_radix_lock);
|
|
return root;
|
|
}
|
|
|
|
int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_root *root)
|
|
{
|
|
int ret;
|
|
|
|
ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
|
|
if (ret)
|
|
return ret;
|
|
|
|
spin_lock(&fs_info->fs_roots_radix_lock);
|
|
ret = radix_tree_insert(&fs_info->fs_roots_radix,
|
|
(unsigned long)root->root_key.objectid,
|
|
root);
|
|
if (ret == 0)
|
|
set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
|
|
spin_unlock(&fs_info->fs_roots_radix_lock);
|
|
radix_tree_preload_end();
|
|
|
|
return ret;
|
|
}
|
|
|
|
struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_key *location,
|
|
bool check_ref)
|
|
{
|
|
struct btrfs_root *root;
|
|
int ret;
|
|
|
|
if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
|
|
return fs_info->tree_root;
|
|
if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
|
|
return fs_info->extent_root;
|
|
if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
|
|
return fs_info->chunk_root;
|
|
if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
|
|
return fs_info->dev_root;
|
|
if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
|
|
return fs_info->csum_root;
|
|
if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
|
|
return fs_info->quota_root ? fs_info->quota_root :
|
|
ERR_PTR(-ENOENT);
|
|
if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
|
|
return fs_info->uuid_root ? fs_info->uuid_root :
|
|
ERR_PTR(-ENOENT);
|
|
again:
|
|
root = btrfs_lookup_fs_root(fs_info, location->objectid);
|
|
if (root) {
|
|
if (check_ref && btrfs_root_refs(&root->root_item) == 0)
|
|
return ERR_PTR(-ENOENT);
|
|
return root;
|
|
}
|
|
|
|
root = btrfs_read_fs_root(fs_info->tree_root, location);
|
|
if (IS_ERR(root))
|
|
return root;
|
|
|
|
if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
|
|
ret = -ENOENT;
|
|
goto fail;
|
|
}
|
|
|
|
ret = btrfs_init_fs_root(root);
|
|
if (ret)
|
|
goto fail;
|
|
|
|
ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
|
|
location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
|
|
if (ret < 0)
|
|
goto fail;
|
|
if (ret == 0)
|
|
set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
|
|
|
|
ret = btrfs_insert_fs_root(fs_info, root);
|
|
if (ret) {
|
|
if (ret == -EEXIST) {
|
|
free_fs_root(root);
|
|
goto again;
|
|
}
|
|
goto fail;
|
|
}
|
|
return root;
|
|
fail:
|
|
free_fs_root(root);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
static int btrfs_congested_fn(void *congested_data, int bdi_bits)
|
|
{
|
|
struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
|
|
int ret = 0;
|
|
struct btrfs_device *device;
|
|
struct backing_dev_info *bdi;
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
|
|
if (!device->bdev)
|
|
continue;
|
|
bdi = blk_get_backing_dev_info(device->bdev);
|
|
if (bdi && bdi_congested(bdi, bdi_bits)) {
|
|
ret = 1;
|
|
break;
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* If this fails, caller must call bdi_destroy() to get rid of the
|
|
* bdi again.
|
|
*/
|
|
static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
|
|
{
|
|
int err;
|
|
|
|
bdi->capabilities = BDI_CAP_MAP_COPY;
|
|
err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
|
|
if (err)
|
|
return err;
|
|
|
|
bdi->ra_pages = default_backing_dev_info.ra_pages;
|
|
bdi->congested_fn = btrfs_congested_fn;
|
|
bdi->congested_data = info;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* called by the kthread helper functions to finally call the bio end_io
|
|
* functions. This is where read checksum verification actually happens
|
|
*/
|
|
static void end_workqueue_fn(struct btrfs_work *work)
|
|
{
|
|
struct bio *bio;
|
|
struct end_io_wq *end_io_wq;
|
|
int error;
|
|
|
|
end_io_wq = container_of(work, struct end_io_wq, work);
|
|
bio = end_io_wq->bio;
|
|
|
|
error = end_io_wq->error;
|
|
bio->bi_private = end_io_wq->private;
|
|
bio->bi_end_io = end_io_wq->end_io;
|
|
kfree(end_io_wq);
|
|
bio_endio_nodec(bio, error);
|
|
}
|
|
|
|
static int cleaner_kthread(void *arg)
|
|
{
|
|
struct btrfs_root *root = arg;
|
|
int again;
|
|
|
|
do {
|
|
again = 0;
|
|
|
|
/* Make the cleaner go to sleep early. */
|
|
if (btrfs_need_cleaner_sleep(root))
|
|
goto sleep;
|
|
|
|
if (!mutex_trylock(&root->fs_info->cleaner_mutex))
|
|
goto sleep;
|
|
|
|
/*
|
|
* Avoid the problem that we change the status of the fs
|
|
* during the above check and trylock.
|
|
*/
|
|
if (btrfs_need_cleaner_sleep(root)) {
|
|
mutex_unlock(&root->fs_info->cleaner_mutex);
|
|
goto sleep;
|
|
}
|
|
|
|
btrfs_run_delayed_iputs(root);
|
|
again = btrfs_clean_one_deleted_snapshot(root);
|
|
mutex_unlock(&root->fs_info->cleaner_mutex);
|
|
|
|
/*
|
|
* The defragger has dealt with the R/O remount and umount,
|
|
* needn't do anything special here.
|
|
*/
|
|
btrfs_run_defrag_inodes(root->fs_info);
|
|
sleep:
|
|
if (!try_to_freeze() && !again) {
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
if (!kthread_should_stop())
|
|
schedule();
|
|
__set_current_state(TASK_RUNNING);
|
|
}
|
|
} while (!kthread_should_stop());
|
|
return 0;
|
|
}
|
|
|
|
static int transaction_kthread(void *arg)
|
|
{
|
|
struct btrfs_root *root = arg;
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_transaction *cur;
|
|
u64 transid;
|
|
unsigned long now;
|
|
unsigned long delay;
|
|
bool cannot_commit;
|
|
|
|
do {
|
|
cannot_commit = false;
|
|
delay = HZ * root->fs_info->commit_interval;
|
|
mutex_lock(&root->fs_info->transaction_kthread_mutex);
|
|
|
|
spin_lock(&root->fs_info->trans_lock);
|
|
cur = root->fs_info->running_transaction;
|
|
if (!cur) {
|
|
spin_unlock(&root->fs_info->trans_lock);
|
|
goto sleep;
|
|
}
|
|
|
|
now = get_seconds();
|
|
if (cur->state < TRANS_STATE_BLOCKED &&
|
|
(now < cur->start_time ||
|
|
now - cur->start_time < root->fs_info->commit_interval)) {
|
|
spin_unlock(&root->fs_info->trans_lock);
|
|
delay = HZ * 5;
|
|
goto sleep;
|
|
}
|
|
transid = cur->transid;
|
|
spin_unlock(&root->fs_info->trans_lock);
|
|
|
|
/* If the file system is aborted, this will always fail. */
|
|
trans = btrfs_attach_transaction(root);
|
|
if (IS_ERR(trans)) {
|
|
if (PTR_ERR(trans) != -ENOENT)
|
|
cannot_commit = true;
|
|
goto sleep;
|
|
}
|
|
if (transid == trans->transid) {
|
|
btrfs_commit_transaction(trans, root);
|
|
} else {
|
|
btrfs_end_transaction(trans, root);
|
|
}
|
|
sleep:
|
|
wake_up_process(root->fs_info->cleaner_kthread);
|
|
mutex_unlock(&root->fs_info->transaction_kthread_mutex);
|
|
|
|
if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
|
|
&root->fs_info->fs_state)))
|
|
btrfs_cleanup_transaction(root);
|
|
if (!try_to_freeze()) {
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
if (!kthread_should_stop() &&
|
|
(!btrfs_transaction_blocked(root->fs_info) ||
|
|
cannot_commit))
|
|
schedule_timeout(delay);
|
|
__set_current_state(TASK_RUNNING);
|
|
}
|
|
} while (!kthread_should_stop());
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* this will find the highest generation in the array of
|
|
* root backups. The index of the highest array is returned,
|
|
* or -1 if we can't find anything.
|
|
*
|
|
* We check to make sure the array is valid by comparing the
|
|
* generation of the latest root in the array with the generation
|
|
* in the super block. If they don't match we pitch it.
|
|
*/
|
|
static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
|
|
{
|
|
u64 cur;
|
|
int newest_index = -1;
|
|
struct btrfs_root_backup *root_backup;
|
|
int i;
|
|
|
|
for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
|
|
root_backup = info->super_copy->super_roots + i;
|
|
cur = btrfs_backup_tree_root_gen(root_backup);
|
|
if (cur == newest_gen)
|
|
newest_index = i;
|
|
}
|
|
|
|
/* check to see if we actually wrapped around */
|
|
if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
|
|
root_backup = info->super_copy->super_roots;
|
|
cur = btrfs_backup_tree_root_gen(root_backup);
|
|
if (cur == newest_gen)
|
|
newest_index = 0;
|
|
}
|
|
return newest_index;
|
|
}
|
|
|
|
|
|
/*
|
|
* find the oldest backup so we know where to store new entries
|
|
* in the backup array. This will set the backup_root_index
|
|
* field in the fs_info struct
|
|
*/
|
|
static void find_oldest_super_backup(struct btrfs_fs_info *info,
|
|
u64 newest_gen)
|
|
{
|
|
int newest_index = -1;
|
|
|
|
newest_index = find_newest_super_backup(info, newest_gen);
|
|
/* if there was garbage in there, just move along */
|
|
if (newest_index == -1) {
|
|
info->backup_root_index = 0;
|
|
} else {
|
|
info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* copy all the root pointers into the super backup array.
|
|
* this will bump the backup pointer by one when it is
|
|
* done
|
|
*/
|
|
static void backup_super_roots(struct btrfs_fs_info *info)
|
|
{
|
|
int next_backup;
|
|
struct btrfs_root_backup *root_backup;
|
|
int last_backup;
|
|
|
|
next_backup = info->backup_root_index;
|
|
last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
|
|
BTRFS_NUM_BACKUP_ROOTS;
|
|
|
|
/*
|
|
* just overwrite the last backup if we're at the same generation
|
|
* this happens only at umount
|
|
*/
|
|
root_backup = info->super_for_commit->super_roots + last_backup;
|
|
if (btrfs_backup_tree_root_gen(root_backup) ==
|
|
btrfs_header_generation(info->tree_root->node))
|
|
next_backup = last_backup;
|
|
|
|
root_backup = info->super_for_commit->super_roots + next_backup;
|
|
|
|
/*
|
|
* make sure all of our padding and empty slots get zero filled
|
|
* regardless of which ones we use today
|
|
*/
|
|
memset(root_backup, 0, sizeof(*root_backup));
|
|
|
|
info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
|
|
|
|
btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
|
|
btrfs_set_backup_tree_root_gen(root_backup,
|
|
btrfs_header_generation(info->tree_root->node));
|
|
|
|
btrfs_set_backup_tree_root_level(root_backup,
|
|
btrfs_header_level(info->tree_root->node));
|
|
|
|
btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
|
|
btrfs_set_backup_chunk_root_gen(root_backup,
|
|
btrfs_header_generation(info->chunk_root->node));
|
|
btrfs_set_backup_chunk_root_level(root_backup,
|
|
btrfs_header_level(info->chunk_root->node));
|
|
|
|
btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
|
|
btrfs_set_backup_extent_root_gen(root_backup,
|
|
btrfs_header_generation(info->extent_root->node));
|
|
btrfs_set_backup_extent_root_level(root_backup,
|
|
btrfs_header_level(info->extent_root->node));
|
|
|
|
/*
|
|
* we might commit during log recovery, which happens before we set
|
|
* the fs_root. Make sure it is valid before we fill it in.
|
|
*/
|
|
if (info->fs_root && info->fs_root->node) {
|
|
btrfs_set_backup_fs_root(root_backup,
|
|
info->fs_root->node->start);
|
|
btrfs_set_backup_fs_root_gen(root_backup,
|
|
btrfs_header_generation(info->fs_root->node));
|
|
btrfs_set_backup_fs_root_level(root_backup,
|
|
btrfs_header_level(info->fs_root->node));
|
|
}
|
|
|
|
btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
|
|
btrfs_set_backup_dev_root_gen(root_backup,
|
|
btrfs_header_generation(info->dev_root->node));
|
|
btrfs_set_backup_dev_root_level(root_backup,
|
|
btrfs_header_level(info->dev_root->node));
|
|
|
|
btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
|
|
btrfs_set_backup_csum_root_gen(root_backup,
|
|
btrfs_header_generation(info->csum_root->node));
|
|
btrfs_set_backup_csum_root_level(root_backup,
|
|
btrfs_header_level(info->csum_root->node));
|
|
|
|
btrfs_set_backup_total_bytes(root_backup,
|
|
btrfs_super_total_bytes(info->super_copy));
|
|
btrfs_set_backup_bytes_used(root_backup,
|
|
btrfs_super_bytes_used(info->super_copy));
|
|
btrfs_set_backup_num_devices(root_backup,
|
|
btrfs_super_num_devices(info->super_copy));
|
|
|
|
/*
|
|
* if we don't copy this out to the super_copy, it won't get remembered
|
|
* for the next commit
|
|
*/
|
|
memcpy(&info->super_copy->super_roots,
|
|
&info->super_for_commit->super_roots,
|
|
sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
|
|
}
|
|
|
|
/*
|
|
* this copies info out of the root backup array and back into
|
|
* the in-memory super block. It is meant to help iterate through
|
|
* the array, so you send it the number of backups you've already
|
|
* tried and the last backup index you used.
|
|
*
|
|
* this returns -1 when it has tried all the backups
|
|
*/
|
|
static noinline int next_root_backup(struct btrfs_fs_info *info,
|
|
struct btrfs_super_block *super,
|
|
int *num_backups_tried, int *backup_index)
|
|
{
|
|
struct btrfs_root_backup *root_backup;
|
|
int newest = *backup_index;
|
|
|
|
if (*num_backups_tried == 0) {
|
|
u64 gen = btrfs_super_generation(super);
|
|
|
|
newest = find_newest_super_backup(info, gen);
|
|
if (newest == -1)
|
|
return -1;
|
|
|
|
*backup_index = newest;
|
|
*num_backups_tried = 1;
|
|
} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
|
|
/* we've tried all the backups, all done */
|
|
return -1;
|
|
} else {
|
|
/* jump to the next oldest backup */
|
|
newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
|
|
BTRFS_NUM_BACKUP_ROOTS;
|
|
*backup_index = newest;
|
|
*num_backups_tried += 1;
|
|
}
|
|
root_backup = super->super_roots + newest;
|
|
|
|
btrfs_set_super_generation(super,
|
|
btrfs_backup_tree_root_gen(root_backup));
|
|
btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
|
|
btrfs_set_super_root_level(super,
|
|
btrfs_backup_tree_root_level(root_backup));
|
|
btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
|
|
|
|
/*
|
|
* fixme: the total bytes and num_devices need to match or we should
|
|
* need a fsck
|
|
*/
|
|
btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
|
|
btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
|
|
return 0;
|
|
}
|
|
|
|
/* helper to cleanup workers */
|
|
static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
|
|
{
|
|
btrfs_destroy_workqueue(fs_info->fixup_workers);
|
|
btrfs_destroy_workqueue(fs_info->delalloc_workers);
|
|
btrfs_destroy_workqueue(fs_info->workers);
|
|
btrfs_destroy_workqueue(fs_info->endio_workers);
|
|
btrfs_destroy_workqueue(fs_info->endio_meta_workers);
|
|
btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
|
|
btrfs_destroy_workqueue(fs_info->rmw_workers);
|
|
btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
|
|
btrfs_destroy_workqueue(fs_info->endio_write_workers);
|
|
btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
|
|
btrfs_destroy_workqueue(fs_info->submit_workers);
|
|
btrfs_destroy_workqueue(fs_info->delayed_workers);
|
|
btrfs_destroy_workqueue(fs_info->caching_workers);
|
|
btrfs_destroy_workqueue(fs_info->readahead_workers);
|
|
btrfs_destroy_workqueue(fs_info->flush_workers);
|
|
btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
|
|
btrfs_destroy_workqueue(fs_info->extent_workers);
|
|
}
|
|
|
|
static void free_root_extent_buffers(struct btrfs_root *root)
|
|
{
|
|
if (root) {
|
|
free_extent_buffer(root->node);
|
|
free_extent_buffer(root->commit_root);
|
|
root->node = NULL;
|
|
root->commit_root = NULL;
|
|
}
|
|
}
|
|
|
|
/* helper to cleanup tree roots */
|
|
static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
|
|
{
|
|
free_root_extent_buffers(info->tree_root);
|
|
|
|
free_root_extent_buffers(info->dev_root);
|
|
free_root_extent_buffers(info->extent_root);
|
|
free_root_extent_buffers(info->csum_root);
|
|
free_root_extent_buffers(info->quota_root);
|
|
free_root_extent_buffers(info->uuid_root);
|
|
if (chunk_root)
|
|
free_root_extent_buffers(info->chunk_root);
|
|
}
|
|
|
|
void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
|
|
{
|
|
int ret;
|
|
struct btrfs_root *gang[8];
|
|
int i;
|
|
|
|
while (!list_empty(&fs_info->dead_roots)) {
|
|
gang[0] = list_entry(fs_info->dead_roots.next,
|
|
struct btrfs_root, root_list);
|
|
list_del(&gang[0]->root_list);
|
|
|
|
if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
|
|
btrfs_drop_and_free_fs_root(fs_info, gang[0]);
|
|
} else {
|
|
free_extent_buffer(gang[0]->node);
|
|
free_extent_buffer(gang[0]->commit_root);
|
|
btrfs_put_fs_root(gang[0]);
|
|
}
|
|
}
|
|
|
|
while (1) {
|
|
ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
|
|
(void **)gang, 0,
|
|
ARRAY_SIZE(gang));
|
|
if (!ret)
|
|
break;
|
|
for (i = 0; i < ret; i++)
|
|
btrfs_drop_and_free_fs_root(fs_info, gang[i]);
|
|
}
|
|
|
|
if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
|
|
btrfs_free_log_root_tree(NULL, fs_info);
|
|
btrfs_destroy_pinned_extent(fs_info->tree_root,
|
|
fs_info->pinned_extents);
|
|
}
|
|
}
|
|
|
|
int open_ctree(struct super_block *sb,
|
|
struct btrfs_fs_devices *fs_devices,
|
|
char *options)
|
|
{
|
|
u32 sectorsize;
|
|
u32 nodesize;
|
|
u32 leafsize;
|
|
u32 blocksize;
|
|
u32 stripesize;
|
|
u64 generation;
|
|
u64 features;
|
|
struct btrfs_key location;
|
|
struct buffer_head *bh;
|
|
struct btrfs_super_block *disk_super;
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(sb);
|
|
struct btrfs_root *tree_root;
|
|
struct btrfs_root *extent_root;
|
|
struct btrfs_root *csum_root;
|
|
struct btrfs_root *chunk_root;
|
|
struct btrfs_root *dev_root;
|
|
struct btrfs_root *quota_root;
|
|
struct btrfs_root *uuid_root;
|
|
struct btrfs_root *log_tree_root;
|
|
int ret;
|
|
int err = -EINVAL;
|
|
int num_backups_tried = 0;
|
|
int backup_index = 0;
|
|
int max_active;
|
|
int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
|
|
bool create_uuid_tree;
|
|
bool check_uuid_tree;
|
|
|
|
tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
|
|
chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
|
|
if (!tree_root || !chunk_root) {
|
|
err = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
ret = init_srcu_struct(&fs_info->subvol_srcu);
|
|
if (ret) {
|
|
err = ret;
|
|
goto fail;
|
|
}
|
|
|
|
ret = setup_bdi(fs_info, &fs_info->bdi);
|
|
if (ret) {
|
|
err = ret;
|
|
goto fail_srcu;
|
|
}
|
|
|
|
ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
|
|
if (ret) {
|
|
err = ret;
|
|
goto fail_bdi;
|
|
}
|
|
fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
|
|
(1 + ilog2(nr_cpu_ids));
|
|
|
|
ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
|
|
if (ret) {
|
|
err = ret;
|
|
goto fail_dirty_metadata_bytes;
|
|
}
|
|
|
|
ret = percpu_counter_init(&fs_info->bio_counter, 0);
|
|
if (ret) {
|
|
err = ret;
|
|
goto fail_delalloc_bytes;
|
|
}
|
|
|
|
fs_info->btree_inode = new_inode(sb);
|
|
if (!fs_info->btree_inode) {
|
|
err = -ENOMEM;
|
|
goto fail_bio_counter;
|
|
}
|
|
|
|
mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
|
|
|
|
INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
|
|
INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
|
|
INIT_LIST_HEAD(&fs_info->trans_list);
|
|
INIT_LIST_HEAD(&fs_info->dead_roots);
|
|
INIT_LIST_HEAD(&fs_info->delayed_iputs);
|
|
INIT_LIST_HEAD(&fs_info->delalloc_roots);
|
|
INIT_LIST_HEAD(&fs_info->caching_block_groups);
|
|
spin_lock_init(&fs_info->delalloc_root_lock);
|
|
spin_lock_init(&fs_info->trans_lock);
|
|
spin_lock_init(&fs_info->fs_roots_radix_lock);
|
|
spin_lock_init(&fs_info->delayed_iput_lock);
|
|
spin_lock_init(&fs_info->defrag_inodes_lock);
|
|
spin_lock_init(&fs_info->free_chunk_lock);
|
|
spin_lock_init(&fs_info->tree_mod_seq_lock);
|
|
spin_lock_init(&fs_info->super_lock);
|
|
spin_lock_init(&fs_info->qgroup_op_lock);
|
|
spin_lock_init(&fs_info->buffer_lock);
|
|
rwlock_init(&fs_info->tree_mod_log_lock);
|
|
mutex_init(&fs_info->reloc_mutex);
|
|
mutex_init(&fs_info->delalloc_root_mutex);
|
|
seqlock_init(&fs_info->profiles_lock);
|
|
|
|
init_completion(&fs_info->kobj_unregister);
|
|
INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
|
|
INIT_LIST_HEAD(&fs_info->space_info);
|
|
INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
|
|
btrfs_mapping_init(&fs_info->mapping_tree);
|
|
btrfs_init_block_rsv(&fs_info->global_block_rsv,
|
|
BTRFS_BLOCK_RSV_GLOBAL);
|
|
btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
|
|
BTRFS_BLOCK_RSV_DELALLOC);
|
|
btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
|
|
btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
|
|
btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
|
|
btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
|
|
BTRFS_BLOCK_RSV_DELOPS);
|
|
atomic_set(&fs_info->nr_async_submits, 0);
|
|
atomic_set(&fs_info->async_delalloc_pages, 0);
|
|
atomic_set(&fs_info->async_submit_draining, 0);
|
|
atomic_set(&fs_info->nr_async_bios, 0);
|
|
atomic_set(&fs_info->defrag_running, 0);
|
|
atomic_set(&fs_info->qgroup_op_seq, 0);
|
|
atomic64_set(&fs_info->tree_mod_seq, 0);
|
|
fs_info->sb = sb;
|
|
fs_info->max_inline = 8192 * 1024;
|
|
fs_info->metadata_ratio = 0;
|
|
fs_info->defrag_inodes = RB_ROOT;
|
|
fs_info->free_chunk_space = 0;
|
|
fs_info->tree_mod_log = RB_ROOT;
|
|
fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
|
|
fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
|
|
/* readahead state */
|
|
INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
|
|
spin_lock_init(&fs_info->reada_lock);
|
|
|
|
fs_info->thread_pool_size = min_t(unsigned long,
|
|
num_online_cpus() + 2, 8);
|
|
|
|
INIT_LIST_HEAD(&fs_info->ordered_roots);
|
|
spin_lock_init(&fs_info->ordered_root_lock);
|
|
fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
|
|
GFP_NOFS);
|
|
if (!fs_info->delayed_root) {
|
|
err = -ENOMEM;
|
|
goto fail_iput;
|
|
}
|
|
btrfs_init_delayed_root(fs_info->delayed_root);
|
|
|
|
mutex_init(&fs_info->scrub_lock);
|
|
atomic_set(&fs_info->scrubs_running, 0);
|
|
atomic_set(&fs_info->scrub_pause_req, 0);
|
|
atomic_set(&fs_info->scrubs_paused, 0);
|
|
atomic_set(&fs_info->scrub_cancel_req, 0);
|
|
init_waitqueue_head(&fs_info->replace_wait);
|
|
init_waitqueue_head(&fs_info->scrub_pause_wait);
|
|
fs_info->scrub_workers_refcnt = 0;
|
|
#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
|
|
fs_info->check_integrity_print_mask = 0;
|
|
#endif
|
|
|
|
spin_lock_init(&fs_info->balance_lock);
|
|
mutex_init(&fs_info->balance_mutex);
|
|
atomic_set(&fs_info->balance_running, 0);
|
|
atomic_set(&fs_info->balance_pause_req, 0);
|
|
atomic_set(&fs_info->balance_cancel_req, 0);
|
|
fs_info->balance_ctl = NULL;
|
|
init_waitqueue_head(&fs_info->balance_wait_q);
|
|
btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
|
|
|
|
sb->s_blocksize = 4096;
|
|
sb->s_blocksize_bits = blksize_bits(4096);
|
|
sb->s_bdi = &fs_info->bdi;
|
|
|
|
fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
|
|
set_nlink(fs_info->btree_inode, 1);
|
|
/*
|
|
* we set the i_size on the btree inode to the max possible int.
|
|
* the real end of the address space is determined by all of
|
|
* the devices in the system
|
|
*/
|
|
fs_info->btree_inode->i_size = OFFSET_MAX;
|
|
fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
|
|
fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
|
|
|
|
RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
|
|
extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
|
|
fs_info->btree_inode->i_mapping);
|
|
BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
|
|
extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
|
|
|
|
BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
|
|
|
|
BTRFS_I(fs_info->btree_inode)->root = tree_root;
|
|
memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
|
|
sizeof(struct btrfs_key));
|
|
set_bit(BTRFS_INODE_DUMMY,
|
|
&BTRFS_I(fs_info->btree_inode)->runtime_flags);
|
|
btrfs_insert_inode_hash(fs_info->btree_inode);
|
|
|
|
spin_lock_init(&fs_info->block_group_cache_lock);
|
|
fs_info->block_group_cache_tree = RB_ROOT;
|
|
fs_info->first_logical_byte = (u64)-1;
|
|
|
|
extent_io_tree_init(&fs_info->freed_extents[0],
|
|
fs_info->btree_inode->i_mapping);
|
|
extent_io_tree_init(&fs_info->freed_extents[1],
|
|
fs_info->btree_inode->i_mapping);
|
|
fs_info->pinned_extents = &fs_info->freed_extents[0];
|
|
fs_info->do_barriers = 1;
|
|
|
|
|
|
mutex_init(&fs_info->ordered_operations_mutex);
|
|
mutex_init(&fs_info->ordered_extent_flush_mutex);
|
|
mutex_init(&fs_info->tree_log_mutex);
|
|
mutex_init(&fs_info->chunk_mutex);
|
|
mutex_init(&fs_info->transaction_kthread_mutex);
|
|
mutex_init(&fs_info->cleaner_mutex);
|
|
mutex_init(&fs_info->volume_mutex);
|
|
init_rwsem(&fs_info->commit_root_sem);
|
|
init_rwsem(&fs_info->cleanup_work_sem);
|
|
init_rwsem(&fs_info->subvol_sem);
|
|
sema_init(&fs_info->uuid_tree_rescan_sem, 1);
|
|
fs_info->dev_replace.lock_owner = 0;
|
|
atomic_set(&fs_info->dev_replace.nesting_level, 0);
|
|
mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
|
|
mutex_init(&fs_info->dev_replace.lock_management_lock);
|
|
mutex_init(&fs_info->dev_replace.lock);
|
|
|
|
spin_lock_init(&fs_info->qgroup_lock);
|
|
mutex_init(&fs_info->qgroup_ioctl_lock);
|
|
fs_info->qgroup_tree = RB_ROOT;
|
|
fs_info->qgroup_op_tree = RB_ROOT;
|
|
INIT_LIST_HEAD(&fs_info->dirty_qgroups);
|
|
fs_info->qgroup_seq = 1;
|
|
fs_info->quota_enabled = 0;
|
|
fs_info->pending_quota_state = 0;
|
|
fs_info->qgroup_ulist = NULL;
|
|
mutex_init(&fs_info->qgroup_rescan_lock);
|
|
|
|
btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
|
|
btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
|
|
|
|
init_waitqueue_head(&fs_info->transaction_throttle);
|
|
init_waitqueue_head(&fs_info->transaction_wait);
|
|
init_waitqueue_head(&fs_info->transaction_blocked_wait);
|
|
init_waitqueue_head(&fs_info->async_submit_wait);
|
|
|
|
ret = btrfs_alloc_stripe_hash_table(fs_info);
|
|
if (ret) {
|
|
err = ret;
|
|
goto fail_alloc;
|
|
}
|
|
|
|
__setup_root(4096, 4096, 4096, 4096, tree_root,
|
|
fs_info, BTRFS_ROOT_TREE_OBJECTID);
|
|
|
|
invalidate_bdev(fs_devices->latest_bdev);
|
|
|
|
/*
|
|
* Read super block and check the signature bytes only
|
|
*/
|
|
bh = btrfs_read_dev_super(fs_devices->latest_bdev);
|
|
if (!bh) {
|
|
err = -EINVAL;
|
|
goto fail_alloc;
|
|
}
|
|
|
|
/*
|
|
* We want to check superblock checksum, the type is stored inside.
|
|
* Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
|
|
*/
|
|
if (btrfs_check_super_csum(bh->b_data)) {
|
|
printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
|
|
err = -EINVAL;
|
|
goto fail_alloc;
|
|
}
|
|
|
|
/*
|
|
* super_copy is zeroed at allocation time and we never touch the
|
|
* following bytes up to INFO_SIZE, the checksum is calculated from
|
|
* the whole block of INFO_SIZE
|
|
*/
|
|
memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
|
|
memcpy(fs_info->super_for_commit, fs_info->super_copy,
|
|
sizeof(*fs_info->super_for_commit));
|
|
brelse(bh);
|
|
|
|
memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
|
|
|
|
ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
|
|
if (ret) {
|
|
printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
|
|
err = -EINVAL;
|
|
goto fail_alloc;
|
|
}
|
|
|
|
disk_super = fs_info->super_copy;
|
|
if (!btrfs_super_root(disk_super))
|
|
goto fail_alloc;
|
|
|
|
/* check FS state, whether FS is broken. */
|
|
if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
|
|
set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
|
|
|
|
/*
|
|
* run through our array of backup supers and setup
|
|
* our ring pointer to the oldest one
|
|
*/
|
|
generation = btrfs_super_generation(disk_super);
|
|
find_oldest_super_backup(fs_info, generation);
|
|
|
|
/*
|
|
* In the long term, we'll store the compression type in the super
|
|
* block, and it'll be used for per file compression control.
|
|
*/
|
|
fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
|
|
|
|
ret = btrfs_parse_options(tree_root, options);
|
|
if (ret) {
|
|
err = ret;
|
|
goto fail_alloc;
|
|
}
|
|
|
|
features = btrfs_super_incompat_flags(disk_super) &
|
|
~BTRFS_FEATURE_INCOMPAT_SUPP;
|
|
if (features) {
|
|
printk(KERN_ERR "BTRFS: couldn't mount because of "
|
|
"unsupported optional features (%Lx).\n",
|
|
features);
|
|
err = -EINVAL;
|
|
goto fail_alloc;
|
|
}
|
|
|
|
if (btrfs_super_leafsize(disk_super) !=
|
|
btrfs_super_nodesize(disk_super)) {
|
|
printk(KERN_ERR "BTRFS: couldn't mount because metadata "
|
|
"blocksizes don't match. node %d leaf %d\n",
|
|
btrfs_super_nodesize(disk_super),
|
|
btrfs_super_leafsize(disk_super));
|
|
err = -EINVAL;
|
|
goto fail_alloc;
|
|
}
|
|
if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
|
|
printk(KERN_ERR "BTRFS: couldn't mount because metadata "
|
|
"blocksize (%d) was too large\n",
|
|
btrfs_super_leafsize(disk_super));
|
|
err = -EINVAL;
|
|
goto fail_alloc;
|
|
}
|
|
|
|
features = btrfs_super_incompat_flags(disk_super);
|
|
features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
|
|
if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
|
|
features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
|
|
|
|
if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
|
|
printk(KERN_ERR "BTRFS: has skinny extents\n");
|
|
|
|
/*
|
|
* flag our filesystem as having big metadata blocks if
|
|
* they are bigger than the page size
|
|
*/
|
|
if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
|
|
if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
|
|
printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
|
|
features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
|
|
}
|
|
|
|
nodesize = btrfs_super_nodesize(disk_super);
|
|
leafsize = btrfs_super_leafsize(disk_super);
|
|
sectorsize = btrfs_super_sectorsize(disk_super);
|
|
stripesize = btrfs_super_stripesize(disk_super);
|
|
fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
|
|
fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
|
|
|
|
/*
|
|
* mixed block groups end up with duplicate but slightly offset
|
|
* extent buffers for the same range. It leads to corruptions
|
|
*/
|
|
if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
|
|
(sectorsize != leafsize)) {
|
|
printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
|
|
"are not allowed for mixed block groups on %s\n",
|
|
sb->s_id);
|
|
goto fail_alloc;
|
|
}
|
|
|
|
/*
|
|
* Needn't use the lock because there is no other task which will
|
|
* update the flag.
|
|
*/
|
|
btrfs_set_super_incompat_flags(disk_super, features);
|
|
|
|
features = btrfs_super_compat_ro_flags(disk_super) &
|
|
~BTRFS_FEATURE_COMPAT_RO_SUPP;
|
|
if (!(sb->s_flags & MS_RDONLY) && features) {
|
|
printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
|
|
"unsupported option features (%Lx).\n",
|
|
features);
|
|
err = -EINVAL;
|
|
goto fail_alloc;
|
|
}
|
|
|
|
max_active = fs_info->thread_pool_size;
|
|
|
|
fs_info->workers =
|
|
btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
|
|
max_active, 16);
|
|
|
|
fs_info->delalloc_workers =
|
|
btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
|
|
|
|
fs_info->flush_workers =
|
|
btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
|
|
|
|
fs_info->caching_workers =
|
|
btrfs_alloc_workqueue("cache", flags, max_active, 0);
|
|
|
|
/*
|
|
* a higher idle thresh on the submit workers makes it much more
|
|
* likely that bios will be send down in a sane order to the
|
|
* devices
|
|
*/
|
|
fs_info->submit_workers =
|
|
btrfs_alloc_workqueue("submit", flags,
|
|
min_t(u64, fs_devices->num_devices,
|
|
max_active), 64);
|
|
|
|
fs_info->fixup_workers =
|
|
btrfs_alloc_workqueue("fixup", flags, 1, 0);
|
|
|
|
/*
|
|
* endios are largely parallel and should have a very
|
|
* low idle thresh
|
|
*/
|
|
fs_info->endio_workers =
|
|
btrfs_alloc_workqueue("endio", flags, max_active, 4);
|
|
fs_info->endio_meta_workers =
|
|
btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
|
|
fs_info->endio_meta_write_workers =
|
|
btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
|
|
fs_info->endio_raid56_workers =
|
|
btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
|
|
fs_info->rmw_workers =
|
|
btrfs_alloc_workqueue("rmw", flags, max_active, 2);
|
|
fs_info->endio_write_workers =
|
|
btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
|
|
fs_info->endio_freespace_worker =
|
|
btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
|
|
fs_info->delayed_workers =
|
|
btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
|
|
fs_info->readahead_workers =
|
|
btrfs_alloc_workqueue("readahead", flags, max_active, 2);
|
|
fs_info->qgroup_rescan_workers =
|
|
btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
|
|
fs_info->extent_workers =
|
|
btrfs_alloc_workqueue("extent-refs", flags,
|
|
min_t(u64, fs_devices->num_devices,
|
|
max_active), 8);
|
|
|
|
if (!(fs_info->workers && fs_info->delalloc_workers &&
|
|
fs_info->submit_workers && fs_info->flush_workers &&
|
|
fs_info->endio_workers && fs_info->endio_meta_workers &&
|
|
fs_info->endio_meta_write_workers &&
|
|
fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
|
|
fs_info->endio_freespace_worker && fs_info->rmw_workers &&
|
|
fs_info->caching_workers && fs_info->readahead_workers &&
|
|
fs_info->fixup_workers && fs_info->delayed_workers &&
|
|
fs_info->fixup_workers && fs_info->extent_workers &&
|
|
fs_info->qgroup_rescan_workers)) {
|
|
err = -ENOMEM;
|
|
goto fail_sb_buffer;
|
|
}
|
|
|
|
fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
|
|
fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
|
|
4 * 1024 * 1024 / PAGE_CACHE_SIZE);
|
|
|
|
tree_root->nodesize = nodesize;
|
|
tree_root->leafsize = leafsize;
|
|
tree_root->sectorsize = sectorsize;
|
|
tree_root->stripesize = stripesize;
|
|
|
|
sb->s_blocksize = sectorsize;
|
|
sb->s_blocksize_bits = blksize_bits(sectorsize);
|
|
|
|
if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
|
|
printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
|
|
goto fail_sb_buffer;
|
|
}
|
|
|
|
if (sectorsize != PAGE_SIZE) {
|
|
printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
|
|
"found on %s\n", (unsigned long)sectorsize, sb->s_id);
|
|
goto fail_sb_buffer;
|
|
}
|
|
|
|
mutex_lock(&fs_info->chunk_mutex);
|
|
ret = btrfs_read_sys_array(tree_root);
|
|
mutex_unlock(&fs_info->chunk_mutex);
|
|
if (ret) {
|
|
printk(KERN_WARNING "BTRFS: failed to read the system "
|
|
"array on %s\n", sb->s_id);
|
|
goto fail_sb_buffer;
|
|
}
|
|
|
|
blocksize = btrfs_level_size(tree_root,
|
|
btrfs_super_chunk_root_level(disk_super));
|
|
generation = btrfs_super_chunk_root_generation(disk_super);
|
|
|
|
__setup_root(nodesize, leafsize, sectorsize, stripesize,
|
|
chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
|
|
|
|
chunk_root->node = read_tree_block(chunk_root,
|
|
btrfs_super_chunk_root(disk_super),
|
|
blocksize, generation);
|
|
if (!chunk_root->node ||
|
|
!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
|
|
printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
|
|
sb->s_id);
|
|
goto fail_tree_roots;
|
|
}
|
|
btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
|
|
chunk_root->commit_root = btrfs_root_node(chunk_root);
|
|
|
|
read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
|
|
btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
|
|
|
|
ret = btrfs_read_chunk_tree(chunk_root);
|
|
if (ret) {
|
|
printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
|
|
sb->s_id);
|
|
goto fail_tree_roots;
|
|
}
|
|
|
|
/*
|
|
* keep the device that is marked to be the target device for the
|
|
* dev_replace procedure
|
|
*/
|
|
btrfs_close_extra_devices(fs_info, fs_devices, 0);
|
|
|
|
if (!fs_devices->latest_bdev) {
|
|
printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
|
|
sb->s_id);
|
|
goto fail_tree_roots;
|
|
}
|
|
|
|
retry_root_backup:
|
|
blocksize = btrfs_level_size(tree_root,
|
|
btrfs_super_root_level(disk_super));
|
|
generation = btrfs_super_generation(disk_super);
|
|
|
|
tree_root->node = read_tree_block(tree_root,
|
|
btrfs_super_root(disk_super),
|
|
blocksize, generation);
|
|
if (!tree_root->node ||
|
|
!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
|
|
printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
|
|
sb->s_id);
|
|
|
|
goto recovery_tree_root;
|
|
}
|
|
|
|
btrfs_set_root_node(&tree_root->root_item, tree_root->node);
|
|
tree_root->commit_root = btrfs_root_node(tree_root);
|
|
btrfs_set_root_refs(&tree_root->root_item, 1);
|
|
|
|
location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
|
|
location.type = BTRFS_ROOT_ITEM_KEY;
|
|
location.offset = 0;
|
|
|
|
extent_root = btrfs_read_tree_root(tree_root, &location);
|
|
if (IS_ERR(extent_root)) {
|
|
ret = PTR_ERR(extent_root);
|
|
goto recovery_tree_root;
|
|
}
|
|
set_bit(BTRFS_ROOT_TRACK_DIRTY, &extent_root->state);
|
|
fs_info->extent_root = extent_root;
|
|
|
|
location.objectid = BTRFS_DEV_TREE_OBJECTID;
|
|
dev_root = btrfs_read_tree_root(tree_root, &location);
|
|
if (IS_ERR(dev_root)) {
|
|
ret = PTR_ERR(dev_root);
|
|
goto recovery_tree_root;
|
|
}
|
|
set_bit(BTRFS_ROOT_TRACK_DIRTY, &dev_root->state);
|
|
fs_info->dev_root = dev_root;
|
|
btrfs_init_devices_late(fs_info);
|
|
|
|
location.objectid = BTRFS_CSUM_TREE_OBJECTID;
|
|
csum_root = btrfs_read_tree_root(tree_root, &location);
|
|
if (IS_ERR(csum_root)) {
|
|
ret = PTR_ERR(csum_root);
|
|
goto recovery_tree_root;
|
|
}
|
|
set_bit(BTRFS_ROOT_TRACK_DIRTY, &csum_root->state);
|
|
fs_info->csum_root = csum_root;
|
|
|
|
location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
|
|
quota_root = btrfs_read_tree_root(tree_root, &location);
|
|
if (!IS_ERR(quota_root)) {
|
|
set_bit(BTRFS_ROOT_TRACK_DIRTY, "a_root->state);
|
|
fs_info->quota_enabled = 1;
|
|
fs_info->pending_quota_state = 1;
|
|
fs_info->quota_root = quota_root;
|
|
}
|
|
|
|
location.objectid = BTRFS_UUID_TREE_OBJECTID;
|
|
uuid_root = btrfs_read_tree_root(tree_root, &location);
|
|
if (IS_ERR(uuid_root)) {
|
|
ret = PTR_ERR(uuid_root);
|
|
if (ret != -ENOENT)
|
|
goto recovery_tree_root;
|
|
create_uuid_tree = true;
|
|
check_uuid_tree = false;
|
|
} else {
|
|
set_bit(BTRFS_ROOT_TRACK_DIRTY, &uuid_root->state);
|
|
fs_info->uuid_root = uuid_root;
|
|
create_uuid_tree = false;
|
|
check_uuid_tree =
|
|
generation != btrfs_super_uuid_tree_generation(disk_super);
|
|
}
|
|
|
|
fs_info->generation = generation;
|
|
fs_info->last_trans_committed = generation;
|
|
|
|
ret = btrfs_recover_balance(fs_info);
|
|
if (ret) {
|
|
printk(KERN_WARNING "BTRFS: failed to recover balance\n");
|
|
goto fail_block_groups;
|
|
}
|
|
|
|
ret = btrfs_init_dev_stats(fs_info);
|
|
if (ret) {
|
|
printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
|
|
ret);
|
|
goto fail_block_groups;
|
|
}
|
|
|
|
ret = btrfs_init_dev_replace(fs_info);
|
|
if (ret) {
|
|
pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
|
|
goto fail_block_groups;
|
|
}
|
|
|
|
btrfs_close_extra_devices(fs_info, fs_devices, 1);
|
|
|
|
ret = btrfs_sysfs_add_one(fs_info);
|
|
if (ret) {
|
|
pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
|
|
goto fail_block_groups;
|
|
}
|
|
|
|
ret = btrfs_init_space_info(fs_info);
|
|
if (ret) {
|
|
printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
|
|
goto fail_sysfs;
|
|
}
|
|
|
|
ret = btrfs_read_block_groups(extent_root);
|
|
if (ret) {
|
|
printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
|
|
goto fail_sysfs;
|
|
}
|
|
fs_info->num_tolerated_disk_barrier_failures =
|
|
btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
|
|
if (fs_info->fs_devices->missing_devices >
|
|
fs_info->num_tolerated_disk_barrier_failures &&
|
|
!(sb->s_flags & MS_RDONLY)) {
|
|
printk(KERN_WARNING "BTRFS: "
|
|
"too many missing devices, writeable mount is not allowed\n");
|
|
goto fail_sysfs;
|
|
}
|
|
|
|
fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
|
|
"btrfs-cleaner");
|
|
if (IS_ERR(fs_info->cleaner_kthread))
|
|
goto fail_sysfs;
|
|
|
|
fs_info->transaction_kthread = kthread_run(transaction_kthread,
|
|
tree_root,
|
|
"btrfs-transaction");
|
|
if (IS_ERR(fs_info->transaction_kthread))
|
|
goto fail_cleaner;
|
|
|
|
if (!btrfs_test_opt(tree_root, SSD) &&
|
|
!btrfs_test_opt(tree_root, NOSSD) &&
|
|
!fs_info->fs_devices->rotating) {
|
|
printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
|
|
"mode\n");
|
|
btrfs_set_opt(fs_info->mount_opt, SSD);
|
|
}
|
|
|
|
/* Set the real inode map cache flag */
|
|
if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE))
|
|
btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE);
|
|
|
|
#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
|
|
if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
|
|
ret = btrfsic_mount(tree_root, fs_devices,
|
|
btrfs_test_opt(tree_root,
|
|
CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
|
|
1 : 0,
|
|
fs_info->check_integrity_print_mask);
|
|
if (ret)
|
|
printk(KERN_WARNING "BTRFS: failed to initialize"
|
|
" integrity check module %s\n", sb->s_id);
|
|
}
|
|
#endif
|
|
ret = btrfs_read_qgroup_config(fs_info);
|
|
if (ret)
|
|
goto fail_trans_kthread;
|
|
|
|
/* do not make disk changes in broken FS */
|
|
if (btrfs_super_log_root(disk_super) != 0) {
|
|
u64 bytenr = btrfs_super_log_root(disk_super);
|
|
|
|
if (fs_devices->rw_devices == 0) {
|
|
printk(KERN_WARNING "BTRFS: log replay required "
|
|
"on RO media\n");
|
|
err = -EIO;
|
|
goto fail_qgroup;
|
|
}
|
|
blocksize =
|
|
btrfs_level_size(tree_root,
|
|
btrfs_super_log_root_level(disk_super));
|
|
|
|
log_tree_root = btrfs_alloc_root(fs_info);
|
|
if (!log_tree_root) {
|
|
err = -ENOMEM;
|
|
goto fail_qgroup;
|
|
}
|
|
|
|
__setup_root(nodesize, leafsize, sectorsize, stripesize,
|
|
log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
|
|
|
|
log_tree_root->node = read_tree_block(tree_root, bytenr,
|
|
blocksize,
|
|
generation + 1);
|
|
if (!log_tree_root->node ||
|
|
!extent_buffer_uptodate(log_tree_root->node)) {
|
|
printk(KERN_ERR "BTRFS: failed to read log tree\n");
|
|
free_extent_buffer(log_tree_root->node);
|
|
kfree(log_tree_root);
|
|
goto fail_qgroup;
|
|
}
|
|
/* returns with log_tree_root freed on success */
|
|
ret = btrfs_recover_log_trees(log_tree_root);
|
|
if (ret) {
|
|
btrfs_error(tree_root->fs_info, ret,
|
|
"Failed to recover log tree");
|
|
free_extent_buffer(log_tree_root->node);
|
|
kfree(log_tree_root);
|
|
goto fail_qgroup;
|
|
}
|
|
|
|
if (sb->s_flags & MS_RDONLY) {
|
|
ret = btrfs_commit_super(tree_root);
|
|
if (ret)
|
|
goto fail_qgroup;
|
|
}
|
|
}
|
|
|
|
ret = btrfs_find_orphan_roots(tree_root);
|
|
if (ret)
|
|
goto fail_qgroup;
|
|
|
|
if (!(sb->s_flags & MS_RDONLY)) {
|
|
ret = btrfs_cleanup_fs_roots(fs_info);
|
|
if (ret)
|
|
goto fail_qgroup;
|
|
|
|
mutex_lock(&fs_info->cleaner_mutex);
|
|
ret = btrfs_recover_relocation(tree_root);
|
|
mutex_unlock(&fs_info->cleaner_mutex);
|
|
if (ret < 0) {
|
|
printk(KERN_WARNING
|
|
"BTRFS: failed to recover relocation\n");
|
|
err = -EINVAL;
|
|
goto fail_qgroup;
|
|
}
|
|
}
|
|
|
|
location.objectid = BTRFS_FS_TREE_OBJECTID;
|
|
location.type = BTRFS_ROOT_ITEM_KEY;
|
|
location.offset = 0;
|
|
|
|
fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
|
|
if (IS_ERR(fs_info->fs_root)) {
|
|
err = PTR_ERR(fs_info->fs_root);
|
|
goto fail_qgroup;
|
|
}
|
|
|
|
if (sb->s_flags & MS_RDONLY)
|
|
return 0;
|
|
|
|
down_read(&fs_info->cleanup_work_sem);
|
|
if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
|
|
(ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
|
|
up_read(&fs_info->cleanup_work_sem);
|
|
close_ctree(tree_root);
|
|
return ret;
|
|
}
|
|
up_read(&fs_info->cleanup_work_sem);
|
|
|
|
ret = btrfs_resume_balance_async(fs_info);
|
|
if (ret) {
|
|
printk(KERN_WARNING "BTRFS: failed to resume balance\n");
|
|
close_ctree(tree_root);
|
|
return ret;
|
|
}
|
|
|
|
ret = btrfs_resume_dev_replace_async(fs_info);
|
|
if (ret) {
|
|
pr_warn("BTRFS: failed to resume dev_replace\n");
|
|
close_ctree(tree_root);
|
|
return ret;
|
|
}
|
|
|
|
btrfs_qgroup_rescan_resume(fs_info);
|
|
|
|
if (create_uuid_tree) {
|
|
pr_info("BTRFS: creating UUID tree\n");
|
|
ret = btrfs_create_uuid_tree(fs_info);
|
|
if (ret) {
|
|
pr_warn("BTRFS: failed to create the UUID tree %d\n",
|
|
ret);
|
|
close_ctree(tree_root);
|
|
return ret;
|
|
}
|
|
} else if (check_uuid_tree ||
|
|
btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
|
|
pr_info("BTRFS: checking UUID tree\n");
|
|
ret = btrfs_check_uuid_tree(fs_info);
|
|
if (ret) {
|
|
pr_warn("BTRFS: failed to check the UUID tree %d\n",
|
|
ret);
|
|
close_ctree(tree_root);
|
|
return ret;
|
|
}
|
|
} else {
|
|
fs_info->update_uuid_tree_gen = 1;
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail_qgroup:
|
|
btrfs_free_qgroup_config(fs_info);
|
|
fail_trans_kthread:
|
|
kthread_stop(fs_info->transaction_kthread);
|
|
btrfs_cleanup_transaction(fs_info->tree_root);
|
|
btrfs_free_fs_roots(fs_info);
|
|
fail_cleaner:
|
|
kthread_stop(fs_info->cleaner_kthread);
|
|
|
|
/*
|
|
* make sure we're done with the btree inode before we stop our
|
|
* kthreads
|
|
*/
|
|
filemap_write_and_wait(fs_info->btree_inode->i_mapping);
|
|
|
|
fail_sysfs:
|
|
btrfs_sysfs_remove_one(fs_info);
|
|
|
|
fail_block_groups:
|
|
btrfs_put_block_group_cache(fs_info);
|
|
btrfs_free_block_groups(fs_info);
|
|
|
|
fail_tree_roots:
|
|
free_root_pointers(fs_info, 1);
|
|
invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
|
|
|
|
fail_sb_buffer:
|
|
btrfs_stop_all_workers(fs_info);
|
|
fail_alloc:
|
|
fail_iput:
|
|
btrfs_mapping_tree_free(&fs_info->mapping_tree);
|
|
|
|
iput(fs_info->btree_inode);
|
|
fail_bio_counter:
|
|
percpu_counter_destroy(&fs_info->bio_counter);
|
|
fail_delalloc_bytes:
|
|
percpu_counter_destroy(&fs_info->delalloc_bytes);
|
|
fail_dirty_metadata_bytes:
|
|
percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
|
|
fail_bdi:
|
|
bdi_destroy(&fs_info->bdi);
|
|
fail_srcu:
|
|
cleanup_srcu_struct(&fs_info->subvol_srcu);
|
|
fail:
|
|
btrfs_free_stripe_hash_table(fs_info);
|
|
btrfs_close_devices(fs_info->fs_devices);
|
|
return err;
|
|
|
|
recovery_tree_root:
|
|
if (!btrfs_test_opt(tree_root, RECOVERY))
|
|
goto fail_tree_roots;
|
|
|
|
free_root_pointers(fs_info, 0);
|
|
|
|
/* don't use the log in recovery mode, it won't be valid */
|
|
btrfs_set_super_log_root(disk_super, 0);
|
|
|
|
/* we can't trust the free space cache either */
|
|
btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
|
|
|
|
ret = next_root_backup(fs_info, fs_info->super_copy,
|
|
&num_backups_tried, &backup_index);
|
|
if (ret == -1)
|
|
goto fail_block_groups;
|
|
goto retry_root_backup;
|
|
}
|
|
|
|
static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
|
|
{
|
|
if (uptodate) {
|
|
set_buffer_uptodate(bh);
|
|
} else {
|
|
struct btrfs_device *device = (struct btrfs_device *)
|
|
bh->b_private;
|
|
|
|
printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
|
|
"I/O error on %s\n",
|
|
rcu_str_deref(device->name));
|
|
/* note, we dont' set_buffer_write_io_error because we have
|
|
* our own ways of dealing with the IO errors
|
|
*/
|
|
clear_buffer_uptodate(bh);
|
|
btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
|
|
}
|
|
unlock_buffer(bh);
|
|
put_bh(bh);
|
|
}
|
|
|
|
struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
|
|
{
|
|
struct buffer_head *bh;
|
|
struct buffer_head *latest = NULL;
|
|
struct btrfs_super_block *super;
|
|
int i;
|
|
u64 transid = 0;
|
|
u64 bytenr;
|
|
|
|
/* we would like to check all the supers, but that would make
|
|
* a btrfs mount succeed after a mkfs from a different FS.
|
|
* So, we need to add a special mount option to scan for
|
|
* later supers, using BTRFS_SUPER_MIRROR_MAX instead
|
|
*/
|
|
for (i = 0; i < 1; i++) {
|
|
bytenr = btrfs_sb_offset(i);
|
|
if (bytenr + BTRFS_SUPER_INFO_SIZE >=
|
|
i_size_read(bdev->bd_inode))
|
|
break;
|
|
bh = __bread(bdev, bytenr / 4096,
|
|
BTRFS_SUPER_INFO_SIZE);
|
|
if (!bh)
|
|
continue;
|
|
|
|
super = (struct btrfs_super_block *)bh->b_data;
|
|
if (btrfs_super_bytenr(super) != bytenr ||
|
|
btrfs_super_magic(super) != BTRFS_MAGIC) {
|
|
brelse(bh);
|
|
continue;
|
|
}
|
|
|
|
if (!latest || btrfs_super_generation(super) > transid) {
|
|
brelse(latest);
|
|
latest = bh;
|
|
transid = btrfs_super_generation(super);
|
|
} else {
|
|
brelse(bh);
|
|
}
|
|
}
|
|
return latest;
|
|
}
|
|
|
|
/*
|
|
* this should be called twice, once with wait == 0 and
|
|
* once with wait == 1. When wait == 0 is done, all the buffer heads
|
|
* we write are pinned.
|
|
*
|
|
* They are released when wait == 1 is done.
|
|
* max_mirrors must be the same for both runs, and it indicates how
|
|
* many supers on this one device should be written.
|
|
*
|
|
* max_mirrors == 0 means to write them all.
|
|
*/
|
|
static int write_dev_supers(struct btrfs_device *device,
|
|
struct btrfs_super_block *sb,
|
|
int do_barriers, int wait, int max_mirrors)
|
|
{
|
|
struct buffer_head *bh;
|
|
int i;
|
|
int ret;
|
|
int errors = 0;
|
|
u32 crc;
|
|
u64 bytenr;
|
|
|
|
if (max_mirrors == 0)
|
|
max_mirrors = BTRFS_SUPER_MIRROR_MAX;
|
|
|
|
for (i = 0; i < max_mirrors; i++) {
|
|
bytenr = btrfs_sb_offset(i);
|
|
if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
|
|
break;
|
|
|
|
if (wait) {
|
|
bh = __find_get_block(device->bdev, bytenr / 4096,
|
|
BTRFS_SUPER_INFO_SIZE);
|
|
if (!bh) {
|
|
errors++;
|
|
continue;
|
|
}
|
|
wait_on_buffer(bh);
|
|
if (!buffer_uptodate(bh))
|
|
errors++;
|
|
|
|
/* drop our reference */
|
|
brelse(bh);
|
|
|
|
/* drop the reference from the wait == 0 run */
|
|
brelse(bh);
|
|
continue;
|
|
} else {
|
|
btrfs_set_super_bytenr(sb, bytenr);
|
|
|
|
crc = ~(u32)0;
|
|
crc = btrfs_csum_data((char *)sb +
|
|
BTRFS_CSUM_SIZE, crc,
|
|
BTRFS_SUPER_INFO_SIZE -
|
|
BTRFS_CSUM_SIZE);
|
|
btrfs_csum_final(crc, sb->csum);
|
|
|
|
/*
|
|
* one reference for us, and we leave it for the
|
|
* caller
|
|
*/
|
|
bh = __getblk(device->bdev, bytenr / 4096,
|
|
BTRFS_SUPER_INFO_SIZE);
|
|
if (!bh) {
|
|
printk(KERN_ERR "BTRFS: couldn't get super "
|
|
"buffer head for bytenr %Lu\n", bytenr);
|
|
errors++;
|
|
continue;
|
|
}
|
|
|
|
memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
|
|
|
|
/* one reference for submit_bh */
|
|
get_bh(bh);
|
|
|
|
set_buffer_uptodate(bh);
|
|
lock_buffer(bh);
|
|
bh->b_end_io = btrfs_end_buffer_write_sync;
|
|
bh->b_private = device;
|
|
}
|
|
|
|
/*
|
|
* we fua the first super. The others we allow
|
|
* to go down lazy.
|
|
*/
|
|
if (i == 0)
|
|
ret = btrfsic_submit_bh(WRITE_FUA, bh);
|
|
else
|
|
ret = btrfsic_submit_bh(WRITE_SYNC, bh);
|
|
if (ret)
|
|
errors++;
|
|
}
|
|
return errors < i ? 0 : -1;
|
|
}
|
|
|
|
/*
|
|
* endio for the write_dev_flush, this will wake anyone waiting
|
|
* for the barrier when it is done
|
|
*/
|
|
static void btrfs_end_empty_barrier(struct bio *bio, int err)
|
|
{
|
|
if (err) {
|
|
if (err == -EOPNOTSUPP)
|
|
set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
|
|
clear_bit(BIO_UPTODATE, &bio->bi_flags);
|
|
}
|
|
if (bio->bi_private)
|
|
complete(bio->bi_private);
|
|
bio_put(bio);
|
|
}
|
|
|
|
/*
|
|
* trigger flushes for one the devices. If you pass wait == 0, the flushes are
|
|
* sent down. With wait == 1, it waits for the previous flush.
|
|
*
|
|
* any device where the flush fails with eopnotsupp are flagged as not-barrier
|
|
* capable
|
|
*/
|
|
static int write_dev_flush(struct btrfs_device *device, int wait)
|
|
{
|
|
struct bio *bio;
|
|
int ret = 0;
|
|
|
|
if (device->nobarriers)
|
|
return 0;
|
|
|
|
if (wait) {
|
|
bio = device->flush_bio;
|
|
if (!bio)
|
|
return 0;
|
|
|
|
wait_for_completion(&device->flush_wait);
|
|
|
|
if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
|
|
printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
|
|
rcu_str_deref(device->name));
|
|
device->nobarriers = 1;
|
|
} else if (!bio_flagged(bio, BIO_UPTODATE)) {
|
|
ret = -EIO;
|
|
btrfs_dev_stat_inc_and_print(device,
|
|
BTRFS_DEV_STAT_FLUSH_ERRS);
|
|
}
|
|
|
|
/* drop the reference from the wait == 0 run */
|
|
bio_put(bio);
|
|
device->flush_bio = NULL;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* one reference for us, and we leave it for the
|
|
* caller
|
|
*/
|
|
device->flush_bio = NULL;
|
|
bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
|
|
if (!bio)
|
|
return -ENOMEM;
|
|
|
|
bio->bi_end_io = btrfs_end_empty_barrier;
|
|
bio->bi_bdev = device->bdev;
|
|
init_completion(&device->flush_wait);
|
|
bio->bi_private = &device->flush_wait;
|
|
device->flush_bio = bio;
|
|
|
|
bio_get(bio);
|
|
btrfsic_submit_bio(WRITE_FLUSH, bio);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* send an empty flush down to each device in parallel,
|
|
* then wait for them
|
|
*/
|
|
static int barrier_all_devices(struct btrfs_fs_info *info)
|
|
{
|
|
struct list_head *head;
|
|
struct btrfs_device *dev;
|
|
int errors_send = 0;
|
|
int errors_wait = 0;
|
|
int ret;
|
|
|
|
/* send down all the barriers */
|
|
head = &info->fs_devices->devices;
|
|
list_for_each_entry_rcu(dev, head, dev_list) {
|
|
if (dev->missing)
|
|
continue;
|
|
if (!dev->bdev) {
|
|
errors_send++;
|
|
continue;
|
|
}
|
|
if (!dev->in_fs_metadata || !dev->writeable)
|
|
continue;
|
|
|
|
ret = write_dev_flush(dev, 0);
|
|
if (ret)
|
|
errors_send++;
|
|
}
|
|
|
|
/* wait for all the barriers */
|
|
list_for_each_entry_rcu(dev, head, dev_list) {
|
|
if (dev->missing)
|
|
continue;
|
|
if (!dev->bdev) {
|
|
errors_wait++;
|
|
continue;
|
|
}
|
|
if (!dev->in_fs_metadata || !dev->writeable)
|
|
continue;
|
|
|
|
ret = write_dev_flush(dev, 1);
|
|
if (ret)
|
|
errors_wait++;
|
|
}
|
|
if (errors_send > info->num_tolerated_disk_barrier_failures ||
|
|
errors_wait > info->num_tolerated_disk_barrier_failures)
|
|
return -EIO;
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_calc_num_tolerated_disk_barrier_failures(
|
|
struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_ioctl_space_info space;
|
|
struct btrfs_space_info *sinfo;
|
|
u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
|
|
BTRFS_BLOCK_GROUP_SYSTEM,
|
|
BTRFS_BLOCK_GROUP_METADATA,
|
|
BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
|
|
int num_types = 4;
|
|
int i;
|
|
int c;
|
|
int num_tolerated_disk_barrier_failures =
|
|
(int)fs_info->fs_devices->num_devices;
|
|
|
|
for (i = 0; i < num_types; i++) {
|
|
struct btrfs_space_info *tmp;
|
|
|
|
sinfo = NULL;
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
|
|
if (tmp->flags == types[i]) {
|
|
sinfo = tmp;
|
|
break;
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
if (!sinfo)
|
|
continue;
|
|
|
|
down_read(&sinfo->groups_sem);
|
|
for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
|
|
if (!list_empty(&sinfo->block_groups[c])) {
|
|
u64 flags;
|
|
|
|
btrfs_get_block_group_info(
|
|
&sinfo->block_groups[c], &space);
|
|
if (space.total_bytes == 0 ||
|
|
space.used_bytes == 0)
|
|
continue;
|
|
flags = space.flags;
|
|
/*
|
|
* return
|
|
* 0: if dup, single or RAID0 is configured for
|
|
* any of metadata, system or data, else
|
|
* 1: if RAID5 is configured, or if RAID1 or
|
|
* RAID10 is configured and only two mirrors
|
|
* are used, else
|
|
* 2: if RAID6 is configured, else
|
|
* num_mirrors - 1: if RAID1 or RAID10 is
|
|
* configured and more than
|
|
* 2 mirrors are used.
|
|
*/
|
|
if (num_tolerated_disk_barrier_failures > 0 &&
|
|
((flags & (BTRFS_BLOCK_GROUP_DUP |
|
|
BTRFS_BLOCK_GROUP_RAID0)) ||
|
|
((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
|
|
== 0)))
|
|
num_tolerated_disk_barrier_failures = 0;
|
|
else if (num_tolerated_disk_barrier_failures > 1) {
|
|
if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
|
|
BTRFS_BLOCK_GROUP_RAID5 |
|
|
BTRFS_BLOCK_GROUP_RAID10)) {
|
|
num_tolerated_disk_barrier_failures = 1;
|
|
} else if (flags &
|
|
BTRFS_BLOCK_GROUP_RAID6) {
|
|
num_tolerated_disk_barrier_failures = 2;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
up_read(&sinfo->groups_sem);
|
|
}
|
|
|
|
return num_tolerated_disk_barrier_failures;
|
|
}
|
|
|
|
static int write_all_supers(struct btrfs_root *root, int max_mirrors)
|
|
{
|
|
struct list_head *head;
|
|
struct btrfs_device *dev;
|
|
struct btrfs_super_block *sb;
|
|
struct btrfs_dev_item *dev_item;
|
|
int ret;
|
|
int do_barriers;
|
|
int max_errors;
|
|
int total_errors = 0;
|
|
u64 flags;
|
|
|
|
do_barriers = !btrfs_test_opt(root, NOBARRIER);
|
|
backup_super_roots(root->fs_info);
|
|
|
|
sb = root->fs_info->super_for_commit;
|
|
dev_item = &sb->dev_item;
|
|
|
|
mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
|
|
head = &root->fs_info->fs_devices->devices;
|
|
max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
|
|
|
|
if (do_barriers) {
|
|
ret = barrier_all_devices(root->fs_info);
|
|
if (ret) {
|
|
mutex_unlock(
|
|
&root->fs_info->fs_devices->device_list_mutex);
|
|
btrfs_error(root->fs_info, ret,
|
|
"errors while submitting device barriers.");
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
list_for_each_entry_rcu(dev, head, dev_list) {
|
|
if (!dev->bdev) {
|
|
total_errors++;
|
|
continue;
|
|
}
|
|
if (!dev->in_fs_metadata || !dev->writeable)
|
|
continue;
|
|
|
|
btrfs_set_stack_device_generation(dev_item, 0);
|
|
btrfs_set_stack_device_type(dev_item, dev->type);
|
|
btrfs_set_stack_device_id(dev_item, dev->devid);
|
|
btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
|
|
btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
|
|
btrfs_set_stack_device_io_align(dev_item, dev->io_align);
|
|
btrfs_set_stack_device_io_width(dev_item, dev->io_width);
|
|
btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
|
|
memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
|
|
memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
|
|
|
|
flags = btrfs_super_flags(sb);
|
|
btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
|
|
|
|
ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
|
|
if (ret)
|
|
total_errors++;
|
|
}
|
|
if (total_errors > max_errors) {
|
|
btrfs_err(root->fs_info, "%d errors while writing supers",
|
|
total_errors);
|
|
mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
|
|
|
|
/* FUA is masked off if unsupported and can't be the reason */
|
|
btrfs_error(root->fs_info, -EIO,
|
|
"%d errors while writing supers", total_errors);
|
|
return -EIO;
|
|
}
|
|
|
|
total_errors = 0;
|
|
list_for_each_entry_rcu(dev, head, dev_list) {
|
|
if (!dev->bdev)
|
|
continue;
|
|
if (!dev->in_fs_metadata || !dev->writeable)
|
|
continue;
|
|
|
|
ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
|
|
if (ret)
|
|
total_errors++;
|
|
}
|
|
mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
|
|
if (total_errors > max_errors) {
|
|
btrfs_error(root->fs_info, -EIO,
|
|
"%d errors while writing supers", total_errors);
|
|
return -EIO;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int write_ctree_super(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, int max_mirrors)
|
|
{
|
|
return write_all_supers(root, max_mirrors);
|
|
}
|
|
|
|
/* Drop a fs root from the radix tree and free it. */
|
|
void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_root *root)
|
|
{
|
|
spin_lock(&fs_info->fs_roots_radix_lock);
|
|
radix_tree_delete(&fs_info->fs_roots_radix,
|
|
(unsigned long)root->root_key.objectid);
|
|
spin_unlock(&fs_info->fs_roots_radix_lock);
|
|
|
|
if (btrfs_root_refs(&root->root_item) == 0)
|
|
synchronize_srcu(&fs_info->subvol_srcu);
|
|
|
|
if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
|
|
btrfs_free_log(NULL, root);
|
|
|
|
if (root->free_ino_pinned)
|
|
__btrfs_remove_free_space_cache(root->free_ino_pinned);
|
|
if (root->free_ino_ctl)
|
|
__btrfs_remove_free_space_cache(root->free_ino_ctl);
|
|
free_fs_root(root);
|
|
}
|
|
|
|
static void free_fs_root(struct btrfs_root *root)
|
|
{
|
|
iput(root->cache_inode);
|
|
WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
|
|
btrfs_free_block_rsv(root, root->orphan_block_rsv);
|
|
root->orphan_block_rsv = NULL;
|
|
if (root->anon_dev)
|
|
free_anon_bdev(root->anon_dev);
|
|
if (root->subv_writers)
|
|
btrfs_free_subvolume_writers(root->subv_writers);
|
|
free_extent_buffer(root->node);
|
|
free_extent_buffer(root->commit_root);
|
|
kfree(root->free_ino_ctl);
|
|
kfree(root->free_ino_pinned);
|
|
kfree(root->name);
|
|
btrfs_put_fs_root(root);
|
|
}
|
|
|
|
void btrfs_free_fs_root(struct btrfs_root *root)
|
|
{
|
|
free_fs_root(root);
|
|
}
|
|
|
|
int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
|
|
{
|
|
u64 root_objectid = 0;
|
|
struct btrfs_root *gang[8];
|
|
int i = 0;
|
|
int err = 0;
|
|
unsigned int ret = 0;
|
|
int index;
|
|
|
|
while (1) {
|
|
index = srcu_read_lock(&fs_info->subvol_srcu);
|
|
ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
|
|
(void **)gang, root_objectid,
|
|
ARRAY_SIZE(gang));
|
|
if (!ret) {
|
|
srcu_read_unlock(&fs_info->subvol_srcu, index);
|
|
break;
|
|
}
|
|
root_objectid = gang[ret - 1]->root_key.objectid + 1;
|
|
|
|
for (i = 0; i < ret; i++) {
|
|
/* Avoid to grab roots in dead_roots */
|
|
if (btrfs_root_refs(&gang[i]->root_item) == 0) {
|
|
gang[i] = NULL;
|
|
continue;
|
|
}
|
|
/* grab all the search result for later use */
|
|
gang[i] = btrfs_grab_fs_root(gang[i]);
|
|
}
|
|
srcu_read_unlock(&fs_info->subvol_srcu, index);
|
|
|
|
for (i = 0; i < ret; i++) {
|
|
if (!gang[i])
|
|
continue;
|
|
root_objectid = gang[i]->root_key.objectid;
|
|
err = btrfs_orphan_cleanup(gang[i]);
|
|
if (err)
|
|
break;
|
|
btrfs_put_fs_root(gang[i]);
|
|
}
|
|
root_objectid++;
|
|
}
|
|
|
|
/* release the uncleaned roots due to error */
|
|
for (; i < ret; i++) {
|
|
if (gang[i])
|
|
btrfs_put_fs_root(gang[i]);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
int btrfs_commit_super(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_trans_handle *trans;
|
|
|
|
mutex_lock(&root->fs_info->cleaner_mutex);
|
|
btrfs_run_delayed_iputs(root);
|
|
mutex_unlock(&root->fs_info->cleaner_mutex);
|
|
wake_up_process(root->fs_info->cleaner_kthread);
|
|
|
|
/* wait until ongoing cleanup work done */
|
|
down_write(&root->fs_info->cleanup_work_sem);
|
|
up_write(&root->fs_info->cleanup_work_sem);
|
|
|
|
trans = btrfs_join_transaction(root);
|
|
if (IS_ERR(trans))
|
|
return PTR_ERR(trans);
|
|
return btrfs_commit_transaction(trans, root);
|
|
}
|
|
|
|
int close_ctree(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
int ret;
|
|
|
|
fs_info->closing = 1;
|
|
smp_mb();
|
|
|
|
/* wait for the uuid_scan task to finish */
|
|
down(&fs_info->uuid_tree_rescan_sem);
|
|
/* avoid complains from lockdep et al., set sem back to initial state */
|
|
up(&fs_info->uuid_tree_rescan_sem);
|
|
|
|
/* pause restriper - we want to resume on mount */
|
|
btrfs_pause_balance(fs_info);
|
|
|
|
btrfs_dev_replace_suspend_for_unmount(fs_info);
|
|
|
|
btrfs_scrub_cancel(fs_info);
|
|
|
|
/* wait for any defraggers to finish */
|
|
wait_event(fs_info->transaction_wait,
|
|
(atomic_read(&fs_info->defrag_running) == 0));
|
|
|
|
/* clear out the rbtree of defraggable inodes */
|
|
btrfs_cleanup_defrag_inodes(fs_info);
|
|
|
|
cancel_work_sync(&fs_info->async_reclaim_work);
|
|
|
|
if (!(fs_info->sb->s_flags & MS_RDONLY)) {
|
|
ret = btrfs_commit_super(root);
|
|
if (ret)
|
|
btrfs_err(root->fs_info, "commit super ret %d", ret);
|
|
}
|
|
|
|
if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
|
|
btrfs_error_commit_super(root);
|
|
|
|
kthread_stop(fs_info->transaction_kthread);
|
|
kthread_stop(fs_info->cleaner_kthread);
|
|
|
|
fs_info->closing = 2;
|
|
smp_mb();
|
|
|
|
btrfs_free_qgroup_config(root->fs_info);
|
|
|
|
if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
|
|
btrfs_info(root->fs_info, "at unmount delalloc count %lld",
|
|
percpu_counter_sum(&fs_info->delalloc_bytes));
|
|
}
|
|
|
|
btrfs_sysfs_remove_one(fs_info);
|
|
|
|
btrfs_free_fs_roots(fs_info);
|
|
|
|
btrfs_put_block_group_cache(fs_info);
|
|
|
|
btrfs_free_block_groups(fs_info);
|
|
|
|
/*
|
|
* we must make sure there is not any read request to
|
|
* submit after we stopping all workers.
|
|
*/
|
|
invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
|
|
btrfs_stop_all_workers(fs_info);
|
|
|
|
free_root_pointers(fs_info, 1);
|
|
|
|
iput(fs_info->btree_inode);
|
|
|
|
#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
|
|
if (btrfs_test_opt(root, CHECK_INTEGRITY))
|
|
btrfsic_unmount(root, fs_info->fs_devices);
|
|
#endif
|
|
|
|
btrfs_close_devices(fs_info->fs_devices);
|
|
btrfs_mapping_tree_free(&fs_info->mapping_tree);
|
|
|
|
percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
|
|
percpu_counter_destroy(&fs_info->delalloc_bytes);
|
|
percpu_counter_destroy(&fs_info->bio_counter);
|
|
bdi_destroy(&fs_info->bdi);
|
|
cleanup_srcu_struct(&fs_info->subvol_srcu);
|
|
|
|
btrfs_free_stripe_hash_table(fs_info);
|
|
|
|
btrfs_free_block_rsv(root, root->orphan_block_rsv);
|
|
root->orphan_block_rsv = NULL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
|
|
int atomic)
|
|
{
|
|
int ret;
|
|
struct inode *btree_inode = buf->pages[0]->mapping->host;
|
|
|
|
ret = extent_buffer_uptodate(buf);
|
|
if (!ret)
|
|
return ret;
|
|
|
|
ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
|
|
parent_transid, atomic);
|
|
if (ret == -EAGAIN)
|
|
return ret;
|
|
return !ret;
|
|
}
|
|
|
|
int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
|
|
{
|
|
return set_extent_buffer_uptodate(buf);
|
|
}
|
|
|
|
void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
|
|
{
|
|
struct btrfs_root *root;
|
|
u64 transid = btrfs_header_generation(buf);
|
|
int was_dirty;
|
|
|
|
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
|
|
/*
|
|
* This is a fast path so only do this check if we have sanity tests
|
|
* enabled. Normal people shouldn't be marking dummy buffers as dirty
|
|
* outside of the sanity tests.
|
|
*/
|
|
if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
|
|
return;
|
|
#endif
|
|
root = BTRFS_I(buf->pages[0]->mapping->host)->root;
|
|
btrfs_assert_tree_locked(buf);
|
|
if (transid != root->fs_info->generation)
|
|
WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
|
|
"found %llu running %llu\n",
|
|
buf->start, transid, root->fs_info->generation);
|
|
was_dirty = set_extent_buffer_dirty(buf);
|
|
if (!was_dirty)
|
|
__percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
|
|
buf->len,
|
|
root->fs_info->dirty_metadata_batch);
|
|
#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
|
|
if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
|
|
btrfs_print_leaf(root, buf);
|
|
ASSERT(0);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
|
|
int flush_delayed)
|
|
{
|
|
/*
|
|
* looks as though older kernels can get into trouble with
|
|
* this code, they end up stuck in balance_dirty_pages forever
|
|
*/
|
|
int ret;
|
|
|
|
if (current->flags & PF_MEMALLOC)
|
|
return;
|
|
|
|
if (flush_delayed)
|
|
btrfs_balance_delayed_items(root);
|
|
|
|
ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
|
|
BTRFS_DIRTY_METADATA_THRESH);
|
|
if (ret > 0) {
|
|
balance_dirty_pages_ratelimited(
|
|
root->fs_info->btree_inode->i_mapping);
|
|
}
|
|
return;
|
|
}
|
|
|
|
void btrfs_btree_balance_dirty(struct btrfs_root *root)
|
|
{
|
|
__btrfs_btree_balance_dirty(root, 1);
|
|
}
|
|
|
|
void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
|
|
{
|
|
__btrfs_btree_balance_dirty(root, 0);
|
|
}
|
|
|
|
int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
|
|
return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
|
|
}
|
|
|
|
static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
|
|
int read_only)
|
|
{
|
|
/*
|
|
* Placeholder for checks
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
static void btrfs_error_commit_super(struct btrfs_root *root)
|
|
{
|
|
mutex_lock(&root->fs_info->cleaner_mutex);
|
|
btrfs_run_delayed_iputs(root);
|
|
mutex_unlock(&root->fs_info->cleaner_mutex);
|
|
|
|
down_write(&root->fs_info->cleanup_work_sem);
|
|
up_write(&root->fs_info->cleanup_work_sem);
|
|
|
|
/* cleanup FS via transaction */
|
|
btrfs_cleanup_transaction(root);
|
|
}
|
|
|
|
static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
|
|
struct btrfs_root *root)
|
|
{
|
|
struct btrfs_inode *btrfs_inode;
|
|
struct list_head splice;
|
|
|
|
INIT_LIST_HEAD(&splice);
|
|
|
|
mutex_lock(&root->fs_info->ordered_operations_mutex);
|
|
spin_lock(&root->fs_info->ordered_root_lock);
|
|
|
|
list_splice_init(&t->ordered_operations, &splice);
|
|
while (!list_empty(&splice)) {
|
|
btrfs_inode = list_entry(splice.next, struct btrfs_inode,
|
|
ordered_operations);
|
|
|
|
list_del_init(&btrfs_inode->ordered_operations);
|
|
spin_unlock(&root->fs_info->ordered_root_lock);
|
|
|
|
btrfs_invalidate_inodes(btrfs_inode->root);
|
|
|
|
spin_lock(&root->fs_info->ordered_root_lock);
|
|
}
|
|
|
|
spin_unlock(&root->fs_info->ordered_root_lock);
|
|
mutex_unlock(&root->fs_info->ordered_operations_mutex);
|
|
}
|
|
|
|
static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_ordered_extent *ordered;
|
|
|
|
spin_lock(&root->ordered_extent_lock);
|
|
/*
|
|
* This will just short circuit the ordered completion stuff which will
|
|
* make sure the ordered extent gets properly cleaned up.
|
|
*/
|
|
list_for_each_entry(ordered, &root->ordered_extents,
|
|
root_extent_list)
|
|
set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
|
|
spin_unlock(&root->ordered_extent_lock);
|
|
}
|
|
|
|
static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_root *root;
|
|
struct list_head splice;
|
|
|
|
INIT_LIST_HEAD(&splice);
|
|
|
|
spin_lock(&fs_info->ordered_root_lock);
|
|
list_splice_init(&fs_info->ordered_roots, &splice);
|
|
while (!list_empty(&splice)) {
|
|
root = list_first_entry(&splice, struct btrfs_root,
|
|
ordered_root);
|
|
list_move_tail(&root->ordered_root,
|
|
&fs_info->ordered_roots);
|
|
|
|
spin_unlock(&fs_info->ordered_root_lock);
|
|
btrfs_destroy_ordered_extents(root);
|
|
|
|
cond_resched();
|
|
spin_lock(&fs_info->ordered_root_lock);
|
|
}
|
|
spin_unlock(&fs_info->ordered_root_lock);
|
|
}
|
|
|
|
static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
struct rb_node *node;
|
|
struct btrfs_delayed_ref_root *delayed_refs;
|
|
struct btrfs_delayed_ref_node *ref;
|
|
int ret = 0;
|
|
|
|
delayed_refs = &trans->delayed_refs;
|
|
|
|
spin_lock(&delayed_refs->lock);
|
|
if (atomic_read(&delayed_refs->num_entries) == 0) {
|
|
spin_unlock(&delayed_refs->lock);
|
|
btrfs_info(root->fs_info, "delayed_refs has NO entry");
|
|
return ret;
|
|
}
|
|
|
|
while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
|
|
struct btrfs_delayed_ref_head *head;
|
|
bool pin_bytes = false;
|
|
|
|
head = rb_entry(node, struct btrfs_delayed_ref_head,
|
|
href_node);
|
|
if (!mutex_trylock(&head->mutex)) {
|
|
atomic_inc(&head->node.refs);
|
|
spin_unlock(&delayed_refs->lock);
|
|
|
|
mutex_lock(&head->mutex);
|
|
mutex_unlock(&head->mutex);
|
|
btrfs_put_delayed_ref(&head->node);
|
|
spin_lock(&delayed_refs->lock);
|
|
continue;
|
|
}
|
|
spin_lock(&head->lock);
|
|
while ((node = rb_first(&head->ref_root)) != NULL) {
|
|
ref = rb_entry(node, struct btrfs_delayed_ref_node,
|
|
rb_node);
|
|
ref->in_tree = 0;
|
|
rb_erase(&ref->rb_node, &head->ref_root);
|
|
atomic_dec(&delayed_refs->num_entries);
|
|
btrfs_put_delayed_ref(ref);
|
|
}
|
|
if (head->must_insert_reserved)
|
|
pin_bytes = true;
|
|
btrfs_free_delayed_extent_op(head->extent_op);
|
|
delayed_refs->num_heads--;
|
|
if (head->processing == 0)
|
|
delayed_refs->num_heads_ready--;
|
|
atomic_dec(&delayed_refs->num_entries);
|
|
head->node.in_tree = 0;
|
|
rb_erase(&head->href_node, &delayed_refs->href_root);
|
|
spin_unlock(&head->lock);
|
|
spin_unlock(&delayed_refs->lock);
|
|
mutex_unlock(&head->mutex);
|
|
|
|
if (pin_bytes)
|
|
btrfs_pin_extent(root, head->node.bytenr,
|
|
head->node.num_bytes, 1);
|
|
btrfs_put_delayed_ref(&head->node);
|
|
cond_resched();
|
|
spin_lock(&delayed_refs->lock);
|
|
}
|
|
|
|
spin_unlock(&delayed_refs->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_inode *btrfs_inode;
|
|
struct list_head splice;
|
|
|
|
INIT_LIST_HEAD(&splice);
|
|
|
|
spin_lock(&root->delalloc_lock);
|
|
list_splice_init(&root->delalloc_inodes, &splice);
|
|
|
|
while (!list_empty(&splice)) {
|
|
btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
|
|
delalloc_inodes);
|
|
|
|
list_del_init(&btrfs_inode->delalloc_inodes);
|
|
clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
|
|
&btrfs_inode->runtime_flags);
|
|
spin_unlock(&root->delalloc_lock);
|
|
|
|
btrfs_invalidate_inodes(btrfs_inode->root);
|
|
|
|
spin_lock(&root->delalloc_lock);
|
|
}
|
|
|
|
spin_unlock(&root->delalloc_lock);
|
|
}
|
|
|
|
static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_root *root;
|
|
struct list_head splice;
|
|
|
|
INIT_LIST_HEAD(&splice);
|
|
|
|
spin_lock(&fs_info->delalloc_root_lock);
|
|
list_splice_init(&fs_info->delalloc_roots, &splice);
|
|
while (!list_empty(&splice)) {
|
|
root = list_first_entry(&splice, struct btrfs_root,
|
|
delalloc_root);
|
|
list_del_init(&root->delalloc_root);
|
|
root = btrfs_grab_fs_root(root);
|
|
BUG_ON(!root);
|
|
spin_unlock(&fs_info->delalloc_root_lock);
|
|
|
|
btrfs_destroy_delalloc_inodes(root);
|
|
btrfs_put_fs_root(root);
|
|
|
|
spin_lock(&fs_info->delalloc_root_lock);
|
|
}
|
|
spin_unlock(&fs_info->delalloc_root_lock);
|
|
}
|
|
|
|
static int btrfs_destroy_marked_extents(struct btrfs_root *root,
|
|
struct extent_io_tree *dirty_pages,
|
|
int mark)
|
|
{
|
|
int ret;
|
|
struct extent_buffer *eb;
|
|
u64 start = 0;
|
|
u64 end;
|
|
|
|
while (1) {
|
|
ret = find_first_extent_bit(dirty_pages, start, &start, &end,
|
|
mark, NULL);
|
|
if (ret)
|
|
break;
|
|
|
|
clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
|
|
while (start <= end) {
|
|
eb = btrfs_find_tree_block(root, start,
|
|
root->leafsize);
|
|
start += root->leafsize;
|
|
if (!eb)
|
|
continue;
|
|
wait_on_extent_buffer_writeback(eb);
|
|
|
|
if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
|
|
&eb->bflags))
|
|
clear_extent_buffer_dirty(eb);
|
|
free_extent_buffer_stale(eb);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
|
|
struct extent_io_tree *pinned_extents)
|
|
{
|
|
struct extent_io_tree *unpin;
|
|
u64 start;
|
|
u64 end;
|
|
int ret;
|
|
bool loop = true;
|
|
|
|
unpin = pinned_extents;
|
|
again:
|
|
while (1) {
|
|
ret = find_first_extent_bit(unpin, 0, &start, &end,
|
|
EXTENT_DIRTY, NULL);
|
|
if (ret)
|
|
break;
|
|
|
|
/* opt_discard */
|
|
if (btrfs_test_opt(root, DISCARD))
|
|
ret = btrfs_error_discard_extent(root, start,
|
|
end + 1 - start,
|
|
NULL);
|
|
|
|
clear_extent_dirty(unpin, start, end, GFP_NOFS);
|
|
btrfs_error_unpin_extent_range(root, start, end);
|
|
cond_resched();
|
|
}
|
|
|
|
if (loop) {
|
|
if (unpin == &root->fs_info->freed_extents[0])
|
|
unpin = &root->fs_info->freed_extents[1];
|
|
else
|
|
unpin = &root->fs_info->freed_extents[0];
|
|
loop = false;
|
|
goto again;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
btrfs_destroy_ordered_operations(cur_trans, root);
|
|
|
|
btrfs_destroy_delayed_refs(cur_trans, root);
|
|
|
|
cur_trans->state = TRANS_STATE_COMMIT_START;
|
|
wake_up(&root->fs_info->transaction_blocked_wait);
|
|
|
|
cur_trans->state = TRANS_STATE_UNBLOCKED;
|
|
wake_up(&root->fs_info->transaction_wait);
|
|
|
|
btrfs_destroy_delayed_inodes(root);
|
|
btrfs_assert_delayed_root_empty(root);
|
|
|
|
btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
|
|
EXTENT_DIRTY);
|
|
btrfs_destroy_pinned_extent(root,
|
|
root->fs_info->pinned_extents);
|
|
|
|
cur_trans->state =TRANS_STATE_COMPLETED;
|
|
wake_up(&cur_trans->commit_wait);
|
|
|
|
/*
|
|
memset(cur_trans, 0, sizeof(*cur_trans));
|
|
kmem_cache_free(btrfs_transaction_cachep, cur_trans);
|
|
*/
|
|
}
|
|
|
|
static int btrfs_cleanup_transaction(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_transaction *t;
|
|
|
|
mutex_lock(&root->fs_info->transaction_kthread_mutex);
|
|
|
|
spin_lock(&root->fs_info->trans_lock);
|
|
while (!list_empty(&root->fs_info->trans_list)) {
|
|
t = list_first_entry(&root->fs_info->trans_list,
|
|
struct btrfs_transaction, list);
|
|
if (t->state >= TRANS_STATE_COMMIT_START) {
|
|
atomic_inc(&t->use_count);
|
|
spin_unlock(&root->fs_info->trans_lock);
|
|
btrfs_wait_for_commit(root, t->transid);
|
|
btrfs_put_transaction(t);
|
|
spin_lock(&root->fs_info->trans_lock);
|
|
continue;
|
|
}
|
|
if (t == root->fs_info->running_transaction) {
|
|
t->state = TRANS_STATE_COMMIT_DOING;
|
|
spin_unlock(&root->fs_info->trans_lock);
|
|
/*
|
|
* We wait for 0 num_writers since we don't hold a trans
|
|
* handle open currently for this transaction.
|
|
*/
|
|
wait_event(t->writer_wait,
|
|
atomic_read(&t->num_writers) == 0);
|
|
} else {
|
|
spin_unlock(&root->fs_info->trans_lock);
|
|
}
|
|
btrfs_cleanup_one_transaction(t, root);
|
|
|
|
spin_lock(&root->fs_info->trans_lock);
|
|
if (t == root->fs_info->running_transaction)
|
|
root->fs_info->running_transaction = NULL;
|
|
list_del_init(&t->list);
|
|
spin_unlock(&root->fs_info->trans_lock);
|
|
|
|
btrfs_put_transaction(t);
|
|
trace_btrfs_transaction_commit(root);
|
|
spin_lock(&root->fs_info->trans_lock);
|
|
}
|
|
spin_unlock(&root->fs_info->trans_lock);
|
|
btrfs_destroy_all_ordered_extents(root->fs_info);
|
|
btrfs_destroy_delayed_inodes(root);
|
|
btrfs_assert_delayed_root_empty(root);
|
|
btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
|
|
btrfs_destroy_all_delalloc_inodes(root->fs_info);
|
|
mutex_unlock(&root->fs_info->transaction_kthread_mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct extent_io_ops btree_extent_io_ops = {
|
|
.readpage_end_io_hook = btree_readpage_end_io_hook,
|
|
.readpage_io_failed_hook = btree_io_failed_hook,
|
|
.submit_bio_hook = btree_submit_bio_hook,
|
|
/* note we're sharing with inode.c for the merge bio hook */
|
|
.merge_bio_hook = btrfs_merge_bio_hook,
|
|
};
|