mirror of https://gitee.com/openkylin/linux.git
1745 lines
43 KiB
C
1745 lines
43 KiB
C
/*
|
|
* Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
|
|
* Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
|
|
*
|
|
* Right now, I am very wasteful with the buffers. I allocate memory
|
|
* pages and then divide them into 2K frame buffers. This way I know I
|
|
* have buffers large enough to hold one frame within one buffer descriptor.
|
|
* Once I get this working, I will use 64 or 128 byte CPM buffers, which
|
|
* will be much more memory efficient and will easily handle lots of
|
|
* small packets.
|
|
*
|
|
* Much better multiple PHY support by Magnus Damm.
|
|
* Copyright (c) 2000 Ericsson Radio Systems AB.
|
|
*
|
|
* Support for FEC controller of ColdFire processors.
|
|
* Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
|
|
*
|
|
* Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
|
|
* Copyright (c) 2004-2006 Macq Electronique SA.
|
|
*
|
|
* Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/string.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/init.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/io.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/phy.h>
|
|
#include <linux/fec.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_device.h>
|
|
#include <linux/of_gpio.h>
|
|
#include <linux/of_net.h>
|
|
|
|
#include <asm/cacheflush.h>
|
|
|
|
#ifndef CONFIG_ARM
|
|
#include <asm/coldfire.h>
|
|
#include <asm/mcfsim.h>
|
|
#endif
|
|
|
|
#include "fec.h"
|
|
|
|
#if defined(CONFIG_ARM)
|
|
#define FEC_ALIGNMENT 0xf
|
|
#else
|
|
#define FEC_ALIGNMENT 0x3
|
|
#endif
|
|
|
|
#define DRIVER_NAME "fec"
|
|
|
|
/* Controller is ENET-MAC */
|
|
#define FEC_QUIRK_ENET_MAC (1 << 0)
|
|
/* Controller needs driver to swap frame */
|
|
#define FEC_QUIRK_SWAP_FRAME (1 << 1)
|
|
/* Controller uses gasket */
|
|
#define FEC_QUIRK_USE_GASKET (1 << 2)
|
|
/* Controller has GBIT support */
|
|
#define FEC_QUIRK_HAS_GBIT (1 << 3)
|
|
|
|
static struct platform_device_id fec_devtype[] = {
|
|
{
|
|
/* keep it for coldfire */
|
|
.name = DRIVER_NAME,
|
|
.driver_data = 0,
|
|
}, {
|
|
.name = "imx25-fec",
|
|
.driver_data = FEC_QUIRK_USE_GASKET,
|
|
}, {
|
|
.name = "imx27-fec",
|
|
.driver_data = 0,
|
|
}, {
|
|
.name = "imx28-fec",
|
|
.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME,
|
|
}, {
|
|
.name = "imx6q-fec",
|
|
.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT,
|
|
}, {
|
|
/* sentinel */
|
|
}
|
|
};
|
|
MODULE_DEVICE_TABLE(platform, fec_devtype);
|
|
|
|
enum imx_fec_type {
|
|
IMX25_FEC = 1, /* runs on i.mx25/50/53 */
|
|
IMX27_FEC, /* runs on i.mx27/35/51 */
|
|
IMX28_FEC,
|
|
IMX6Q_FEC,
|
|
};
|
|
|
|
static const struct of_device_id fec_dt_ids[] = {
|
|
{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
|
|
{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
|
|
{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
|
|
{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
|
|
{ /* sentinel */ }
|
|
};
|
|
MODULE_DEVICE_TABLE(of, fec_dt_ids);
|
|
|
|
static unsigned char macaddr[ETH_ALEN];
|
|
module_param_array(macaddr, byte, NULL, 0);
|
|
MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
|
|
|
|
#if defined(CONFIG_M5272)
|
|
/*
|
|
* Some hardware gets it MAC address out of local flash memory.
|
|
* if this is non-zero then assume it is the address to get MAC from.
|
|
*/
|
|
#if defined(CONFIG_NETtel)
|
|
#define FEC_FLASHMAC 0xf0006006
|
|
#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
|
|
#define FEC_FLASHMAC 0xf0006000
|
|
#elif defined(CONFIG_CANCam)
|
|
#define FEC_FLASHMAC 0xf0020000
|
|
#elif defined (CONFIG_M5272C3)
|
|
#define FEC_FLASHMAC (0xffe04000 + 4)
|
|
#elif defined(CONFIG_MOD5272)
|
|
#define FEC_FLASHMAC 0xffc0406b
|
|
#else
|
|
#define FEC_FLASHMAC 0
|
|
#endif
|
|
#endif /* CONFIG_M5272 */
|
|
|
|
/* The number of Tx and Rx buffers. These are allocated from the page
|
|
* pool. The code may assume these are power of two, so it it best
|
|
* to keep them that size.
|
|
* We don't need to allocate pages for the transmitter. We just use
|
|
* the skbuffer directly.
|
|
*/
|
|
#define FEC_ENET_RX_PAGES 8
|
|
#define FEC_ENET_RX_FRSIZE 2048
|
|
#define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
|
|
#define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
|
|
#define FEC_ENET_TX_FRSIZE 2048
|
|
#define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
|
|
#define TX_RING_SIZE 16 /* Must be power of two */
|
|
#define TX_RING_MOD_MASK 15 /* for this to work */
|
|
|
|
#if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
|
|
#error "FEC: descriptor ring size constants too large"
|
|
#endif
|
|
|
|
/* Interrupt events/masks. */
|
|
#define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
|
|
#define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
|
|
#define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
|
|
#define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
|
|
#define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
|
|
#define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
|
|
#define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
|
|
#define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
|
|
#define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
|
|
#define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
|
|
|
|
#define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
|
|
|
|
/* The FEC stores dest/src/type, data, and checksum for receive packets.
|
|
*/
|
|
#define PKT_MAXBUF_SIZE 1518
|
|
#define PKT_MINBUF_SIZE 64
|
|
#define PKT_MAXBLR_SIZE 1520
|
|
|
|
/* This device has up to three irqs on some platforms */
|
|
#define FEC_IRQ_NUM 3
|
|
|
|
/*
|
|
* The 5270/5271/5280/5282/532x RX control register also contains maximum frame
|
|
* size bits. Other FEC hardware does not, so we need to take that into
|
|
* account when setting it.
|
|
*/
|
|
#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
|
|
defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
|
|
#define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
|
|
#else
|
|
#define OPT_FRAME_SIZE 0
|
|
#endif
|
|
|
|
/* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
|
|
* tx_bd_base always point to the base of the buffer descriptors. The
|
|
* cur_rx and cur_tx point to the currently available buffer.
|
|
* The dirty_tx tracks the current buffer that is being sent by the
|
|
* controller. The cur_tx and dirty_tx are equal under both completely
|
|
* empty and completely full conditions. The empty/ready indicator in
|
|
* the buffer descriptor determines the actual condition.
|
|
*/
|
|
struct fec_enet_private {
|
|
/* Hardware registers of the FEC device */
|
|
void __iomem *hwp;
|
|
|
|
struct net_device *netdev;
|
|
|
|
struct clk *clk;
|
|
|
|
/* The saved address of a sent-in-place packet/buffer, for skfree(). */
|
|
unsigned char *tx_bounce[TX_RING_SIZE];
|
|
struct sk_buff* tx_skbuff[TX_RING_SIZE];
|
|
struct sk_buff* rx_skbuff[RX_RING_SIZE];
|
|
ushort skb_cur;
|
|
ushort skb_dirty;
|
|
|
|
/* CPM dual port RAM relative addresses */
|
|
dma_addr_t bd_dma;
|
|
/* Address of Rx and Tx buffers */
|
|
struct bufdesc *rx_bd_base;
|
|
struct bufdesc *tx_bd_base;
|
|
/* The next free ring entry */
|
|
struct bufdesc *cur_rx, *cur_tx;
|
|
/* The ring entries to be free()ed */
|
|
struct bufdesc *dirty_tx;
|
|
|
|
uint tx_full;
|
|
/* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
|
|
spinlock_t hw_lock;
|
|
|
|
struct platform_device *pdev;
|
|
|
|
int opened;
|
|
int dev_id;
|
|
|
|
/* Phylib and MDIO interface */
|
|
struct mii_bus *mii_bus;
|
|
struct phy_device *phy_dev;
|
|
int mii_timeout;
|
|
uint phy_speed;
|
|
phy_interface_t phy_interface;
|
|
int link;
|
|
int full_duplex;
|
|
struct completion mdio_done;
|
|
int irq[FEC_IRQ_NUM];
|
|
};
|
|
|
|
/* FEC MII MMFR bits definition */
|
|
#define FEC_MMFR_ST (1 << 30)
|
|
#define FEC_MMFR_OP_READ (2 << 28)
|
|
#define FEC_MMFR_OP_WRITE (1 << 28)
|
|
#define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
|
|
#define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
|
|
#define FEC_MMFR_TA (2 << 16)
|
|
#define FEC_MMFR_DATA(v) (v & 0xffff)
|
|
|
|
#define FEC_MII_TIMEOUT 30000 /* us */
|
|
|
|
/* Transmitter timeout */
|
|
#define TX_TIMEOUT (2 * HZ)
|
|
|
|
static int mii_cnt;
|
|
|
|
static void *swap_buffer(void *bufaddr, int len)
|
|
{
|
|
int i;
|
|
unsigned int *buf = bufaddr;
|
|
|
|
for (i = 0; i < (len + 3) / 4; i++, buf++)
|
|
*buf = cpu_to_be32(*buf);
|
|
|
|
return bufaddr;
|
|
}
|
|
|
|
static netdev_tx_t
|
|
fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
const struct platform_device_id *id_entry =
|
|
platform_get_device_id(fep->pdev);
|
|
struct bufdesc *bdp;
|
|
void *bufaddr;
|
|
unsigned short status;
|
|
unsigned long flags;
|
|
|
|
if (!fep->link) {
|
|
/* Link is down or autonegotiation is in progress. */
|
|
return NETDEV_TX_BUSY;
|
|
}
|
|
|
|
spin_lock_irqsave(&fep->hw_lock, flags);
|
|
/* Fill in a Tx ring entry */
|
|
bdp = fep->cur_tx;
|
|
|
|
status = bdp->cbd_sc;
|
|
|
|
if (status & BD_ENET_TX_READY) {
|
|
/* Ooops. All transmit buffers are full. Bail out.
|
|
* This should not happen, since ndev->tbusy should be set.
|
|
*/
|
|
printk("%s: tx queue full!.\n", ndev->name);
|
|
spin_unlock_irqrestore(&fep->hw_lock, flags);
|
|
return NETDEV_TX_BUSY;
|
|
}
|
|
|
|
/* Clear all of the status flags */
|
|
status &= ~BD_ENET_TX_STATS;
|
|
|
|
/* Set buffer length and buffer pointer */
|
|
bufaddr = skb->data;
|
|
bdp->cbd_datlen = skb->len;
|
|
|
|
/*
|
|
* On some FEC implementations data must be aligned on
|
|
* 4-byte boundaries. Use bounce buffers to copy data
|
|
* and get it aligned. Ugh.
|
|
*/
|
|
if (((unsigned long) bufaddr) & FEC_ALIGNMENT) {
|
|
unsigned int index;
|
|
index = bdp - fep->tx_bd_base;
|
|
memcpy(fep->tx_bounce[index], skb->data, skb->len);
|
|
bufaddr = fep->tx_bounce[index];
|
|
}
|
|
|
|
/*
|
|
* Some design made an incorrect assumption on endian mode of
|
|
* the system that it's running on. As the result, driver has to
|
|
* swap every frame going to and coming from the controller.
|
|
*/
|
|
if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
|
|
swap_buffer(bufaddr, skb->len);
|
|
|
|
/* Save skb pointer */
|
|
fep->tx_skbuff[fep->skb_cur] = skb;
|
|
|
|
ndev->stats.tx_bytes += skb->len;
|
|
fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
|
|
|
|
/* Push the data cache so the CPM does not get stale memory
|
|
* data.
|
|
*/
|
|
bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, bufaddr,
|
|
FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
|
|
|
|
/* Send it on its way. Tell FEC it's ready, interrupt when done,
|
|
* it's the last BD of the frame, and to put the CRC on the end.
|
|
*/
|
|
status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
|
|
| BD_ENET_TX_LAST | BD_ENET_TX_TC);
|
|
bdp->cbd_sc = status;
|
|
|
|
/* Trigger transmission start */
|
|
writel(0, fep->hwp + FEC_X_DES_ACTIVE);
|
|
|
|
/* If this was the last BD in the ring, start at the beginning again. */
|
|
if (status & BD_ENET_TX_WRAP)
|
|
bdp = fep->tx_bd_base;
|
|
else
|
|
bdp++;
|
|
|
|
if (bdp == fep->dirty_tx) {
|
|
fep->tx_full = 1;
|
|
netif_stop_queue(ndev);
|
|
}
|
|
|
|
fep->cur_tx = bdp;
|
|
|
|
skb_tx_timestamp(skb);
|
|
|
|
spin_unlock_irqrestore(&fep->hw_lock, flags);
|
|
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
/* This function is called to start or restart the FEC during a link
|
|
* change. This only happens when switching between half and full
|
|
* duplex.
|
|
*/
|
|
static void
|
|
fec_restart(struct net_device *ndev, int duplex)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
const struct platform_device_id *id_entry =
|
|
platform_get_device_id(fep->pdev);
|
|
int i;
|
|
u32 temp_mac[2];
|
|
u32 rcntl = OPT_FRAME_SIZE | 0x04;
|
|
u32 ecntl = 0x2; /* ETHEREN */
|
|
|
|
/* Whack a reset. We should wait for this. */
|
|
writel(1, fep->hwp + FEC_ECNTRL);
|
|
udelay(10);
|
|
|
|
/*
|
|
* enet-mac reset will reset mac address registers too,
|
|
* so need to reconfigure it.
|
|
*/
|
|
if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
|
|
memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
|
|
writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
|
|
writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
|
|
}
|
|
|
|
/* Clear any outstanding interrupt. */
|
|
writel(0xffc00000, fep->hwp + FEC_IEVENT);
|
|
|
|
/* Reset all multicast. */
|
|
writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
|
|
writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
|
|
#ifndef CONFIG_M5272
|
|
writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
|
|
writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
|
|
#endif
|
|
|
|
/* Set maximum receive buffer size. */
|
|
writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
|
|
|
|
/* Set receive and transmit descriptor base. */
|
|
writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
|
|
writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc) * RX_RING_SIZE,
|
|
fep->hwp + FEC_X_DES_START);
|
|
|
|
fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
|
|
fep->cur_rx = fep->rx_bd_base;
|
|
|
|
/* Reset SKB transmit buffers. */
|
|
fep->skb_cur = fep->skb_dirty = 0;
|
|
for (i = 0; i <= TX_RING_MOD_MASK; i++) {
|
|
if (fep->tx_skbuff[i]) {
|
|
dev_kfree_skb_any(fep->tx_skbuff[i]);
|
|
fep->tx_skbuff[i] = NULL;
|
|
}
|
|
}
|
|
|
|
/* Enable MII mode */
|
|
if (duplex) {
|
|
/* FD enable */
|
|
writel(0x04, fep->hwp + FEC_X_CNTRL);
|
|
} else {
|
|
/* No Rcv on Xmit */
|
|
rcntl |= 0x02;
|
|
writel(0x0, fep->hwp + FEC_X_CNTRL);
|
|
}
|
|
|
|
fep->full_duplex = duplex;
|
|
|
|
/* Set MII speed */
|
|
writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
|
|
|
|
/*
|
|
* The phy interface and speed need to get configured
|
|
* differently on enet-mac.
|
|
*/
|
|
if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
|
|
/* Enable flow control and length check */
|
|
rcntl |= 0x40000000 | 0x00000020;
|
|
|
|
/* RGMII, RMII or MII */
|
|
if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII)
|
|
rcntl |= (1 << 6);
|
|
else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
|
|
rcntl |= (1 << 8);
|
|
else
|
|
rcntl &= ~(1 << 8);
|
|
|
|
/* 1G, 100M or 10M */
|
|
if (fep->phy_dev) {
|
|
if (fep->phy_dev->speed == SPEED_1000)
|
|
ecntl |= (1 << 5);
|
|
else if (fep->phy_dev->speed == SPEED_100)
|
|
rcntl &= ~(1 << 9);
|
|
else
|
|
rcntl |= (1 << 9);
|
|
}
|
|
} else {
|
|
#ifdef FEC_MIIGSK_ENR
|
|
if (id_entry->driver_data & FEC_QUIRK_USE_GASKET) {
|
|
u32 cfgr;
|
|
/* disable the gasket and wait */
|
|
writel(0, fep->hwp + FEC_MIIGSK_ENR);
|
|
while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
|
|
udelay(1);
|
|
|
|
/*
|
|
* configure the gasket:
|
|
* RMII, 50 MHz, no loopback, no echo
|
|
* MII, 25 MHz, no loopback, no echo
|
|
*/
|
|
cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
|
|
? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
|
|
if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
|
|
cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
|
|
writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
|
|
|
|
/* re-enable the gasket */
|
|
writel(2, fep->hwp + FEC_MIIGSK_ENR);
|
|
}
|
|
#endif
|
|
}
|
|
writel(rcntl, fep->hwp + FEC_R_CNTRL);
|
|
|
|
if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
|
|
/* enable ENET endian swap */
|
|
ecntl |= (1 << 8);
|
|
/* enable ENET store and forward mode */
|
|
writel(1 << 8, fep->hwp + FEC_X_WMRK);
|
|
}
|
|
|
|
/* And last, enable the transmit and receive processing */
|
|
writel(ecntl, fep->hwp + FEC_ECNTRL);
|
|
writel(0, fep->hwp + FEC_R_DES_ACTIVE);
|
|
|
|
/* Enable interrupts we wish to service */
|
|
writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
|
|
}
|
|
|
|
static void
|
|
fec_stop(struct net_device *ndev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
const struct platform_device_id *id_entry =
|
|
platform_get_device_id(fep->pdev);
|
|
u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
|
|
|
|
/* We cannot expect a graceful transmit stop without link !!! */
|
|
if (fep->link) {
|
|
writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
|
|
udelay(10);
|
|
if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
|
|
printk("fec_stop : Graceful transmit stop did not complete !\n");
|
|
}
|
|
|
|
/* Whack a reset. We should wait for this. */
|
|
writel(1, fep->hwp + FEC_ECNTRL);
|
|
udelay(10);
|
|
writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
|
|
writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
|
|
|
|
/* We have to keep ENET enabled to have MII interrupt stay working */
|
|
if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
|
|
writel(2, fep->hwp + FEC_ECNTRL);
|
|
writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
|
|
}
|
|
}
|
|
|
|
|
|
static void
|
|
fec_timeout(struct net_device *ndev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
|
|
ndev->stats.tx_errors++;
|
|
|
|
fec_restart(ndev, fep->full_duplex);
|
|
netif_wake_queue(ndev);
|
|
}
|
|
|
|
static void
|
|
fec_enet_tx(struct net_device *ndev)
|
|
{
|
|
struct fec_enet_private *fep;
|
|
struct bufdesc *bdp;
|
|
unsigned short status;
|
|
struct sk_buff *skb;
|
|
|
|
fep = netdev_priv(ndev);
|
|
spin_lock(&fep->hw_lock);
|
|
bdp = fep->dirty_tx;
|
|
|
|
while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
|
|
if (bdp == fep->cur_tx && fep->tx_full == 0)
|
|
break;
|
|
|
|
dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
|
|
FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
|
|
bdp->cbd_bufaddr = 0;
|
|
|
|
skb = fep->tx_skbuff[fep->skb_dirty];
|
|
/* Check for errors. */
|
|
if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
|
|
BD_ENET_TX_RL | BD_ENET_TX_UN |
|
|
BD_ENET_TX_CSL)) {
|
|
ndev->stats.tx_errors++;
|
|
if (status & BD_ENET_TX_HB) /* No heartbeat */
|
|
ndev->stats.tx_heartbeat_errors++;
|
|
if (status & BD_ENET_TX_LC) /* Late collision */
|
|
ndev->stats.tx_window_errors++;
|
|
if (status & BD_ENET_TX_RL) /* Retrans limit */
|
|
ndev->stats.tx_aborted_errors++;
|
|
if (status & BD_ENET_TX_UN) /* Underrun */
|
|
ndev->stats.tx_fifo_errors++;
|
|
if (status & BD_ENET_TX_CSL) /* Carrier lost */
|
|
ndev->stats.tx_carrier_errors++;
|
|
} else {
|
|
ndev->stats.tx_packets++;
|
|
}
|
|
|
|
if (status & BD_ENET_TX_READY)
|
|
printk("HEY! Enet xmit interrupt and TX_READY.\n");
|
|
|
|
/* Deferred means some collisions occurred during transmit,
|
|
* but we eventually sent the packet OK.
|
|
*/
|
|
if (status & BD_ENET_TX_DEF)
|
|
ndev->stats.collisions++;
|
|
|
|
/* Free the sk buffer associated with this last transmit */
|
|
dev_kfree_skb_any(skb);
|
|
fep->tx_skbuff[fep->skb_dirty] = NULL;
|
|
fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
|
|
|
|
/* Update pointer to next buffer descriptor to be transmitted */
|
|
if (status & BD_ENET_TX_WRAP)
|
|
bdp = fep->tx_bd_base;
|
|
else
|
|
bdp++;
|
|
|
|
/* Since we have freed up a buffer, the ring is no longer full
|
|
*/
|
|
if (fep->tx_full) {
|
|
fep->tx_full = 0;
|
|
if (netif_queue_stopped(ndev))
|
|
netif_wake_queue(ndev);
|
|
}
|
|
}
|
|
fep->dirty_tx = bdp;
|
|
spin_unlock(&fep->hw_lock);
|
|
}
|
|
|
|
|
|
/* During a receive, the cur_rx points to the current incoming buffer.
|
|
* When we update through the ring, if the next incoming buffer has
|
|
* not been given to the system, we just set the empty indicator,
|
|
* effectively tossing the packet.
|
|
*/
|
|
static void
|
|
fec_enet_rx(struct net_device *ndev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
const struct platform_device_id *id_entry =
|
|
platform_get_device_id(fep->pdev);
|
|
struct bufdesc *bdp;
|
|
unsigned short status;
|
|
struct sk_buff *skb;
|
|
ushort pkt_len;
|
|
__u8 *data;
|
|
|
|
#ifdef CONFIG_M532x
|
|
flush_cache_all();
|
|
#endif
|
|
|
|
spin_lock(&fep->hw_lock);
|
|
|
|
/* First, grab all of the stats for the incoming packet.
|
|
* These get messed up if we get called due to a busy condition.
|
|
*/
|
|
bdp = fep->cur_rx;
|
|
|
|
while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
|
|
|
|
/* Since we have allocated space to hold a complete frame,
|
|
* the last indicator should be set.
|
|
*/
|
|
if ((status & BD_ENET_RX_LAST) == 0)
|
|
printk("FEC ENET: rcv is not +last\n");
|
|
|
|
if (!fep->opened)
|
|
goto rx_processing_done;
|
|
|
|
/* Check for errors. */
|
|
if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
|
|
BD_ENET_RX_CR | BD_ENET_RX_OV)) {
|
|
ndev->stats.rx_errors++;
|
|
if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
|
|
/* Frame too long or too short. */
|
|
ndev->stats.rx_length_errors++;
|
|
}
|
|
if (status & BD_ENET_RX_NO) /* Frame alignment */
|
|
ndev->stats.rx_frame_errors++;
|
|
if (status & BD_ENET_RX_CR) /* CRC Error */
|
|
ndev->stats.rx_crc_errors++;
|
|
if (status & BD_ENET_RX_OV) /* FIFO overrun */
|
|
ndev->stats.rx_fifo_errors++;
|
|
}
|
|
|
|
/* Report late collisions as a frame error.
|
|
* On this error, the BD is closed, but we don't know what we
|
|
* have in the buffer. So, just drop this frame on the floor.
|
|
*/
|
|
if (status & BD_ENET_RX_CL) {
|
|
ndev->stats.rx_errors++;
|
|
ndev->stats.rx_frame_errors++;
|
|
goto rx_processing_done;
|
|
}
|
|
|
|
/* Process the incoming frame. */
|
|
ndev->stats.rx_packets++;
|
|
pkt_len = bdp->cbd_datlen;
|
|
ndev->stats.rx_bytes += pkt_len;
|
|
data = (__u8*)__va(bdp->cbd_bufaddr);
|
|
|
|
dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
|
|
FEC_ENET_TX_FRSIZE, DMA_FROM_DEVICE);
|
|
|
|
if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
|
|
swap_buffer(data, pkt_len);
|
|
|
|
/* This does 16 byte alignment, exactly what we need.
|
|
* The packet length includes FCS, but we don't want to
|
|
* include that when passing upstream as it messes up
|
|
* bridging applications.
|
|
*/
|
|
skb = dev_alloc_skb(pkt_len - 4 + NET_IP_ALIGN);
|
|
|
|
if (unlikely(!skb)) {
|
|
printk("%s: Memory squeeze, dropping packet.\n",
|
|
ndev->name);
|
|
ndev->stats.rx_dropped++;
|
|
} else {
|
|
skb_reserve(skb, NET_IP_ALIGN);
|
|
skb_put(skb, pkt_len - 4); /* Make room */
|
|
skb_copy_to_linear_data(skb, data, pkt_len - 4);
|
|
skb->protocol = eth_type_trans(skb, ndev);
|
|
if (!skb_defer_rx_timestamp(skb))
|
|
netif_rx(skb);
|
|
}
|
|
|
|
bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, data,
|
|
FEC_ENET_TX_FRSIZE, DMA_FROM_DEVICE);
|
|
rx_processing_done:
|
|
/* Clear the status flags for this buffer */
|
|
status &= ~BD_ENET_RX_STATS;
|
|
|
|
/* Mark the buffer empty */
|
|
status |= BD_ENET_RX_EMPTY;
|
|
bdp->cbd_sc = status;
|
|
|
|
/* Update BD pointer to next entry */
|
|
if (status & BD_ENET_RX_WRAP)
|
|
bdp = fep->rx_bd_base;
|
|
else
|
|
bdp++;
|
|
/* Doing this here will keep the FEC running while we process
|
|
* incoming frames. On a heavily loaded network, we should be
|
|
* able to keep up at the expense of system resources.
|
|
*/
|
|
writel(0, fep->hwp + FEC_R_DES_ACTIVE);
|
|
}
|
|
fep->cur_rx = bdp;
|
|
|
|
spin_unlock(&fep->hw_lock);
|
|
}
|
|
|
|
static irqreturn_t
|
|
fec_enet_interrupt(int irq, void *dev_id)
|
|
{
|
|
struct net_device *ndev = dev_id;
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
uint int_events;
|
|
irqreturn_t ret = IRQ_NONE;
|
|
|
|
do {
|
|
int_events = readl(fep->hwp + FEC_IEVENT);
|
|
writel(int_events, fep->hwp + FEC_IEVENT);
|
|
|
|
if (int_events & FEC_ENET_RXF) {
|
|
ret = IRQ_HANDLED;
|
|
fec_enet_rx(ndev);
|
|
}
|
|
|
|
/* Transmit OK, or non-fatal error. Update the buffer
|
|
* descriptors. FEC handles all errors, we just discover
|
|
* them as part of the transmit process.
|
|
*/
|
|
if (int_events & FEC_ENET_TXF) {
|
|
ret = IRQ_HANDLED;
|
|
fec_enet_tx(ndev);
|
|
}
|
|
|
|
if (int_events & FEC_ENET_MII) {
|
|
ret = IRQ_HANDLED;
|
|
complete(&fep->mdio_done);
|
|
}
|
|
} while (int_events);
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
static void __inline__ fec_get_mac(struct net_device *ndev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
|
|
unsigned char *iap, tmpaddr[ETH_ALEN];
|
|
|
|
/*
|
|
* try to get mac address in following order:
|
|
*
|
|
* 1) module parameter via kernel command line in form
|
|
* fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
|
|
*/
|
|
iap = macaddr;
|
|
|
|
#ifdef CONFIG_OF
|
|
/*
|
|
* 2) from device tree data
|
|
*/
|
|
if (!is_valid_ether_addr(iap)) {
|
|
struct device_node *np = fep->pdev->dev.of_node;
|
|
if (np) {
|
|
const char *mac = of_get_mac_address(np);
|
|
if (mac)
|
|
iap = (unsigned char *) mac;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* 3) from flash or fuse (via platform data)
|
|
*/
|
|
if (!is_valid_ether_addr(iap)) {
|
|
#ifdef CONFIG_M5272
|
|
if (FEC_FLASHMAC)
|
|
iap = (unsigned char *)FEC_FLASHMAC;
|
|
#else
|
|
if (pdata)
|
|
iap = (unsigned char *)&pdata->mac;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* 4) FEC mac registers set by bootloader
|
|
*/
|
|
if (!is_valid_ether_addr(iap)) {
|
|
*((unsigned long *) &tmpaddr[0]) =
|
|
be32_to_cpu(readl(fep->hwp + FEC_ADDR_LOW));
|
|
*((unsigned short *) &tmpaddr[4]) =
|
|
be16_to_cpu(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
|
|
iap = &tmpaddr[0];
|
|
}
|
|
|
|
memcpy(ndev->dev_addr, iap, ETH_ALEN);
|
|
|
|
/* Adjust MAC if using macaddr */
|
|
if (iap == macaddr)
|
|
ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
/*
|
|
* Phy section
|
|
*/
|
|
static void fec_enet_adjust_link(struct net_device *ndev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
struct phy_device *phy_dev = fep->phy_dev;
|
|
unsigned long flags;
|
|
|
|
int status_change = 0;
|
|
|
|
spin_lock_irqsave(&fep->hw_lock, flags);
|
|
|
|
/* Prevent a state halted on mii error */
|
|
if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
|
|
phy_dev->state = PHY_RESUMING;
|
|
goto spin_unlock;
|
|
}
|
|
|
|
/* Duplex link change */
|
|
if (phy_dev->link) {
|
|
if (fep->full_duplex != phy_dev->duplex) {
|
|
fec_restart(ndev, phy_dev->duplex);
|
|
/* prevent unnecessary second fec_restart() below */
|
|
fep->link = phy_dev->link;
|
|
status_change = 1;
|
|
}
|
|
}
|
|
|
|
/* Link on or off change */
|
|
if (phy_dev->link != fep->link) {
|
|
fep->link = phy_dev->link;
|
|
if (phy_dev->link)
|
|
fec_restart(ndev, phy_dev->duplex);
|
|
else
|
|
fec_stop(ndev);
|
|
status_change = 1;
|
|
}
|
|
|
|
spin_unlock:
|
|
spin_unlock_irqrestore(&fep->hw_lock, flags);
|
|
|
|
if (status_change)
|
|
phy_print_status(phy_dev);
|
|
}
|
|
|
|
static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
|
|
{
|
|
struct fec_enet_private *fep = bus->priv;
|
|
unsigned long time_left;
|
|
|
|
fep->mii_timeout = 0;
|
|
init_completion(&fep->mdio_done);
|
|
|
|
/* start a read op */
|
|
writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
|
|
FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
|
|
FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
|
|
|
|
/* wait for end of transfer */
|
|
time_left = wait_for_completion_timeout(&fep->mdio_done,
|
|
usecs_to_jiffies(FEC_MII_TIMEOUT));
|
|
if (time_left == 0) {
|
|
fep->mii_timeout = 1;
|
|
printk(KERN_ERR "FEC: MDIO read timeout\n");
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
/* return value */
|
|
return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
|
|
}
|
|
|
|
static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
|
|
u16 value)
|
|
{
|
|
struct fec_enet_private *fep = bus->priv;
|
|
unsigned long time_left;
|
|
|
|
fep->mii_timeout = 0;
|
|
init_completion(&fep->mdio_done);
|
|
|
|
/* start a write op */
|
|
writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
|
|
FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
|
|
FEC_MMFR_TA | FEC_MMFR_DATA(value),
|
|
fep->hwp + FEC_MII_DATA);
|
|
|
|
/* wait for end of transfer */
|
|
time_left = wait_for_completion_timeout(&fep->mdio_done,
|
|
usecs_to_jiffies(FEC_MII_TIMEOUT));
|
|
if (time_left == 0) {
|
|
fep->mii_timeout = 1;
|
|
printk(KERN_ERR "FEC: MDIO write timeout\n");
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fec_enet_mdio_reset(struct mii_bus *bus)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static int fec_enet_mii_probe(struct net_device *ndev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
const struct platform_device_id *id_entry =
|
|
platform_get_device_id(fep->pdev);
|
|
struct phy_device *phy_dev = NULL;
|
|
char mdio_bus_id[MII_BUS_ID_SIZE];
|
|
char phy_name[MII_BUS_ID_SIZE + 3];
|
|
int phy_id;
|
|
int dev_id = fep->dev_id;
|
|
|
|
fep->phy_dev = NULL;
|
|
|
|
/* check for attached phy */
|
|
for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
|
|
if ((fep->mii_bus->phy_mask & (1 << phy_id)))
|
|
continue;
|
|
if (fep->mii_bus->phy_map[phy_id] == NULL)
|
|
continue;
|
|
if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
|
|
continue;
|
|
if (dev_id--)
|
|
continue;
|
|
strncpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
|
|
break;
|
|
}
|
|
|
|
if (phy_id >= PHY_MAX_ADDR) {
|
|
printk(KERN_INFO
|
|
"%s: no PHY, assuming direct connection to switch\n",
|
|
ndev->name);
|
|
strncpy(mdio_bus_id, "0", MII_BUS_ID_SIZE);
|
|
phy_id = 0;
|
|
}
|
|
|
|
snprintf(phy_name, sizeof(phy_name), PHY_ID_FMT, mdio_bus_id, phy_id);
|
|
phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link, 0,
|
|
fep->phy_interface);
|
|
if (IS_ERR(phy_dev)) {
|
|
printk(KERN_ERR "%s: could not attach to PHY\n", ndev->name);
|
|
return PTR_ERR(phy_dev);
|
|
}
|
|
|
|
/* mask with MAC supported features */
|
|
if (id_entry->driver_data & FEC_QUIRK_HAS_GBIT)
|
|
phy_dev->supported &= PHY_GBIT_FEATURES;
|
|
else
|
|
phy_dev->supported &= PHY_BASIC_FEATURES;
|
|
|
|
phy_dev->advertising = phy_dev->supported;
|
|
|
|
fep->phy_dev = phy_dev;
|
|
fep->link = 0;
|
|
fep->full_duplex = 0;
|
|
|
|
printk(KERN_INFO
|
|
"%s: Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
|
|
ndev->name,
|
|
fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
|
|
fep->phy_dev->irq);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fec_enet_mii_init(struct platform_device *pdev)
|
|
{
|
|
static struct mii_bus *fec0_mii_bus;
|
|
struct net_device *ndev = platform_get_drvdata(pdev);
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
const struct platform_device_id *id_entry =
|
|
platform_get_device_id(fep->pdev);
|
|
int err = -ENXIO, i;
|
|
|
|
/*
|
|
* The dual fec interfaces are not equivalent with enet-mac.
|
|
* Here are the differences:
|
|
*
|
|
* - fec0 supports MII & RMII modes while fec1 only supports RMII
|
|
* - fec0 acts as the 1588 time master while fec1 is slave
|
|
* - external phys can only be configured by fec0
|
|
*
|
|
* That is to say fec1 can not work independently. It only works
|
|
* when fec0 is working. The reason behind this design is that the
|
|
* second interface is added primarily for Switch mode.
|
|
*
|
|
* Because of the last point above, both phys are attached on fec0
|
|
* mdio interface in board design, and need to be configured by
|
|
* fec0 mii_bus.
|
|
*/
|
|
if ((id_entry->driver_data & FEC_QUIRK_ENET_MAC) && fep->dev_id > 0) {
|
|
/* fec1 uses fec0 mii_bus */
|
|
if (mii_cnt && fec0_mii_bus) {
|
|
fep->mii_bus = fec0_mii_bus;
|
|
mii_cnt++;
|
|
return 0;
|
|
}
|
|
return -ENOENT;
|
|
}
|
|
|
|
fep->mii_timeout = 0;
|
|
|
|
/*
|
|
* Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
|
|
*
|
|
* The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
|
|
* for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28
|
|
* Reference Manual has an error on this, and gets fixed on i.MX6Q
|
|
* document.
|
|
*/
|
|
fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk), 5000000);
|
|
if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
|
|
fep->phy_speed--;
|
|
fep->phy_speed <<= 1;
|
|
writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
|
|
|
|
fep->mii_bus = mdiobus_alloc();
|
|
if (fep->mii_bus == NULL) {
|
|
err = -ENOMEM;
|
|
goto err_out;
|
|
}
|
|
|
|
fep->mii_bus->name = "fec_enet_mii_bus";
|
|
fep->mii_bus->read = fec_enet_mdio_read;
|
|
fep->mii_bus->write = fec_enet_mdio_write;
|
|
fep->mii_bus->reset = fec_enet_mdio_reset;
|
|
snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
|
|
pdev->name, fep->dev_id + 1);
|
|
fep->mii_bus->priv = fep;
|
|
fep->mii_bus->parent = &pdev->dev;
|
|
|
|
fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
|
|
if (!fep->mii_bus->irq) {
|
|
err = -ENOMEM;
|
|
goto err_out_free_mdiobus;
|
|
}
|
|
|
|
for (i = 0; i < PHY_MAX_ADDR; i++)
|
|
fep->mii_bus->irq[i] = PHY_POLL;
|
|
|
|
if (mdiobus_register(fep->mii_bus))
|
|
goto err_out_free_mdio_irq;
|
|
|
|
mii_cnt++;
|
|
|
|
/* save fec0 mii_bus */
|
|
if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
|
|
fec0_mii_bus = fep->mii_bus;
|
|
|
|
return 0;
|
|
|
|
err_out_free_mdio_irq:
|
|
kfree(fep->mii_bus->irq);
|
|
err_out_free_mdiobus:
|
|
mdiobus_free(fep->mii_bus);
|
|
err_out:
|
|
return err;
|
|
}
|
|
|
|
static void fec_enet_mii_remove(struct fec_enet_private *fep)
|
|
{
|
|
if (--mii_cnt == 0) {
|
|
mdiobus_unregister(fep->mii_bus);
|
|
kfree(fep->mii_bus->irq);
|
|
mdiobus_free(fep->mii_bus);
|
|
}
|
|
}
|
|
|
|
static int fec_enet_get_settings(struct net_device *ndev,
|
|
struct ethtool_cmd *cmd)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
struct phy_device *phydev = fep->phy_dev;
|
|
|
|
if (!phydev)
|
|
return -ENODEV;
|
|
|
|
return phy_ethtool_gset(phydev, cmd);
|
|
}
|
|
|
|
static int fec_enet_set_settings(struct net_device *ndev,
|
|
struct ethtool_cmd *cmd)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
struct phy_device *phydev = fep->phy_dev;
|
|
|
|
if (!phydev)
|
|
return -ENODEV;
|
|
|
|
return phy_ethtool_sset(phydev, cmd);
|
|
}
|
|
|
|
static void fec_enet_get_drvinfo(struct net_device *ndev,
|
|
struct ethtool_drvinfo *info)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
|
|
strcpy(info->driver, fep->pdev->dev.driver->name);
|
|
strcpy(info->version, "Revision: 1.0");
|
|
strcpy(info->bus_info, dev_name(&ndev->dev));
|
|
}
|
|
|
|
static const struct ethtool_ops fec_enet_ethtool_ops = {
|
|
.get_settings = fec_enet_get_settings,
|
|
.set_settings = fec_enet_set_settings,
|
|
.get_drvinfo = fec_enet_get_drvinfo,
|
|
.get_link = ethtool_op_get_link,
|
|
};
|
|
|
|
static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
struct phy_device *phydev = fep->phy_dev;
|
|
|
|
if (!netif_running(ndev))
|
|
return -EINVAL;
|
|
|
|
if (!phydev)
|
|
return -ENODEV;
|
|
|
|
return phy_mii_ioctl(phydev, rq, cmd);
|
|
}
|
|
|
|
static void fec_enet_free_buffers(struct net_device *ndev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
int i;
|
|
struct sk_buff *skb;
|
|
struct bufdesc *bdp;
|
|
|
|
bdp = fep->rx_bd_base;
|
|
for (i = 0; i < RX_RING_SIZE; i++) {
|
|
skb = fep->rx_skbuff[i];
|
|
|
|
if (bdp->cbd_bufaddr)
|
|
dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
|
|
FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
|
|
if (skb)
|
|
dev_kfree_skb(skb);
|
|
bdp++;
|
|
}
|
|
|
|
bdp = fep->tx_bd_base;
|
|
for (i = 0; i < TX_RING_SIZE; i++)
|
|
kfree(fep->tx_bounce[i]);
|
|
}
|
|
|
|
static int fec_enet_alloc_buffers(struct net_device *ndev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
int i;
|
|
struct sk_buff *skb;
|
|
struct bufdesc *bdp;
|
|
|
|
bdp = fep->rx_bd_base;
|
|
for (i = 0; i < RX_RING_SIZE; i++) {
|
|
skb = dev_alloc_skb(FEC_ENET_RX_FRSIZE);
|
|
if (!skb) {
|
|
fec_enet_free_buffers(ndev);
|
|
return -ENOMEM;
|
|
}
|
|
fep->rx_skbuff[i] = skb;
|
|
|
|
bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
|
|
FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
|
|
bdp->cbd_sc = BD_ENET_RX_EMPTY;
|
|
bdp++;
|
|
}
|
|
|
|
/* Set the last buffer to wrap. */
|
|
bdp--;
|
|
bdp->cbd_sc |= BD_SC_WRAP;
|
|
|
|
bdp = fep->tx_bd_base;
|
|
for (i = 0; i < TX_RING_SIZE; i++) {
|
|
fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
|
|
|
|
bdp->cbd_sc = 0;
|
|
bdp->cbd_bufaddr = 0;
|
|
bdp++;
|
|
}
|
|
|
|
/* Set the last buffer to wrap. */
|
|
bdp--;
|
|
bdp->cbd_sc |= BD_SC_WRAP;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
fec_enet_open(struct net_device *ndev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
int ret;
|
|
|
|
/* I should reset the ring buffers here, but I don't yet know
|
|
* a simple way to do that.
|
|
*/
|
|
|
|
ret = fec_enet_alloc_buffers(ndev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Probe and connect to PHY when open the interface */
|
|
ret = fec_enet_mii_probe(ndev);
|
|
if (ret) {
|
|
fec_enet_free_buffers(ndev);
|
|
return ret;
|
|
}
|
|
phy_start(fep->phy_dev);
|
|
netif_start_queue(ndev);
|
|
fep->opened = 1;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
fec_enet_close(struct net_device *ndev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
|
|
/* Don't know what to do yet. */
|
|
fep->opened = 0;
|
|
netif_stop_queue(ndev);
|
|
fec_stop(ndev);
|
|
|
|
if (fep->phy_dev) {
|
|
phy_stop(fep->phy_dev);
|
|
phy_disconnect(fep->phy_dev);
|
|
}
|
|
|
|
fec_enet_free_buffers(ndev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Set or clear the multicast filter for this adaptor.
|
|
* Skeleton taken from sunlance driver.
|
|
* The CPM Ethernet implementation allows Multicast as well as individual
|
|
* MAC address filtering. Some of the drivers check to make sure it is
|
|
* a group multicast address, and discard those that are not. I guess I
|
|
* will do the same for now, but just remove the test if you want
|
|
* individual filtering as well (do the upper net layers want or support
|
|
* this kind of feature?).
|
|
*/
|
|
|
|
#define HASH_BITS 6 /* #bits in hash */
|
|
#define CRC32_POLY 0xEDB88320
|
|
|
|
static void set_multicast_list(struct net_device *ndev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
struct netdev_hw_addr *ha;
|
|
unsigned int i, bit, data, crc, tmp;
|
|
unsigned char hash;
|
|
|
|
if (ndev->flags & IFF_PROMISC) {
|
|
tmp = readl(fep->hwp + FEC_R_CNTRL);
|
|
tmp |= 0x8;
|
|
writel(tmp, fep->hwp + FEC_R_CNTRL);
|
|
return;
|
|
}
|
|
|
|
tmp = readl(fep->hwp + FEC_R_CNTRL);
|
|
tmp &= ~0x8;
|
|
writel(tmp, fep->hwp + FEC_R_CNTRL);
|
|
|
|
if (ndev->flags & IFF_ALLMULTI) {
|
|
/* Catch all multicast addresses, so set the
|
|
* filter to all 1's
|
|
*/
|
|
writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
|
|
writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
|
|
|
|
return;
|
|
}
|
|
|
|
/* Clear filter and add the addresses in hash register
|
|
*/
|
|
writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
|
|
writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
|
|
|
|
netdev_for_each_mc_addr(ha, ndev) {
|
|
/* calculate crc32 value of mac address */
|
|
crc = 0xffffffff;
|
|
|
|
for (i = 0; i < ndev->addr_len; i++) {
|
|
data = ha->addr[i];
|
|
for (bit = 0; bit < 8; bit++, data >>= 1) {
|
|
crc = (crc >> 1) ^
|
|
(((crc ^ data) & 1) ? CRC32_POLY : 0);
|
|
}
|
|
}
|
|
|
|
/* only upper 6 bits (HASH_BITS) are used
|
|
* which point to specific bit in he hash registers
|
|
*/
|
|
hash = (crc >> (32 - HASH_BITS)) & 0x3f;
|
|
|
|
if (hash > 31) {
|
|
tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
|
|
tmp |= 1 << (hash - 32);
|
|
writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
|
|
} else {
|
|
tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
|
|
tmp |= 1 << hash;
|
|
writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Set a MAC change in hardware. */
|
|
static int
|
|
fec_set_mac_address(struct net_device *ndev, void *p)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
struct sockaddr *addr = p;
|
|
|
|
if (!is_valid_ether_addr(addr->sa_data))
|
|
return -EADDRNOTAVAIL;
|
|
|
|
memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
|
|
|
|
writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
|
|
(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
|
|
fep->hwp + FEC_ADDR_LOW);
|
|
writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
|
|
fep->hwp + FEC_ADDR_HIGH);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_NET_POLL_CONTROLLER
|
|
/*
|
|
* fec_poll_controller: FEC Poll controller function
|
|
* @dev: The FEC network adapter
|
|
*
|
|
* Polled functionality used by netconsole and others in non interrupt mode
|
|
*
|
|
*/
|
|
void fec_poll_controller(struct net_device *dev)
|
|
{
|
|
int i;
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
|
|
for (i = 0; i < FEC_IRQ_NUM; i++) {
|
|
if (fep->irq[i] > 0) {
|
|
disable_irq(fep->irq[i]);
|
|
fec_enet_interrupt(fep->irq[i], dev);
|
|
enable_irq(fep->irq[i]);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static const struct net_device_ops fec_netdev_ops = {
|
|
.ndo_open = fec_enet_open,
|
|
.ndo_stop = fec_enet_close,
|
|
.ndo_start_xmit = fec_enet_start_xmit,
|
|
.ndo_set_rx_mode = set_multicast_list,
|
|
.ndo_change_mtu = eth_change_mtu,
|
|
.ndo_validate_addr = eth_validate_addr,
|
|
.ndo_tx_timeout = fec_timeout,
|
|
.ndo_set_mac_address = fec_set_mac_address,
|
|
.ndo_do_ioctl = fec_enet_ioctl,
|
|
#ifdef CONFIG_NET_POLL_CONTROLLER
|
|
.ndo_poll_controller = fec_poll_controller,
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
* XXX: We need to clean up on failure exits here.
|
|
*
|
|
*/
|
|
static int fec_enet_init(struct net_device *ndev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
struct bufdesc *cbd_base;
|
|
struct bufdesc *bdp;
|
|
int i;
|
|
|
|
/* Allocate memory for buffer descriptors. */
|
|
cbd_base = dma_alloc_coherent(NULL, PAGE_SIZE, &fep->bd_dma,
|
|
GFP_KERNEL);
|
|
if (!cbd_base) {
|
|
printk("FEC: allocate descriptor memory failed?\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
spin_lock_init(&fep->hw_lock);
|
|
|
|
fep->netdev = ndev;
|
|
|
|
/* Get the Ethernet address */
|
|
fec_get_mac(ndev);
|
|
|
|
/* Set receive and transmit descriptor base. */
|
|
fep->rx_bd_base = cbd_base;
|
|
fep->tx_bd_base = cbd_base + RX_RING_SIZE;
|
|
|
|
/* The FEC Ethernet specific entries in the device structure */
|
|
ndev->watchdog_timeo = TX_TIMEOUT;
|
|
ndev->netdev_ops = &fec_netdev_ops;
|
|
ndev->ethtool_ops = &fec_enet_ethtool_ops;
|
|
|
|
/* Initialize the receive buffer descriptors. */
|
|
bdp = fep->rx_bd_base;
|
|
for (i = 0; i < RX_RING_SIZE; i++) {
|
|
|
|
/* Initialize the BD for every fragment in the page. */
|
|
bdp->cbd_sc = 0;
|
|
bdp++;
|
|
}
|
|
|
|
/* Set the last buffer to wrap */
|
|
bdp--;
|
|
bdp->cbd_sc |= BD_SC_WRAP;
|
|
|
|
/* ...and the same for transmit */
|
|
bdp = fep->tx_bd_base;
|
|
for (i = 0; i < TX_RING_SIZE; i++) {
|
|
|
|
/* Initialize the BD for every fragment in the page. */
|
|
bdp->cbd_sc = 0;
|
|
bdp->cbd_bufaddr = 0;
|
|
bdp++;
|
|
}
|
|
|
|
/* Set the last buffer to wrap */
|
|
bdp--;
|
|
bdp->cbd_sc |= BD_SC_WRAP;
|
|
|
|
fec_restart(ndev, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_OF
|
|
static int __devinit fec_get_phy_mode_dt(struct platform_device *pdev)
|
|
{
|
|
struct device_node *np = pdev->dev.of_node;
|
|
|
|
if (np)
|
|
return of_get_phy_mode(np);
|
|
|
|
return -ENODEV;
|
|
}
|
|
|
|
static void __devinit fec_reset_phy(struct platform_device *pdev)
|
|
{
|
|
int err, phy_reset;
|
|
struct device_node *np = pdev->dev.of_node;
|
|
|
|
if (!np)
|
|
return;
|
|
|
|
phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
|
|
err = gpio_request_one(phy_reset, GPIOF_OUT_INIT_LOW, "phy-reset");
|
|
if (err) {
|
|
pr_debug("FEC: failed to get gpio phy-reset: %d\n", err);
|
|
return;
|
|
}
|
|
msleep(1);
|
|
gpio_set_value(phy_reset, 1);
|
|
}
|
|
#else /* CONFIG_OF */
|
|
static inline int fec_get_phy_mode_dt(struct platform_device *pdev)
|
|
{
|
|
return -ENODEV;
|
|
}
|
|
|
|
static inline void fec_reset_phy(struct platform_device *pdev)
|
|
{
|
|
/*
|
|
* In case of platform probe, the reset has been done
|
|
* by machine code.
|
|
*/
|
|
}
|
|
#endif /* CONFIG_OF */
|
|
|
|
static int __devinit
|
|
fec_probe(struct platform_device *pdev)
|
|
{
|
|
struct fec_enet_private *fep;
|
|
struct fec_platform_data *pdata;
|
|
struct net_device *ndev;
|
|
int i, irq, ret = 0;
|
|
struct resource *r;
|
|
const struct of_device_id *of_id;
|
|
static int dev_id;
|
|
|
|
of_id = of_match_device(fec_dt_ids, &pdev->dev);
|
|
if (of_id)
|
|
pdev->id_entry = of_id->data;
|
|
|
|
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
if (!r)
|
|
return -ENXIO;
|
|
|
|
r = request_mem_region(r->start, resource_size(r), pdev->name);
|
|
if (!r)
|
|
return -EBUSY;
|
|
|
|
/* Init network device */
|
|
ndev = alloc_etherdev(sizeof(struct fec_enet_private));
|
|
if (!ndev) {
|
|
ret = -ENOMEM;
|
|
goto failed_alloc_etherdev;
|
|
}
|
|
|
|
SET_NETDEV_DEV(ndev, &pdev->dev);
|
|
|
|
/* setup board info structure */
|
|
fep = netdev_priv(ndev);
|
|
|
|
fep->hwp = ioremap(r->start, resource_size(r));
|
|
fep->pdev = pdev;
|
|
fep->dev_id = dev_id++;
|
|
|
|
if (!fep->hwp) {
|
|
ret = -ENOMEM;
|
|
goto failed_ioremap;
|
|
}
|
|
|
|
platform_set_drvdata(pdev, ndev);
|
|
|
|
ret = fec_get_phy_mode_dt(pdev);
|
|
if (ret < 0) {
|
|
pdata = pdev->dev.platform_data;
|
|
if (pdata)
|
|
fep->phy_interface = pdata->phy;
|
|
else
|
|
fep->phy_interface = PHY_INTERFACE_MODE_MII;
|
|
} else {
|
|
fep->phy_interface = ret;
|
|
}
|
|
|
|
fec_reset_phy(pdev);
|
|
|
|
for (i = 0; i < FEC_IRQ_NUM; i++) {
|
|
irq = platform_get_irq(pdev, i);
|
|
if (irq < 0) {
|
|
if (i)
|
|
break;
|
|
ret = irq;
|
|
goto failed_irq;
|
|
}
|
|
ret = request_irq(irq, fec_enet_interrupt, IRQF_DISABLED, pdev->name, ndev);
|
|
if (ret) {
|
|
while (--i >= 0) {
|
|
irq = platform_get_irq(pdev, i);
|
|
free_irq(irq, ndev);
|
|
}
|
|
goto failed_irq;
|
|
}
|
|
}
|
|
|
|
fep->clk = clk_get(&pdev->dev, NULL);
|
|
if (IS_ERR(fep->clk)) {
|
|
ret = PTR_ERR(fep->clk);
|
|
goto failed_clk;
|
|
}
|
|
clk_prepare_enable(fep->clk);
|
|
|
|
ret = fec_enet_init(ndev);
|
|
if (ret)
|
|
goto failed_init;
|
|
|
|
ret = fec_enet_mii_init(pdev);
|
|
if (ret)
|
|
goto failed_mii_init;
|
|
|
|
/* Carrier starts down, phylib will bring it up */
|
|
netif_carrier_off(ndev);
|
|
|
|
ret = register_netdev(ndev);
|
|
if (ret)
|
|
goto failed_register;
|
|
|
|
return 0;
|
|
|
|
failed_register:
|
|
fec_enet_mii_remove(fep);
|
|
failed_mii_init:
|
|
failed_init:
|
|
clk_disable_unprepare(fep->clk);
|
|
clk_put(fep->clk);
|
|
failed_clk:
|
|
for (i = 0; i < FEC_IRQ_NUM; i++) {
|
|
irq = platform_get_irq(pdev, i);
|
|
if (irq > 0)
|
|
free_irq(irq, ndev);
|
|
}
|
|
failed_irq:
|
|
iounmap(fep->hwp);
|
|
failed_ioremap:
|
|
free_netdev(ndev);
|
|
failed_alloc_etherdev:
|
|
release_mem_region(r->start, resource_size(r));
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int __devexit
|
|
fec_drv_remove(struct platform_device *pdev)
|
|
{
|
|
struct net_device *ndev = platform_get_drvdata(pdev);
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
struct resource *r;
|
|
int i;
|
|
|
|
unregister_netdev(ndev);
|
|
fec_enet_mii_remove(fep);
|
|
for (i = 0; i < FEC_IRQ_NUM; i++) {
|
|
int irq = platform_get_irq(pdev, i);
|
|
if (irq > 0)
|
|
free_irq(irq, ndev);
|
|
}
|
|
clk_disable_unprepare(fep->clk);
|
|
clk_put(fep->clk);
|
|
iounmap(fep->hwp);
|
|
free_netdev(ndev);
|
|
|
|
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
BUG_ON(!r);
|
|
release_mem_region(r->start, resource_size(r));
|
|
|
|
platform_set_drvdata(pdev, NULL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PM
|
|
static int
|
|
fec_suspend(struct device *dev)
|
|
{
|
|
struct net_device *ndev = dev_get_drvdata(dev);
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
|
|
if (netif_running(ndev)) {
|
|
fec_stop(ndev);
|
|
netif_device_detach(ndev);
|
|
}
|
|
clk_disable_unprepare(fep->clk);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
fec_resume(struct device *dev)
|
|
{
|
|
struct net_device *ndev = dev_get_drvdata(dev);
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
|
|
clk_prepare_enable(fep->clk);
|
|
if (netif_running(ndev)) {
|
|
fec_restart(ndev, fep->full_duplex);
|
|
netif_device_attach(ndev);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct dev_pm_ops fec_pm_ops = {
|
|
.suspend = fec_suspend,
|
|
.resume = fec_resume,
|
|
.freeze = fec_suspend,
|
|
.thaw = fec_resume,
|
|
.poweroff = fec_suspend,
|
|
.restore = fec_resume,
|
|
};
|
|
#endif
|
|
|
|
static struct platform_driver fec_driver = {
|
|
.driver = {
|
|
.name = DRIVER_NAME,
|
|
.owner = THIS_MODULE,
|
|
#ifdef CONFIG_PM
|
|
.pm = &fec_pm_ops,
|
|
#endif
|
|
.of_match_table = fec_dt_ids,
|
|
},
|
|
.id_table = fec_devtype,
|
|
.probe = fec_probe,
|
|
.remove = __devexit_p(fec_drv_remove),
|
|
};
|
|
|
|
module_platform_driver(fec_driver);
|
|
|
|
MODULE_LICENSE("GPL");
|