linux/drivers/media/video/mt9v022.c

880 lines
23 KiB
C

/*
* Driver for MT9V022 CMOS Image Sensor from Micron
*
* Copyright (C) 2008, Guennadi Liakhovetski <kernel@pengutronix.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/videodev2.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/delay.h>
#include <linux/log2.h>
#include <linux/module.h>
#include <media/soc_camera.h>
#include <media/soc_mediabus.h>
#include <media/v4l2-subdev.h>
#include <media/v4l2-chip-ident.h>
#include <media/v4l2-ctrls.h>
/*
* mt9v022 i2c address 0x48, 0x4c, 0x58, 0x5c
* The platform has to define ctruct i2c_board_info objects and link to them
* from struct soc_camera_link
*/
static char *sensor_type;
module_param(sensor_type, charp, S_IRUGO);
MODULE_PARM_DESC(sensor_type, "Sensor type: \"colour\" or \"monochrome\"");
/* mt9v022 selected register addresses */
#define MT9V022_CHIP_VERSION 0x00
#define MT9V022_COLUMN_START 0x01
#define MT9V022_ROW_START 0x02
#define MT9V022_WINDOW_HEIGHT 0x03
#define MT9V022_WINDOW_WIDTH 0x04
#define MT9V022_HORIZONTAL_BLANKING 0x05
#define MT9V022_VERTICAL_BLANKING 0x06
#define MT9V022_CHIP_CONTROL 0x07
#define MT9V022_SHUTTER_WIDTH1 0x08
#define MT9V022_SHUTTER_WIDTH2 0x09
#define MT9V022_SHUTTER_WIDTH_CTRL 0x0a
#define MT9V022_TOTAL_SHUTTER_WIDTH 0x0b
#define MT9V022_RESET 0x0c
#define MT9V022_READ_MODE 0x0d
#define MT9V022_MONITOR_MODE 0x0e
#define MT9V022_PIXEL_OPERATION_MODE 0x0f
#define MT9V022_LED_OUT_CONTROL 0x1b
#define MT9V022_ADC_MODE_CONTROL 0x1c
#define MT9V022_ANALOG_GAIN 0x35
#define MT9V022_BLACK_LEVEL_CALIB_CTRL 0x47
#define MT9V022_PIXCLK_FV_LV 0x74
#define MT9V022_DIGITAL_TEST_PATTERN 0x7f
#define MT9V022_AEC_AGC_ENABLE 0xAF
#define MT9V022_MAX_TOTAL_SHUTTER_WIDTH 0xBD
/* Progressive scan, master, defaults */
#define MT9V022_CHIP_CONTROL_DEFAULT 0x188
#define MT9V022_MAX_WIDTH 752
#define MT9V022_MAX_HEIGHT 480
#define MT9V022_MIN_WIDTH 48
#define MT9V022_MIN_HEIGHT 32
#define MT9V022_COLUMN_SKIP 1
#define MT9V022_ROW_SKIP 4
/* MT9V022 has only one fixed colorspace per pixelcode */
struct mt9v022_datafmt {
enum v4l2_mbus_pixelcode code;
enum v4l2_colorspace colorspace;
};
/* Find a data format by a pixel code in an array */
static const struct mt9v022_datafmt *mt9v022_find_datafmt(
enum v4l2_mbus_pixelcode code, const struct mt9v022_datafmt *fmt,
int n)
{
int i;
for (i = 0; i < n; i++)
if (fmt[i].code == code)
return fmt + i;
return NULL;
}
static const struct mt9v022_datafmt mt9v022_colour_fmts[] = {
/*
* Order important: first natively supported,
* second supported with a GPIO extender
*/
{V4L2_MBUS_FMT_SBGGR10_1X10, V4L2_COLORSPACE_SRGB},
{V4L2_MBUS_FMT_SBGGR8_1X8, V4L2_COLORSPACE_SRGB},
};
static const struct mt9v022_datafmt mt9v022_monochrome_fmts[] = {
/* Order important - see above */
{V4L2_MBUS_FMT_Y10_1X10, V4L2_COLORSPACE_JPEG},
{V4L2_MBUS_FMT_Y8_1X8, V4L2_COLORSPACE_JPEG},
};
struct mt9v022 {
struct v4l2_subdev subdev;
struct v4l2_ctrl_handler hdl;
struct {
/* exposure/auto-exposure cluster */
struct v4l2_ctrl *autoexposure;
struct v4l2_ctrl *exposure;
};
struct {
/* gain/auto-gain cluster */
struct v4l2_ctrl *autogain;
struct v4l2_ctrl *gain;
};
struct v4l2_rect rect; /* Sensor window */
const struct mt9v022_datafmt *fmt;
const struct mt9v022_datafmt *fmts;
int num_fmts;
int model; /* V4L2_IDENT_MT9V022* codes from v4l2-chip-ident.h */
u16 chip_control;
unsigned short y_skip_top; /* Lines to skip at the top */
};
static struct mt9v022 *to_mt9v022(const struct i2c_client *client)
{
return container_of(i2c_get_clientdata(client), struct mt9v022, subdev);
}
static int reg_read(struct i2c_client *client, const u8 reg)
{
return i2c_smbus_read_word_swapped(client, reg);
}
static int reg_write(struct i2c_client *client, const u8 reg,
const u16 data)
{
return i2c_smbus_write_word_swapped(client, reg, data);
}
static int reg_set(struct i2c_client *client, const u8 reg,
const u16 data)
{
int ret;
ret = reg_read(client, reg);
if (ret < 0)
return ret;
return reg_write(client, reg, ret | data);
}
static int reg_clear(struct i2c_client *client, const u8 reg,
const u16 data)
{
int ret;
ret = reg_read(client, reg);
if (ret < 0)
return ret;
return reg_write(client, reg, ret & ~data);
}
static int mt9v022_init(struct i2c_client *client)
{
struct mt9v022 *mt9v022 = to_mt9v022(client);
int ret;
/*
* Almost the default mode: master, parallel, simultaneous, and an
* undocumented bit 0x200, which is present in table 7, but not in 8,
* plus snapshot mode to disable scan for now
*/
mt9v022->chip_control |= 0x10;
ret = reg_write(client, MT9V022_CHIP_CONTROL, mt9v022->chip_control);
if (!ret)
ret = reg_write(client, MT9V022_READ_MODE, 0x300);
/* All defaults */
if (!ret)
/* AEC, AGC on */
ret = reg_set(client, MT9V022_AEC_AGC_ENABLE, 0x3);
if (!ret)
ret = reg_write(client, MT9V022_ANALOG_GAIN, 16);
if (!ret)
ret = reg_write(client, MT9V022_TOTAL_SHUTTER_WIDTH, 480);
if (!ret)
ret = reg_write(client, MT9V022_MAX_TOTAL_SHUTTER_WIDTH, 480);
if (!ret)
/* default - auto */
ret = reg_clear(client, MT9V022_BLACK_LEVEL_CALIB_CTRL, 1);
if (!ret)
ret = reg_write(client, MT9V022_DIGITAL_TEST_PATTERN, 0);
if (!ret)
return v4l2_ctrl_handler_setup(&mt9v022->hdl);
return ret;
}
static int mt9v022_s_stream(struct v4l2_subdev *sd, int enable)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct mt9v022 *mt9v022 = to_mt9v022(client);
if (enable)
/* Switch to master "normal" mode */
mt9v022->chip_control &= ~0x10;
else
/* Switch to snapshot mode */
mt9v022->chip_control |= 0x10;
if (reg_write(client, MT9V022_CHIP_CONTROL, mt9v022->chip_control) < 0)
return -EIO;
return 0;
}
static int mt9v022_s_crop(struct v4l2_subdev *sd, struct v4l2_crop *a)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct mt9v022 *mt9v022 = to_mt9v022(client);
struct v4l2_rect rect = a->c;
int ret;
/* Bayer format - even size lengths */
if (mt9v022->fmts == mt9v022_colour_fmts) {
rect.width = ALIGN(rect.width, 2);
rect.height = ALIGN(rect.height, 2);
/* Let the user play with the starting pixel */
}
soc_camera_limit_side(&rect.left, &rect.width,
MT9V022_COLUMN_SKIP, MT9V022_MIN_WIDTH, MT9V022_MAX_WIDTH);
soc_camera_limit_side(&rect.top, &rect.height,
MT9V022_ROW_SKIP, MT9V022_MIN_HEIGHT, MT9V022_MAX_HEIGHT);
/* Like in example app. Contradicts the datasheet though */
ret = reg_read(client, MT9V022_AEC_AGC_ENABLE);
if (ret >= 0) {
if (ret & 1) /* Autoexposure */
ret = reg_write(client, MT9V022_MAX_TOTAL_SHUTTER_WIDTH,
rect.height + mt9v022->y_skip_top + 43);
else
ret = reg_write(client, MT9V022_TOTAL_SHUTTER_WIDTH,
rect.height + mt9v022->y_skip_top + 43);
}
/* Setup frame format: defaults apart from width and height */
if (!ret)
ret = reg_write(client, MT9V022_COLUMN_START, rect.left);
if (!ret)
ret = reg_write(client, MT9V022_ROW_START, rect.top);
if (!ret)
/*
* Default 94, Phytec driver says:
* "width + horizontal blank >= 660"
*/
ret = reg_write(client, MT9V022_HORIZONTAL_BLANKING,
rect.width > 660 - 43 ? 43 :
660 - rect.width);
if (!ret)
ret = reg_write(client, MT9V022_VERTICAL_BLANKING, 45);
if (!ret)
ret = reg_write(client, MT9V022_WINDOW_WIDTH, rect.width);
if (!ret)
ret = reg_write(client, MT9V022_WINDOW_HEIGHT,
rect.height + mt9v022->y_skip_top);
if (ret < 0)
return ret;
dev_dbg(&client->dev, "Frame %dx%d pixel\n", rect.width, rect.height);
mt9v022->rect = rect;
return 0;
}
static int mt9v022_g_crop(struct v4l2_subdev *sd, struct v4l2_crop *a)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct mt9v022 *mt9v022 = to_mt9v022(client);
a->c = mt9v022->rect;
a->type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
return 0;
}
static int mt9v022_cropcap(struct v4l2_subdev *sd, struct v4l2_cropcap *a)
{
a->bounds.left = MT9V022_COLUMN_SKIP;
a->bounds.top = MT9V022_ROW_SKIP;
a->bounds.width = MT9V022_MAX_WIDTH;
a->bounds.height = MT9V022_MAX_HEIGHT;
a->defrect = a->bounds;
a->type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
a->pixelaspect.numerator = 1;
a->pixelaspect.denominator = 1;
return 0;
}
static int mt9v022_g_fmt(struct v4l2_subdev *sd,
struct v4l2_mbus_framefmt *mf)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct mt9v022 *mt9v022 = to_mt9v022(client);
mf->width = mt9v022->rect.width;
mf->height = mt9v022->rect.height;
mf->code = mt9v022->fmt->code;
mf->colorspace = mt9v022->fmt->colorspace;
mf->field = V4L2_FIELD_NONE;
return 0;
}
static int mt9v022_s_fmt(struct v4l2_subdev *sd,
struct v4l2_mbus_framefmt *mf)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct mt9v022 *mt9v022 = to_mt9v022(client);
struct v4l2_crop a = {
.c = {
.left = mt9v022->rect.left,
.top = mt9v022->rect.top,
.width = mf->width,
.height = mf->height,
},
};
int ret;
/*
* The caller provides a supported format, as verified per call to
* .try_mbus_fmt(), datawidth is from our supported format list
*/
switch (mf->code) {
case V4L2_MBUS_FMT_Y8_1X8:
case V4L2_MBUS_FMT_Y10_1X10:
if (mt9v022->model != V4L2_IDENT_MT9V022IX7ATM)
return -EINVAL;
break;
case V4L2_MBUS_FMT_SBGGR8_1X8:
case V4L2_MBUS_FMT_SBGGR10_1X10:
if (mt9v022->model != V4L2_IDENT_MT9V022IX7ATC)
return -EINVAL;
break;
default:
return -EINVAL;
}
/* No support for scaling on this camera, just crop. */
ret = mt9v022_s_crop(sd, &a);
if (!ret) {
mf->width = mt9v022->rect.width;
mf->height = mt9v022->rect.height;
mt9v022->fmt = mt9v022_find_datafmt(mf->code,
mt9v022->fmts, mt9v022->num_fmts);
mf->colorspace = mt9v022->fmt->colorspace;
}
return ret;
}
static int mt9v022_try_fmt(struct v4l2_subdev *sd,
struct v4l2_mbus_framefmt *mf)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct mt9v022 *mt9v022 = to_mt9v022(client);
const struct mt9v022_datafmt *fmt;
int align = mf->code == V4L2_MBUS_FMT_SBGGR8_1X8 ||
mf->code == V4L2_MBUS_FMT_SBGGR10_1X10;
v4l_bound_align_image(&mf->width, MT9V022_MIN_WIDTH,
MT9V022_MAX_WIDTH, align,
&mf->height, MT9V022_MIN_HEIGHT + mt9v022->y_skip_top,
MT9V022_MAX_HEIGHT + mt9v022->y_skip_top, align, 0);
fmt = mt9v022_find_datafmt(mf->code, mt9v022->fmts,
mt9v022->num_fmts);
if (!fmt) {
fmt = mt9v022->fmt;
mf->code = fmt->code;
}
mf->colorspace = fmt->colorspace;
return 0;
}
static int mt9v022_g_chip_ident(struct v4l2_subdev *sd,
struct v4l2_dbg_chip_ident *id)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct mt9v022 *mt9v022 = to_mt9v022(client);
if (id->match.type != V4L2_CHIP_MATCH_I2C_ADDR)
return -EINVAL;
if (id->match.addr != client->addr)
return -ENODEV;
id->ident = mt9v022->model;
id->revision = 0;
return 0;
}
#ifdef CONFIG_VIDEO_ADV_DEBUG
static int mt9v022_g_register(struct v4l2_subdev *sd,
struct v4l2_dbg_register *reg)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
if (reg->match.type != V4L2_CHIP_MATCH_I2C_ADDR || reg->reg > 0xff)
return -EINVAL;
if (reg->match.addr != client->addr)
return -ENODEV;
reg->size = 2;
reg->val = reg_read(client, reg->reg);
if (reg->val > 0xffff)
return -EIO;
return 0;
}
static int mt9v022_s_register(struct v4l2_subdev *sd,
struct v4l2_dbg_register *reg)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
if (reg->match.type != V4L2_CHIP_MATCH_I2C_ADDR || reg->reg > 0xff)
return -EINVAL;
if (reg->match.addr != client->addr)
return -ENODEV;
if (reg_write(client, reg->reg, reg->val) < 0)
return -EIO;
return 0;
}
#endif
static int mt9v022_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
{
struct mt9v022 *mt9v022 = container_of(ctrl->handler,
struct mt9v022, hdl);
struct v4l2_subdev *sd = &mt9v022->subdev;
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct v4l2_ctrl *gain = mt9v022->gain;
struct v4l2_ctrl *exp = mt9v022->exposure;
unsigned long range;
int data;
switch (ctrl->id) {
case V4L2_CID_AUTOGAIN:
data = reg_read(client, MT9V022_ANALOG_GAIN);
if (data < 0)
return -EIO;
range = gain->maximum - gain->minimum;
gain->val = ((data - 16) * range + 24) / 48 + gain->minimum;
return 0;
case V4L2_CID_EXPOSURE_AUTO:
data = reg_read(client, MT9V022_TOTAL_SHUTTER_WIDTH);
if (data < 0)
return -EIO;
range = exp->maximum - exp->minimum;
exp->val = ((data - 1) * range + 239) / 479 + exp->minimum;
return 0;
}
return -EINVAL;
}
static int mt9v022_s_ctrl(struct v4l2_ctrl *ctrl)
{
struct mt9v022 *mt9v022 = container_of(ctrl->handler,
struct mt9v022, hdl);
struct v4l2_subdev *sd = &mt9v022->subdev;
struct i2c_client *client = v4l2_get_subdevdata(sd);
int data;
switch (ctrl->id) {
case V4L2_CID_VFLIP:
if (ctrl->val)
data = reg_set(client, MT9V022_READ_MODE, 0x10);
else
data = reg_clear(client, MT9V022_READ_MODE, 0x10);
if (data < 0)
return -EIO;
return 0;
case V4L2_CID_HFLIP:
if (ctrl->val)
data = reg_set(client, MT9V022_READ_MODE, 0x20);
else
data = reg_clear(client, MT9V022_READ_MODE, 0x20);
if (data < 0)
return -EIO;
return 0;
case V4L2_CID_AUTOGAIN:
if (ctrl->val) {
if (reg_set(client, MT9V022_AEC_AGC_ENABLE, 0x2) < 0)
return -EIO;
} else {
struct v4l2_ctrl *gain = mt9v022->gain;
/* mt9v022 has minimum == default */
unsigned long range = gain->maximum - gain->minimum;
/* Valid values 16 to 64, 32 to 64 must be even. */
unsigned long gain_val = ((gain->val - gain->minimum) *
48 + range / 2) / range + 16;
if (gain_val >= 32)
gain_val &= ~1;
/*
* The user wants to set gain manually, hope, she
* knows, what she's doing... Switch AGC off.
*/
if (reg_clear(client, MT9V022_AEC_AGC_ENABLE, 0x2) < 0)
return -EIO;
dev_dbg(&client->dev, "Setting gain from %d to %lu\n",
reg_read(client, MT9V022_ANALOG_GAIN), gain_val);
if (reg_write(client, MT9V022_ANALOG_GAIN, gain_val) < 0)
return -EIO;
}
return 0;
case V4L2_CID_EXPOSURE_AUTO:
if (ctrl->val == V4L2_EXPOSURE_AUTO) {
data = reg_set(client, MT9V022_AEC_AGC_ENABLE, 0x1);
} else {
struct v4l2_ctrl *exp = mt9v022->exposure;
unsigned long range = exp->maximum - exp->minimum;
unsigned long shutter = ((exp->val - exp->minimum) *
479 + range / 2) / range + 1;
/*
* The user wants to set shutter width manually, hope,
* she knows, what she's doing... Switch AEC off.
*/
data = reg_clear(client, MT9V022_AEC_AGC_ENABLE, 0x1);
if (data < 0)
return -EIO;
dev_dbg(&client->dev, "Shutter width from %d to %lu\n",
reg_read(client, MT9V022_TOTAL_SHUTTER_WIDTH),
shutter);
if (reg_write(client, MT9V022_TOTAL_SHUTTER_WIDTH,
shutter) < 0)
return -EIO;
}
return 0;
}
return -EINVAL;
}
/*
* Interface active, can use i2c. If it fails, it can indeed mean, that
* this wasn't our capture interface, so, we wait for the right one
*/
static int mt9v022_video_probe(struct i2c_client *client)
{
struct mt9v022 *mt9v022 = to_mt9v022(client);
struct soc_camera_link *icl = soc_camera_i2c_to_link(client);
s32 data;
int ret;
unsigned long flags;
/* Read out the chip version register */
data = reg_read(client, MT9V022_CHIP_VERSION);
/* must be 0x1311 or 0x1313 */
if (data != 0x1311 && data != 0x1313) {
ret = -ENODEV;
dev_info(&client->dev, "No MT9V022 found, ID register 0x%x\n",
data);
goto ei2c;
}
/* Soft reset */
ret = reg_write(client, MT9V022_RESET, 1);
if (ret < 0)
goto ei2c;
/* 15 clock cycles */
udelay(200);
if (reg_read(client, MT9V022_RESET)) {
dev_err(&client->dev, "Resetting MT9V022 failed!\n");
if (ret > 0)
ret = -EIO;
goto ei2c;
}
/* Set monochrome or colour sensor type */
if (sensor_type && (!strcmp("colour", sensor_type) ||
!strcmp("color", sensor_type))) {
ret = reg_write(client, MT9V022_PIXEL_OPERATION_MODE, 4 | 0x11);
mt9v022->model = V4L2_IDENT_MT9V022IX7ATC;
mt9v022->fmts = mt9v022_colour_fmts;
} else {
ret = reg_write(client, MT9V022_PIXEL_OPERATION_MODE, 0x11);
mt9v022->model = V4L2_IDENT_MT9V022IX7ATM;
mt9v022->fmts = mt9v022_monochrome_fmts;
}
if (ret < 0)
goto ei2c;
mt9v022->num_fmts = 0;
/*
* This is a 10bit sensor, so by default we only allow 10bit.
* The platform may support different bus widths due to
* different routing of the data lines.
*/
if (icl->query_bus_param)
flags = icl->query_bus_param(icl);
else
flags = SOCAM_DATAWIDTH_10;
if (flags & SOCAM_DATAWIDTH_10)
mt9v022->num_fmts++;
else
mt9v022->fmts++;
if (flags & SOCAM_DATAWIDTH_8)
mt9v022->num_fmts++;
mt9v022->fmt = &mt9v022->fmts[0];
dev_info(&client->dev, "Detected a MT9V022 chip ID %x, %s sensor\n",
data, mt9v022->model == V4L2_IDENT_MT9V022IX7ATM ?
"monochrome" : "colour");
ret = mt9v022_init(client);
if (ret < 0)
dev_err(&client->dev, "Failed to initialise the camera\n");
ei2c:
return ret;
}
static int mt9v022_g_skip_top_lines(struct v4l2_subdev *sd, u32 *lines)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct mt9v022 *mt9v022 = to_mt9v022(client);
*lines = mt9v022->y_skip_top;
return 0;
}
static const struct v4l2_ctrl_ops mt9v022_ctrl_ops = {
.g_volatile_ctrl = mt9v022_g_volatile_ctrl,
.s_ctrl = mt9v022_s_ctrl,
};
static struct v4l2_subdev_core_ops mt9v022_subdev_core_ops = {
.g_chip_ident = mt9v022_g_chip_ident,
#ifdef CONFIG_VIDEO_ADV_DEBUG
.g_register = mt9v022_g_register,
.s_register = mt9v022_s_register,
#endif
};
static int mt9v022_enum_fmt(struct v4l2_subdev *sd, unsigned int index,
enum v4l2_mbus_pixelcode *code)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct mt9v022 *mt9v022 = to_mt9v022(client);
if (index >= mt9v022->num_fmts)
return -EINVAL;
*code = mt9v022->fmts[index].code;
return 0;
}
static int mt9v022_g_mbus_config(struct v4l2_subdev *sd,
struct v4l2_mbus_config *cfg)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct soc_camera_link *icl = soc_camera_i2c_to_link(client);
cfg->flags = V4L2_MBUS_MASTER | V4L2_MBUS_SLAVE |
V4L2_MBUS_PCLK_SAMPLE_RISING | V4L2_MBUS_PCLK_SAMPLE_FALLING |
V4L2_MBUS_HSYNC_ACTIVE_HIGH | V4L2_MBUS_HSYNC_ACTIVE_LOW |
V4L2_MBUS_VSYNC_ACTIVE_HIGH | V4L2_MBUS_VSYNC_ACTIVE_LOW |
V4L2_MBUS_DATA_ACTIVE_HIGH;
cfg->type = V4L2_MBUS_PARALLEL;
cfg->flags = soc_camera_apply_board_flags(icl, cfg);
return 0;
}
static int mt9v022_s_mbus_config(struct v4l2_subdev *sd,
const struct v4l2_mbus_config *cfg)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct soc_camera_link *icl = soc_camera_i2c_to_link(client);
struct mt9v022 *mt9v022 = to_mt9v022(client);
unsigned long flags = soc_camera_apply_board_flags(icl, cfg);
unsigned int bps = soc_mbus_get_fmtdesc(mt9v022->fmt->code)->bits_per_sample;
int ret;
u16 pixclk = 0;
if (icl->set_bus_param) {
ret = icl->set_bus_param(icl, 1 << (bps - 1));
if (ret)
return ret;
} else if (bps != 10) {
/*
* Without board specific bus width settings we only support the
* sensors native bus width
*/
return -EINVAL;
}
if (flags & V4L2_MBUS_PCLK_SAMPLE_FALLING)
pixclk |= 0x10;
if (!(flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH))
pixclk |= 0x1;
if (!(flags & V4L2_MBUS_VSYNC_ACTIVE_HIGH))
pixclk |= 0x2;
ret = reg_write(client, MT9V022_PIXCLK_FV_LV, pixclk);
if (ret < 0)
return ret;
if (!(flags & V4L2_MBUS_MASTER))
mt9v022->chip_control &= ~0x8;
ret = reg_write(client, MT9V022_CHIP_CONTROL, mt9v022->chip_control);
if (ret < 0)
return ret;
dev_dbg(&client->dev, "Calculated pixclk 0x%x, chip control 0x%x\n",
pixclk, mt9v022->chip_control);
return 0;
}
static struct v4l2_subdev_video_ops mt9v022_subdev_video_ops = {
.s_stream = mt9v022_s_stream,
.s_mbus_fmt = mt9v022_s_fmt,
.g_mbus_fmt = mt9v022_g_fmt,
.try_mbus_fmt = mt9v022_try_fmt,
.s_crop = mt9v022_s_crop,
.g_crop = mt9v022_g_crop,
.cropcap = mt9v022_cropcap,
.enum_mbus_fmt = mt9v022_enum_fmt,
.g_mbus_config = mt9v022_g_mbus_config,
.s_mbus_config = mt9v022_s_mbus_config,
};
static struct v4l2_subdev_sensor_ops mt9v022_subdev_sensor_ops = {
.g_skip_top_lines = mt9v022_g_skip_top_lines,
};
static struct v4l2_subdev_ops mt9v022_subdev_ops = {
.core = &mt9v022_subdev_core_ops,
.video = &mt9v022_subdev_video_ops,
.sensor = &mt9v022_subdev_sensor_ops,
};
static int mt9v022_probe(struct i2c_client *client,
const struct i2c_device_id *did)
{
struct mt9v022 *mt9v022;
struct soc_camera_link *icl = soc_camera_i2c_to_link(client);
struct i2c_adapter *adapter = to_i2c_adapter(client->dev.parent);
int ret;
if (!icl) {
dev_err(&client->dev, "MT9V022 driver needs platform data\n");
return -EINVAL;
}
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_WORD_DATA)) {
dev_warn(&adapter->dev,
"I2C-Adapter doesn't support I2C_FUNC_SMBUS_WORD\n");
return -EIO;
}
mt9v022 = kzalloc(sizeof(struct mt9v022), GFP_KERNEL);
if (!mt9v022)
return -ENOMEM;
v4l2_i2c_subdev_init(&mt9v022->subdev, client, &mt9v022_subdev_ops);
v4l2_ctrl_handler_init(&mt9v022->hdl, 6);
v4l2_ctrl_new_std(&mt9v022->hdl, &mt9v022_ctrl_ops,
V4L2_CID_VFLIP, 0, 1, 1, 0);
v4l2_ctrl_new_std(&mt9v022->hdl, &mt9v022_ctrl_ops,
V4L2_CID_HFLIP, 0, 1, 1, 0);
mt9v022->autogain = v4l2_ctrl_new_std(&mt9v022->hdl, &mt9v022_ctrl_ops,
V4L2_CID_AUTOGAIN, 0, 1, 1, 1);
mt9v022->gain = v4l2_ctrl_new_std(&mt9v022->hdl, &mt9v022_ctrl_ops,
V4L2_CID_GAIN, 0, 127, 1, 64);
/*
* Simulated autoexposure. If enabled, we calculate shutter width
* ourselves in the driver based on vertical blanking and frame width
*/
mt9v022->autoexposure = v4l2_ctrl_new_std_menu(&mt9v022->hdl,
&mt9v022_ctrl_ops, V4L2_CID_EXPOSURE_AUTO, 1, 0,
V4L2_EXPOSURE_AUTO);
mt9v022->exposure = v4l2_ctrl_new_std(&mt9v022->hdl, &mt9v022_ctrl_ops,
V4L2_CID_EXPOSURE, 1, 255, 1, 255);
mt9v022->subdev.ctrl_handler = &mt9v022->hdl;
if (mt9v022->hdl.error) {
int err = mt9v022->hdl.error;
kfree(mt9v022);
return err;
}
v4l2_ctrl_auto_cluster(2, &mt9v022->autoexposure,
V4L2_EXPOSURE_MANUAL, true);
v4l2_ctrl_auto_cluster(2, &mt9v022->autogain, 0, true);
mt9v022->chip_control = MT9V022_CHIP_CONTROL_DEFAULT;
/*
* MT9V022 _really_ corrupts the first read out line.
* TODO: verify on i.MX31
*/
mt9v022->y_skip_top = 1;
mt9v022->rect.left = MT9V022_COLUMN_SKIP;
mt9v022->rect.top = MT9V022_ROW_SKIP;
mt9v022->rect.width = MT9V022_MAX_WIDTH;
mt9v022->rect.height = MT9V022_MAX_HEIGHT;
ret = mt9v022_video_probe(client);
if (ret) {
v4l2_ctrl_handler_free(&mt9v022->hdl);
kfree(mt9v022);
}
return ret;
}
static int mt9v022_remove(struct i2c_client *client)
{
struct mt9v022 *mt9v022 = to_mt9v022(client);
struct soc_camera_link *icl = soc_camera_i2c_to_link(client);
v4l2_device_unregister_subdev(&mt9v022->subdev);
if (icl->free_bus)
icl->free_bus(icl);
v4l2_ctrl_handler_free(&mt9v022->hdl);
kfree(mt9v022);
return 0;
}
static const struct i2c_device_id mt9v022_id[] = {
{ "mt9v022", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, mt9v022_id);
static struct i2c_driver mt9v022_i2c_driver = {
.driver = {
.name = "mt9v022",
},
.probe = mt9v022_probe,
.remove = mt9v022_remove,
.id_table = mt9v022_id,
};
module_i2c_driver(mt9v022_i2c_driver);
MODULE_DESCRIPTION("Micron MT9V022 Camera driver");
MODULE_AUTHOR("Guennadi Liakhovetski <kernel@pengutronix.de>");
MODULE_LICENSE("GPL");