mirror of https://gitee.com/openkylin/linux.git
1820 lines
58 KiB
C
1820 lines
58 KiB
C
/*
|
|
* Copyright 2016 Advanced Micro Devices, Inc.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
#include <linux/firmware.h>
|
|
#include <drm/drmP.h>
|
|
#include "amdgpu.h"
|
|
#include "amdgpu_ucode.h"
|
|
#include "amdgpu_trace.h"
|
|
|
|
#include "sdma0/sdma0_4_2_offset.h"
|
|
#include "sdma0/sdma0_4_2_sh_mask.h"
|
|
#include "sdma1/sdma1_4_2_offset.h"
|
|
#include "sdma1/sdma1_4_2_sh_mask.h"
|
|
#include "hdp/hdp_4_0_offset.h"
|
|
#include "sdma0/sdma0_4_1_default.h"
|
|
|
|
#include "soc15_common.h"
|
|
#include "soc15.h"
|
|
#include "vega10_sdma_pkt_open.h"
|
|
|
|
#include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h"
|
|
#include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h"
|
|
|
|
MODULE_FIRMWARE("amdgpu/vega10_sdma.bin");
|
|
MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin");
|
|
MODULE_FIRMWARE("amdgpu/vega12_sdma.bin");
|
|
MODULE_FIRMWARE("amdgpu/vega12_sdma1.bin");
|
|
MODULE_FIRMWARE("amdgpu/vega20_sdma.bin");
|
|
MODULE_FIRMWARE("amdgpu/vega20_sdma1.bin");
|
|
MODULE_FIRMWARE("amdgpu/raven_sdma.bin");
|
|
|
|
#define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK 0x000000F8L
|
|
#define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L
|
|
|
|
static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
|
|
static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
|
|
static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
|
|
static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);
|
|
|
|
static const struct soc15_reg_golden golden_settings_sdma_4[] = {
|
|
SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0)
|
|
};
|
|
|
|
static const struct soc15_reg_golden golden_settings_sdma_vg10[] = {
|
|
SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002)
|
|
};
|
|
|
|
static const struct soc15_reg_golden golden_settings_sdma_vg12[] = {
|
|
SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001)
|
|
};
|
|
|
|
static const struct soc15_reg_golden golden_settings_sdma_4_1[] = {
|
|
SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0)
|
|
};
|
|
|
|
static const struct soc15_reg_golden golden_settings_sdma0_4_2_init[] = {
|
|
SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
|
|
};
|
|
|
|
static const struct soc15_reg_golden golden_settings_sdma0_4_2[] =
|
|
{
|
|
SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RD_BURST_CNTL, 0x0000000f, 0x00000003),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
|
|
};
|
|
|
|
static const struct soc15_reg_golden golden_settings_sdma1_4_2[] = {
|
|
SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RD_BURST_CNTL, 0x0000000f, 0x00000003),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
|
|
};
|
|
|
|
static const struct soc15_reg_golden golden_settings_sdma_rv1[] =
|
|
{
|
|
SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
|
|
SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002)
|
|
};
|
|
|
|
static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev,
|
|
u32 instance, u32 offset)
|
|
{
|
|
return ( 0 == instance ? (adev->reg_offset[SDMA0_HWIP][0][0] + offset) :
|
|
(adev->reg_offset[SDMA1_HWIP][0][0] + offset));
|
|
}
|
|
|
|
static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
|
|
{
|
|
switch (adev->asic_type) {
|
|
case CHIP_VEGA10:
|
|
soc15_program_register_sequence(adev,
|
|
golden_settings_sdma_4,
|
|
ARRAY_SIZE(golden_settings_sdma_4));
|
|
soc15_program_register_sequence(adev,
|
|
golden_settings_sdma_vg10,
|
|
ARRAY_SIZE(golden_settings_sdma_vg10));
|
|
break;
|
|
case CHIP_VEGA12:
|
|
soc15_program_register_sequence(adev,
|
|
golden_settings_sdma_4,
|
|
ARRAY_SIZE(golden_settings_sdma_4));
|
|
soc15_program_register_sequence(adev,
|
|
golden_settings_sdma_vg12,
|
|
ARRAY_SIZE(golden_settings_sdma_vg12));
|
|
break;
|
|
case CHIP_VEGA20:
|
|
soc15_program_register_sequence(adev,
|
|
golden_settings_sdma0_4_2_init,
|
|
ARRAY_SIZE(golden_settings_sdma0_4_2_init));
|
|
soc15_program_register_sequence(adev,
|
|
golden_settings_sdma0_4_2,
|
|
ARRAY_SIZE(golden_settings_sdma0_4_2));
|
|
soc15_program_register_sequence(adev,
|
|
golden_settings_sdma1_4_2,
|
|
ARRAY_SIZE(golden_settings_sdma1_4_2));
|
|
break;
|
|
case CHIP_RAVEN:
|
|
soc15_program_register_sequence(adev,
|
|
golden_settings_sdma_4_1,
|
|
ARRAY_SIZE(golden_settings_sdma_4_1));
|
|
soc15_program_register_sequence(adev,
|
|
golden_settings_sdma_rv1,
|
|
ARRAY_SIZE(golden_settings_sdma_rv1));
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* sdma_v4_0_init_microcode - load ucode images from disk
|
|
*
|
|
* @adev: amdgpu_device pointer
|
|
*
|
|
* Use the firmware interface to load the ucode images into
|
|
* the driver (not loaded into hw).
|
|
* Returns 0 on success, error on failure.
|
|
*/
|
|
|
|
// emulation only, won't work on real chip
|
|
// vega10 real chip need to use PSP to load firmware
|
|
static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
|
|
{
|
|
const char *chip_name;
|
|
char fw_name[30];
|
|
int err = 0, i;
|
|
struct amdgpu_firmware_info *info = NULL;
|
|
const struct common_firmware_header *header = NULL;
|
|
const struct sdma_firmware_header_v1_0 *hdr;
|
|
|
|
DRM_DEBUG("\n");
|
|
|
|
switch (adev->asic_type) {
|
|
case CHIP_VEGA10:
|
|
chip_name = "vega10";
|
|
break;
|
|
case CHIP_VEGA12:
|
|
chip_name = "vega12";
|
|
break;
|
|
case CHIP_VEGA20:
|
|
chip_name = "vega20";
|
|
break;
|
|
case CHIP_RAVEN:
|
|
chip_name = "raven";
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
for (i = 0; i < adev->sdma.num_instances; i++) {
|
|
if (i == 0)
|
|
snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
|
|
else
|
|
snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
|
|
err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
|
|
if (err)
|
|
goto out;
|
|
err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
|
|
if (err)
|
|
goto out;
|
|
hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
|
|
adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
|
|
adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
|
|
if (adev->sdma.instance[i].feature_version >= 20)
|
|
adev->sdma.instance[i].burst_nop = true;
|
|
DRM_DEBUG("psp_load == '%s'\n",
|
|
adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false");
|
|
|
|
if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
|
|
info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
|
|
info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
|
|
info->fw = adev->sdma.instance[i].fw;
|
|
header = (const struct common_firmware_header *)info->fw->data;
|
|
adev->firmware.fw_size +=
|
|
ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
|
|
}
|
|
}
|
|
out:
|
|
if (err) {
|
|
DRM_ERROR("sdma_v4_0: Failed to load firmware \"%s\"\n", fw_name);
|
|
for (i = 0; i < adev->sdma.num_instances; i++) {
|
|
release_firmware(adev->sdma.instance[i].fw);
|
|
adev->sdma.instance[i].fw = NULL;
|
|
}
|
|
}
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* sdma_v4_0_ring_get_rptr - get the current read pointer
|
|
*
|
|
* @ring: amdgpu ring pointer
|
|
*
|
|
* Get the current rptr from the hardware (VEGA10+).
|
|
*/
|
|
static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
|
|
{
|
|
u64 *rptr;
|
|
|
|
/* XXX check if swapping is necessary on BE */
|
|
rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]);
|
|
|
|
DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
|
|
return ((*rptr) >> 2);
|
|
}
|
|
|
|
/**
|
|
* sdma_v4_0_ring_get_wptr - get the current write pointer
|
|
*
|
|
* @ring: amdgpu ring pointer
|
|
*
|
|
* Get the current wptr from the hardware (VEGA10+).
|
|
*/
|
|
static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
|
|
{
|
|
struct amdgpu_device *adev = ring->adev;
|
|
u64 wptr;
|
|
|
|
if (ring->use_doorbell) {
|
|
/* XXX check if swapping is necessary on BE */
|
|
wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
|
|
DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
|
|
} else {
|
|
u32 lowbit, highbit;
|
|
|
|
lowbit = RREG32(sdma_v4_0_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR)) >> 2;
|
|
highbit = RREG32(sdma_v4_0_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR_HI)) >> 2;
|
|
|
|
DRM_DEBUG("wptr [%i]high== 0x%08x low==0x%08x\n",
|
|
ring->me, highbit, lowbit);
|
|
wptr = highbit;
|
|
wptr = wptr << 32;
|
|
wptr |= lowbit;
|
|
}
|
|
|
|
return wptr >> 2;
|
|
}
|
|
|
|
/**
|
|
* sdma_v4_0_ring_set_wptr - commit the write pointer
|
|
*
|
|
* @ring: amdgpu ring pointer
|
|
*
|
|
* Write the wptr back to the hardware (VEGA10+).
|
|
*/
|
|
static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
|
|
{
|
|
struct amdgpu_device *adev = ring->adev;
|
|
|
|
DRM_DEBUG("Setting write pointer\n");
|
|
if (ring->use_doorbell) {
|
|
u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
|
|
|
|
DRM_DEBUG("Using doorbell -- "
|
|
"wptr_offs == 0x%08x "
|
|
"lower_32_bits(ring->wptr) << 2 == 0x%08x "
|
|
"upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
|
|
ring->wptr_offs,
|
|
lower_32_bits(ring->wptr << 2),
|
|
upper_32_bits(ring->wptr << 2));
|
|
/* XXX check if swapping is necessary on BE */
|
|
WRITE_ONCE(*wb, (ring->wptr << 2));
|
|
DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
|
|
ring->doorbell_index, ring->wptr << 2);
|
|
WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
|
|
} else {
|
|
DRM_DEBUG("Not using doorbell -- "
|
|
"mmSDMA%i_GFX_RB_WPTR == 0x%08x "
|
|
"mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
|
|
ring->me,
|
|
lower_32_bits(ring->wptr << 2),
|
|
ring->me,
|
|
upper_32_bits(ring->wptr << 2));
|
|
WREG32(sdma_v4_0_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR), lower_32_bits(ring->wptr << 2));
|
|
WREG32(sdma_v4_0_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR_HI), upper_32_bits(ring->wptr << 2));
|
|
}
|
|
}
|
|
|
|
static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
|
|
{
|
|
struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
|
|
int i;
|
|
|
|
for (i = 0; i < count; i++)
|
|
if (sdma && sdma->burst_nop && (i == 0))
|
|
amdgpu_ring_write(ring, ring->funcs->nop |
|
|
SDMA_PKT_NOP_HEADER_COUNT(count - 1));
|
|
else
|
|
amdgpu_ring_write(ring, ring->funcs->nop);
|
|
}
|
|
|
|
/**
|
|
* sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
|
|
*
|
|
* @ring: amdgpu ring pointer
|
|
* @ib: IB object to schedule
|
|
*
|
|
* Schedule an IB in the DMA ring (VEGA10).
|
|
*/
|
|
static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
|
|
struct amdgpu_ib *ib,
|
|
unsigned vmid, bool ctx_switch)
|
|
{
|
|
/* IB packet must end on a 8 DW boundary */
|
|
sdma_v4_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8);
|
|
|
|
amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
|
|
SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
|
|
/* base must be 32 byte aligned */
|
|
amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
|
|
amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
|
|
amdgpu_ring_write(ring, ib->length_dw);
|
|
amdgpu_ring_write(ring, 0);
|
|
amdgpu_ring_write(ring, 0);
|
|
|
|
}
|
|
|
|
static void sdma_v4_0_wait_reg_mem(struct amdgpu_ring *ring,
|
|
int mem_space, int hdp,
|
|
uint32_t addr0, uint32_t addr1,
|
|
uint32_t ref, uint32_t mask,
|
|
uint32_t inv)
|
|
{
|
|
amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
|
|
SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) |
|
|
SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) |
|
|
SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
|
|
if (mem_space) {
|
|
/* memory */
|
|
amdgpu_ring_write(ring, addr0);
|
|
amdgpu_ring_write(ring, addr1);
|
|
} else {
|
|
/* registers */
|
|
amdgpu_ring_write(ring, addr0 << 2);
|
|
amdgpu_ring_write(ring, addr1 << 2);
|
|
}
|
|
amdgpu_ring_write(ring, ref); /* reference */
|
|
amdgpu_ring_write(ring, mask); /* mask */
|
|
amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
|
|
SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */
|
|
}
|
|
|
|
/**
|
|
* sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
|
|
*
|
|
* @ring: amdgpu ring pointer
|
|
*
|
|
* Emit an hdp flush packet on the requested DMA ring.
|
|
*/
|
|
static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
|
|
{
|
|
struct amdgpu_device *adev = ring->adev;
|
|
u32 ref_and_mask = 0;
|
|
const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio_funcs->hdp_flush_reg;
|
|
|
|
if (ring->me == 0)
|
|
ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0;
|
|
else
|
|
ref_and_mask = nbio_hf_reg->ref_and_mask_sdma1;
|
|
|
|
sdma_v4_0_wait_reg_mem(ring, 0, 1,
|
|
adev->nbio_funcs->get_hdp_flush_done_offset(adev),
|
|
adev->nbio_funcs->get_hdp_flush_req_offset(adev),
|
|
ref_and_mask, ref_and_mask, 10);
|
|
}
|
|
|
|
/**
|
|
* sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
|
|
*
|
|
* @ring: amdgpu ring pointer
|
|
* @fence: amdgpu fence object
|
|
*
|
|
* Add a DMA fence packet to the ring to write
|
|
* the fence seq number and DMA trap packet to generate
|
|
* an interrupt if needed (VEGA10).
|
|
*/
|
|
static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
|
|
unsigned flags)
|
|
{
|
|
bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
|
|
/* write the fence */
|
|
amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
|
|
/* zero in first two bits */
|
|
BUG_ON(addr & 0x3);
|
|
amdgpu_ring_write(ring, lower_32_bits(addr));
|
|
amdgpu_ring_write(ring, upper_32_bits(addr));
|
|
amdgpu_ring_write(ring, lower_32_bits(seq));
|
|
|
|
/* optionally write high bits as well */
|
|
if (write64bit) {
|
|
addr += 4;
|
|
amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
|
|
/* zero in first two bits */
|
|
BUG_ON(addr & 0x3);
|
|
amdgpu_ring_write(ring, lower_32_bits(addr));
|
|
amdgpu_ring_write(ring, upper_32_bits(addr));
|
|
amdgpu_ring_write(ring, upper_32_bits(seq));
|
|
}
|
|
|
|
/* generate an interrupt */
|
|
amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
|
|
amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
|
|
}
|
|
|
|
|
|
/**
|
|
* sdma_v4_0_gfx_stop - stop the gfx async dma engines
|
|
*
|
|
* @adev: amdgpu_device pointer
|
|
*
|
|
* Stop the gfx async dma ring buffers (VEGA10).
|
|
*/
|
|
static void sdma_v4_0_gfx_stop(struct amdgpu_device *adev)
|
|
{
|
|
struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
|
|
struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
|
|
u32 rb_cntl, ib_cntl;
|
|
int i;
|
|
|
|
if ((adev->mman.buffer_funcs_ring == sdma0) ||
|
|
(adev->mman.buffer_funcs_ring == sdma1))
|
|
amdgpu_ttm_set_buffer_funcs_status(adev, false);
|
|
|
|
for (i = 0; i < adev->sdma.num_instances; i++) {
|
|
rb_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL));
|
|
rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
|
|
WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
|
|
ib_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL));
|
|
ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
|
|
WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
|
|
}
|
|
|
|
sdma0->ready = false;
|
|
sdma1->ready = false;
|
|
}
|
|
|
|
/**
|
|
* sdma_v4_0_rlc_stop - stop the compute async dma engines
|
|
*
|
|
* @adev: amdgpu_device pointer
|
|
*
|
|
* Stop the compute async dma queues (VEGA10).
|
|
*/
|
|
static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
|
|
{
|
|
/* XXX todo */
|
|
}
|
|
|
|
/**
|
|
* sdma_v_0_ctx_switch_enable - stop the async dma engines context switch
|
|
*
|
|
* @adev: amdgpu_device pointer
|
|
* @enable: enable/disable the DMA MEs context switch.
|
|
*
|
|
* Halt or unhalt the async dma engines context switch (VEGA10).
|
|
*/
|
|
static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
|
|
{
|
|
u32 f32_cntl, phase_quantum = 0;
|
|
int i;
|
|
|
|
if (amdgpu_sdma_phase_quantum) {
|
|
unsigned value = amdgpu_sdma_phase_quantum;
|
|
unsigned unit = 0;
|
|
|
|
while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
|
|
SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
|
|
value = (value + 1) >> 1;
|
|
unit++;
|
|
}
|
|
if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
|
|
SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
|
|
value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
|
|
SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
|
|
unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
|
|
SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
|
|
WARN_ONCE(1,
|
|
"clamping sdma_phase_quantum to %uK clock cycles\n",
|
|
value << unit);
|
|
}
|
|
phase_quantum =
|
|
value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
|
|
unit << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
|
|
}
|
|
|
|
for (i = 0; i < adev->sdma.num_instances; i++) {
|
|
f32_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_CNTL));
|
|
f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
|
|
AUTO_CTXSW_ENABLE, enable ? 1 : 0);
|
|
if (enable && amdgpu_sdma_phase_quantum) {
|
|
WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_PHASE0_QUANTUM),
|
|
phase_quantum);
|
|
WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_PHASE1_QUANTUM),
|
|
phase_quantum);
|
|
WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_PHASE2_QUANTUM),
|
|
phase_quantum);
|
|
}
|
|
WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_CNTL), f32_cntl);
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
* sdma_v4_0_enable - stop the async dma engines
|
|
*
|
|
* @adev: amdgpu_device pointer
|
|
* @enable: enable/disable the DMA MEs.
|
|
*
|
|
* Halt or unhalt the async dma engines (VEGA10).
|
|
*/
|
|
static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
|
|
{
|
|
u32 f32_cntl;
|
|
int i;
|
|
|
|
if (enable == false) {
|
|
sdma_v4_0_gfx_stop(adev);
|
|
sdma_v4_0_rlc_stop(adev);
|
|
}
|
|
|
|
for (i = 0; i < adev->sdma.num_instances; i++) {
|
|
f32_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL));
|
|
f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
|
|
WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), f32_cntl);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* sdma_v4_0_gfx_resume - setup and start the async dma engines
|
|
*
|
|
* @adev: amdgpu_device pointer
|
|
*
|
|
* Set up the gfx DMA ring buffers and enable them (VEGA10).
|
|
* Returns 0 for success, error for failure.
|
|
*/
|
|
static int sdma_v4_0_gfx_resume(struct amdgpu_device *adev)
|
|
{
|
|
struct amdgpu_ring *ring;
|
|
u32 rb_cntl, ib_cntl, wptr_poll_cntl;
|
|
u32 rb_bufsz;
|
|
u32 wb_offset;
|
|
u32 doorbell;
|
|
u32 doorbell_offset;
|
|
u32 temp;
|
|
u64 wptr_gpu_addr;
|
|
int i, r;
|
|
|
|
for (i = 0; i < adev->sdma.num_instances; i++) {
|
|
ring = &adev->sdma.instance[i].ring;
|
|
wb_offset = (ring->rptr_offs * 4);
|
|
|
|
WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL), 0);
|
|
|
|
/* Set ring buffer size in dwords */
|
|
rb_bufsz = order_base_2(ring->ring_size / 4);
|
|
rb_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL));
|
|
rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
|
|
#ifdef __BIG_ENDIAN
|
|
rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
|
|
rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
|
|
RPTR_WRITEBACK_SWAP_ENABLE, 1);
|
|
#endif
|
|
WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
|
|
|
|
/* Initialize the ring buffer's read and write pointers */
|
|
WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR), 0);
|
|
WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_HI), 0);
|
|
WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR), 0);
|
|
WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI), 0);
|
|
|
|
/* set the wb address whether it's enabled or not */
|
|
WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_HI),
|
|
upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
|
|
WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_LO),
|
|
lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
|
|
|
|
rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
|
|
|
|
WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE), ring->gpu_addr >> 8);
|
|
WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE_HI), ring->gpu_addr >> 40);
|
|
|
|
ring->wptr = 0;
|
|
|
|
/* before programing wptr to a less value, need set minor_ptr_update first */
|
|
WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 1);
|
|
|
|
if (!amdgpu_sriov_vf(adev)) { /* only bare-metal use register write for wptr */
|
|
WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR), lower_32_bits(ring->wptr) << 2);
|
|
WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI), upper_32_bits(ring->wptr) << 2);
|
|
}
|
|
|
|
doorbell = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL));
|
|
doorbell_offset = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL_OFFSET));
|
|
|
|
if (ring->use_doorbell) {
|
|
doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
|
|
doorbell_offset = REG_SET_FIELD(doorbell_offset, SDMA0_GFX_DOORBELL_OFFSET,
|
|
OFFSET, ring->doorbell_index);
|
|
} else {
|
|
doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
|
|
}
|
|
WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL), doorbell);
|
|
WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL_OFFSET), doorbell_offset);
|
|
adev->nbio_funcs->sdma_doorbell_range(adev, i, ring->use_doorbell,
|
|
ring->doorbell_index);
|
|
|
|
if (amdgpu_sriov_vf(adev))
|
|
sdma_v4_0_ring_set_wptr(ring);
|
|
|
|
/* set minor_ptr_update to 0 after wptr programed */
|
|
WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 0);
|
|
|
|
/* set utc l1 enable flag always to 1 */
|
|
temp = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_CNTL));
|
|
temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
|
|
WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_CNTL), temp);
|
|
|
|
if (!amdgpu_sriov_vf(adev)) {
|
|
/* unhalt engine */
|
|
temp = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL));
|
|
temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
|
|
WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), temp);
|
|
}
|
|
|
|
/* setup the wptr shadow polling */
|
|
wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
|
|
WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO),
|
|
lower_32_bits(wptr_gpu_addr));
|
|
WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI),
|
|
upper_32_bits(wptr_gpu_addr));
|
|
wptr_poll_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL));
|
|
if (amdgpu_sriov_vf(adev))
|
|
wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, SDMA0_GFX_RB_WPTR_POLL_CNTL, F32_POLL_ENABLE, 1);
|
|
else
|
|
wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, SDMA0_GFX_RB_WPTR_POLL_CNTL, F32_POLL_ENABLE, 0);
|
|
WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL), wptr_poll_cntl);
|
|
|
|
/* enable DMA RB */
|
|
rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
|
|
WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
|
|
|
|
ib_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL));
|
|
ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
|
|
#ifdef __BIG_ENDIAN
|
|
ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
|
|
#endif
|
|
/* enable DMA IBs */
|
|
WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
|
|
|
|
ring->ready = true;
|
|
|
|
if (amdgpu_sriov_vf(adev)) { /* bare-metal sequence doesn't need below to lines */
|
|
sdma_v4_0_ctx_switch_enable(adev, true);
|
|
sdma_v4_0_enable(adev, true);
|
|
}
|
|
|
|
r = amdgpu_ring_test_ring(ring);
|
|
if (r) {
|
|
ring->ready = false;
|
|
return r;
|
|
}
|
|
|
|
if (adev->mman.buffer_funcs_ring == ring)
|
|
amdgpu_ttm_set_buffer_funcs_status(adev, true);
|
|
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable)
|
|
{
|
|
uint32_t def, data;
|
|
|
|
if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) {
|
|
/* disable idle interrupt */
|
|
def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
|
|
data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
|
|
|
|
if (data != def)
|
|
WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
|
|
} else {
|
|
/* disable idle interrupt */
|
|
def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
|
|
data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
|
|
if (data != def)
|
|
WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
|
|
}
|
|
}
|
|
|
|
static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev)
|
|
{
|
|
uint32_t def, data;
|
|
|
|
/* Enable HW based PG. */
|
|
def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
|
|
data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK;
|
|
if (data != def)
|
|
WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
|
|
|
|
/* enable interrupt */
|
|
def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
|
|
data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
|
|
if (data != def)
|
|
WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
|
|
|
|
/* Configure hold time to filter in-valid power on/off request. Use default right now */
|
|
def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
|
|
data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK;
|
|
data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK);
|
|
/* Configure switch time for hysteresis purpose. Use default right now */
|
|
data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK;
|
|
data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK);
|
|
if(data != def)
|
|
WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
|
|
}
|
|
|
|
static void sdma_v4_0_init_pg(struct amdgpu_device *adev)
|
|
{
|
|
if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA))
|
|
return;
|
|
|
|
switch (adev->asic_type) {
|
|
case CHIP_RAVEN:
|
|
sdma_v4_1_init_power_gating(adev);
|
|
sdma_v4_1_update_power_gating(adev, true);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* sdma_v4_0_rlc_resume - setup and start the async dma engines
|
|
*
|
|
* @adev: amdgpu_device pointer
|
|
*
|
|
* Set up the compute DMA queues and enable them (VEGA10).
|
|
* Returns 0 for success, error for failure.
|
|
*/
|
|
static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
|
|
{
|
|
sdma_v4_0_init_pg(adev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* sdma_v4_0_load_microcode - load the sDMA ME ucode
|
|
*
|
|
* @adev: amdgpu_device pointer
|
|
*
|
|
* Loads the sDMA0/1 ucode.
|
|
* Returns 0 for success, -EINVAL if the ucode is not available.
|
|
*/
|
|
static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
|
|
{
|
|
const struct sdma_firmware_header_v1_0 *hdr;
|
|
const __le32 *fw_data;
|
|
u32 fw_size;
|
|
int i, j;
|
|
|
|
/* halt the MEs */
|
|
sdma_v4_0_enable(adev, false);
|
|
|
|
for (i = 0; i < adev->sdma.num_instances; i++) {
|
|
if (!adev->sdma.instance[i].fw)
|
|
return -EINVAL;
|
|
|
|
hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
|
|
amdgpu_ucode_print_sdma_hdr(&hdr->header);
|
|
fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
|
|
|
|
fw_data = (const __le32 *)
|
|
(adev->sdma.instance[i].fw->data +
|
|
le32_to_cpu(hdr->header.ucode_array_offset_bytes));
|
|
|
|
WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), 0);
|
|
|
|
for (j = 0; j < fw_size; j++)
|
|
WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_UCODE_DATA), le32_to_cpup(fw_data++));
|
|
|
|
WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), adev->sdma.instance[i].fw_version);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* sdma_v4_0_start - setup and start the async dma engines
|
|
*
|
|
* @adev: amdgpu_device pointer
|
|
*
|
|
* Set up the DMA engines and enable them (VEGA10).
|
|
* Returns 0 for success, error for failure.
|
|
*/
|
|
static int sdma_v4_0_start(struct amdgpu_device *adev)
|
|
{
|
|
int r = 0;
|
|
|
|
if (amdgpu_sriov_vf(adev)) {
|
|
sdma_v4_0_ctx_switch_enable(adev, false);
|
|
sdma_v4_0_enable(adev, false);
|
|
|
|
/* set RB registers */
|
|
r = sdma_v4_0_gfx_resume(adev);
|
|
return r;
|
|
}
|
|
|
|
if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
|
|
r = sdma_v4_0_load_microcode(adev);
|
|
if (r)
|
|
return r;
|
|
}
|
|
|
|
/* unhalt the MEs */
|
|
sdma_v4_0_enable(adev, true);
|
|
/* enable sdma ring preemption */
|
|
sdma_v4_0_ctx_switch_enable(adev, true);
|
|
|
|
/* start the gfx rings and rlc compute queues */
|
|
r = sdma_v4_0_gfx_resume(adev);
|
|
if (r)
|
|
return r;
|
|
r = sdma_v4_0_rlc_resume(adev);
|
|
|
|
return r;
|
|
}
|
|
|
|
/**
|
|
* sdma_v4_0_ring_test_ring - simple async dma engine test
|
|
*
|
|
* @ring: amdgpu_ring structure holding ring information
|
|
*
|
|
* Test the DMA engine by writing using it to write an
|
|
* value to memory. (VEGA10).
|
|
* Returns 0 for success, error for failure.
|
|
*/
|
|
static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
|
|
{
|
|
struct amdgpu_device *adev = ring->adev;
|
|
unsigned i;
|
|
unsigned index;
|
|
int r;
|
|
u32 tmp;
|
|
u64 gpu_addr;
|
|
|
|
r = amdgpu_device_wb_get(adev, &index);
|
|
if (r) {
|
|
dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
|
|
return r;
|
|
}
|
|
|
|
gpu_addr = adev->wb.gpu_addr + (index * 4);
|
|
tmp = 0xCAFEDEAD;
|
|
adev->wb.wb[index] = cpu_to_le32(tmp);
|
|
|
|
r = amdgpu_ring_alloc(ring, 5);
|
|
if (r) {
|
|
DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
|
|
amdgpu_device_wb_free(adev, index);
|
|
return r;
|
|
}
|
|
|
|
amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
|
|
SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
|
|
amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
|
|
amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
|
|
amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
|
|
amdgpu_ring_write(ring, 0xDEADBEEF);
|
|
amdgpu_ring_commit(ring);
|
|
|
|
for (i = 0; i < adev->usec_timeout; i++) {
|
|
tmp = le32_to_cpu(adev->wb.wb[index]);
|
|
if (tmp == 0xDEADBEEF)
|
|
break;
|
|
DRM_UDELAY(1);
|
|
}
|
|
|
|
if (i < adev->usec_timeout) {
|
|
DRM_DEBUG("ring test on %d succeeded in %d usecs\n", ring->idx, i);
|
|
} else {
|
|
DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
|
|
ring->idx, tmp);
|
|
r = -EINVAL;
|
|
}
|
|
amdgpu_device_wb_free(adev, index);
|
|
|
|
return r;
|
|
}
|
|
|
|
/**
|
|
* sdma_v4_0_ring_test_ib - test an IB on the DMA engine
|
|
*
|
|
* @ring: amdgpu_ring structure holding ring information
|
|
*
|
|
* Test a simple IB in the DMA ring (VEGA10).
|
|
* Returns 0 on success, error on failure.
|
|
*/
|
|
static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
|
|
{
|
|
struct amdgpu_device *adev = ring->adev;
|
|
struct amdgpu_ib ib;
|
|
struct dma_fence *f = NULL;
|
|
unsigned index;
|
|
long r;
|
|
u32 tmp = 0;
|
|
u64 gpu_addr;
|
|
|
|
r = amdgpu_device_wb_get(adev, &index);
|
|
if (r) {
|
|
dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
|
|
return r;
|
|
}
|
|
|
|
gpu_addr = adev->wb.gpu_addr + (index * 4);
|
|
tmp = 0xCAFEDEAD;
|
|
adev->wb.wb[index] = cpu_to_le32(tmp);
|
|
memset(&ib, 0, sizeof(ib));
|
|
r = amdgpu_ib_get(adev, NULL, 256, &ib);
|
|
if (r) {
|
|
DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
|
|
goto err0;
|
|
}
|
|
|
|
ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
|
|
SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
|
|
ib.ptr[1] = lower_32_bits(gpu_addr);
|
|
ib.ptr[2] = upper_32_bits(gpu_addr);
|
|
ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
|
|
ib.ptr[4] = 0xDEADBEEF;
|
|
ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
|
|
ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
|
|
ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
|
|
ib.length_dw = 8;
|
|
|
|
r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
|
|
if (r)
|
|
goto err1;
|
|
|
|
r = dma_fence_wait_timeout(f, false, timeout);
|
|
if (r == 0) {
|
|
DRM_ERROR("amdgpu: IB test timed out\n");
|
|
r = -ETIMEDOUT;
|
|
goto err1;
|
|
} else if (r < 0) {
|
|
DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
|
|
goto err1;
|
|
}
|
|
tmp = le32_to_cpu(adev->wb.wb[index]);
|
|
if (tmp == 0xDEADBEEF) {
|
|
DRM_DEBUG("ib test on ring %d succeeded\n", ring->idx);
|
|
r = 0;
|
|
} else {
|
|
DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
|
|
r = -EINVAL;
|
|
}
|
|
err1:
|
|
amdgpu_ib_free(adev, &ib, NULL);
|
|
dma_fence_put(f);
|
|
err0:
|
|
amdgpu_device_wb_free(adev, index);
|
|
return r;
|
|
}
|
|
|
|
|
|
/**
|
|
* sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
|
|
*
|
|
* @ib: indirect buffer to fill with commands
|
|
* @pe: addr of the page entry
|
|
* @src: src addr to copy from
|
|
* @count: number of page entries to update
|
|
*
|
|
* Update PTEs by copying them from the GART using sDMA (VEGA10).
|
|
*/
|
|
static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
|
|
uint64_t pe, uint64_t src,
|
|
unsigned count)
|
|
{
|
|
unsigned bytes = count * 8;
|
|
|
|
ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
|
|
SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
|
|
ib->ptr[ib->length_dw++] = bytes - 1;
|
|
ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
|
|
ib->ptr[ib->length_dw++] = lower_32_bits(src);
|
|
ib->ptr[ib->length_dw++] = upper_32_bits(src);
|
|
ib->ptr[ib->length_dw++] = lower_32_bits(pe);
|
|
ib->ptr[ib->length_dw++] = upper_32_bits(pe);
|
|
|
|
}
|
|
|
|
/**
|
|
* sdma_v4_0_vm_write_pte - update PTEs by writing them manually
|
|
*
|
|
* @ib: indirect buffer to fill with commands
|
|
* @pe: addr of the page entry
|
|
* @addr: dst addr to write into pe
|
|
* @count: number of page entries to update
|
|
* @incr: increase next addr by incr bytes
|
|
* @flags: access flags
|
|
*
|
|
* Update PTEs by writing them manually using sDMA (VEGA10).
|
|
*/
|
|
static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
|
|
uint64_t value, unsigned count,
|
|
uint32_t incr)
|
|
{
|
|
unsigned ndw = count * 2;
|
|
|
|
ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
|
|
SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
|
|
ib->ptr[ib->length_dw++] = lower_32_bits(pe);
|
|
ib->ptr[ib->length_dw++] = upper_32_bits(pe);
|
|
ib->ptr[ib->length_dw++] = ndw - 1;
|
|
for (; ndw > 0; ndw -= 2) {
|
|
ib->ptr[ib->length_dw++] = lower_32_bits(value);
|
|
ib->ptr[ib->length_dw++] = upper_32_bits(value);
|
|
value += incr;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
|
|
*
|
|
* @ib: indirect buffer to fill with commands
|
|
* @pe: addr of the page entry
|
|
* @addr: dst addr to write into pe
|
|
* @count: number of page entries to update
|
|
* @incr: increase next addr by incr bytes
|
|
* @flags: access flags
|
|
*
|
|
* Update the page tables using sDMA (VEGA10).
|
|
*/
|
|
static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
|
|
uint64_t pe,
|
|
uint64_t addr, unsigned count,
|
|
uint32_t incr, uint64_t flags)
|
|
{
|
|
/* for physically contiguous pages (vram) */
|
|
ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
|
|
ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
|
|
ib->ptr[ib->length_dw++] = upper_32_bits(pe);
|
|
ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
|
|
ib->ptr[ib->length_dw++] = upper_32_bits(flags);
|
|
ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
|
|
ib->ptr[ib->length_dw++] = upper_32_bits(addr);
|
|
ib->ptr[ib->length_dw++] = incr; /* increment size */
|
|
ib->ptr[ib->length_dw++] = 0;
|
|
ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
|
|
}
|
|
|
|
/**
|
|
* sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
|
|
*
|
|
* @ib: indirect buffer to fill with padding
|
|
*
|
|
*/
|
|
static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
|
|
{
|
|
struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
|
|
u32 pad_count;
|
|
int i;
|
|
|
|
pad_count = (8 - (ib->length_dw & 0x7)) % 8;
|
|
for (i = 0; i < pad_count; i++)
|
|
if (sdma && sdma->burst_nop && (i == 0))
|
|
ib->ptr[ib->length_dw++] =
|
|
SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
|
|
SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
|
|
else
|
|
ib->ptr[ib->length_dw++] =
|
|
SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
|
|
}
|
|
|
|
|
|
/**
|
|
* sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
|
|
*
|
|
* @ring: amdgpu_ring pointer
|
|
*
|
|
* Make sure all previous operations are completed (CIK).
|
|
*/
|
|
static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
|
|
{
|
|
uint32_t seq = ring->fence_drv.sync_seq;
|
|
uint64_t addr = ring->fence_drv.gpu_addr;
|
|
|
|
/* wait for idle */
|
|
sdma_v4_0_wait_reg_mem(ring, 1, 0,
|
|
addr & 0xfffffffc,
|
|
upper_32_bits(addr) & 0xffffffff,
|
|
seq, 0xffffffff, 4);
|
|
}
|
|
|
|
|
|
/**
|
|
* sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
|
|
*
|
|
* @ring: amdgpu_ring pointer
|
|
* @vm: amdgpu_vm pointer
|
|
*
|
|
* Update the page table base and flush the VM TLB
|
|
* using sDMA (VEGA10).
|
|
*/
|
|
static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
|
|
unsigned vmid, uint64_t pd_addr)
|
|
{
|
|
amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
|
|
}
|
|
|
|
static void sdma_v4_0_ring_emit_wreg(struct amdgpu_ring *ring,
|
|
uint32_t reg, uint32_t val)
|
|
{
|
|
amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
|
|
SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
|
|
amdgpu_ring_write(ring, reg);
|
|
amdgpu_ring_write(ring, val);
|
|
}
|
|
|
|
static void sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
|
|
uint32_t val, uint32_t mask)
|
|
{
|
|
sdma_v4_0_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10);
|
|
}
|
|
|
|
static int sdma_v4_0_early_init(void *handle)
|
|
{
|
|
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
|
|
|
|
if (adev->asic_type == CHIP_RAVEN)
|
|
adev->sdma.num_instances = 1;
|
|
else
|
|
adev->sdma.num_instances = 2;
|
|
|
|
sdma_v4_0_set_ring_funcs(adev);
|
|
sdma_v4_0_set_buffer_funcs(adev);
|
|
sdma_v4_0_set_vm_pte_funcs(adev);
|
|
sdma_v4_0_set_irq_funcs(adev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int sdma_v4_0_sw_init(void *handle)
|
|
{
|
|
struct amdgpu_ring *ring;
|
|
int r, i;
|
|
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
|
|
|
|
/* SDMA trap event */
|
|
r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA0, SDMA0_4_0__SRCID__SDMA_TRAP,
|
|
&adev->sdma.trap_irq);
|
|
if (r)
|
|
return r;
|
|
|
|
/* SDMA trap event */
|
|
r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA1, SDMA1_4_0__SRCID__SDMA_TRAP,
|
|
&adev->sdma.trap_irq);
|
|
if (r)
|
|
return r;
|
|
|
|
r = sdma_v4_0_init_microcode(adev);
|
|
if (r) {
|
|
DRM_ERROR("Failed to load sdma firmware!\n");
|
|
return r;
|
|
}
|
|
|
|
for (i = 0; i < adev->sdma.num_instances; i++) {
|
|
ring = &adev->sdma.instance[i].ring;
|
|
ring->ring_obj = NULL;
|
|
ring->use_doorbell = true;
|
|
|
|
DRM_INFO("use_doorbell being set to: [%s]\n",
|
|
ring->use_doorbell?"true":"false");
|
|
|
|
ring->doorbell_index = (i == 0) ?
|
|
(AMDGPU_DOORBELL64_sDMA_ENGINE0 << 1) //get DWORD offset
|
|
: (AMDGPU_DOORBELL64_sDMA_ENGINE1 << 1); // get DWORD offset
|
|
|
|
sprintf(ring->name, "sdma%d", i);
|
|
r = amdgpu_ring_init(adev, ring, 1024,
|
|
&adev->sdma.trap_irq,
|
|
(i == 0) ?
|
|
AMDGPU_SDMA_IRQ_TRAP0 :
|
|
AMDGPU_SDMA_IRQ_TRAP1);
|
|
if (r)
|
|
return r;
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
static int sdma_v4_0_sw_fini(void *handle)
|
|
{
|
|
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
|
|
int i;
|
|
|
|
for (i = 0; i < adev->sdma.num_instances; i++)
|
|
amdgpu_ring_fini(&adev->sdma.instance[i].ring);
|
|
|
|
for (i = 0; i < adev->sdma.num_instances; i++) {
|
|
release_firmware(adev->sdma.instance[i].fw);
|
|
adev->sdma.instance[i].fw = NULL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sdma_v4_0_hw_init(void *handle)
|
|
{
|
|
int r;
|
|
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
|
|
|
|
sdma_v4_0_init_golden_registers(adev);
|
|
|
|
r = sdma_v4_0_start(adev);
|
|
|
|
return r;
|
|
}
|
|
|
|
static int sdma_v4_0_hw_fini(void *handle)
|
|
{
|
|
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
|
|
|
|
if (amdgpu_sriov_vf(adev))
|
|
return 0;
|
|
|
|
sdma_v4_0_ctx_switch_enable(adev, false);
|
|
sdma_v4_0_enable(adev, false);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sdma_v4_0_suspend(void *handle)
|
|
{
|
|
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
|
|
|
|
return sdma_v4_0_hw_fini(adev);
|
|
}
|
|
|
|
static int sdma_v4_0_resume(void *handle)
|
|
{
|
|
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
|
|
|
|
return sdma_v4_0_hw_init(adev);
|
|
}
|
|
|
|
static bool sdma_v4_0_is_idle(void *handle)
|
|
{
|
|
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
|
|
u32 i;
|
|
|
|
for (i = 0; i < adev->sdma.num_instances; i++) {
|
|
u32 tmp = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_STATUS_REG));
|
|
|
|
if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static int sdma_v4_0_wait_for_idle(void *handle)
|
|
{
|
|
unsigned i;
|
|
u32 sdma0, sdma1;
|
|
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
|
|
|
|
for (i = 0; i < adev->usec_timeout; i++) {
|
|
sdma0 = RREG32(sdma_v4_0_get_reg_offset(adev, 0, mmSDMA0_STATUS_REG));
|
|
sdma1 = RREG32(sdma_v4_0_get_reg_offset(adev, 1, mmSDMA0_STATUS_REG));
|
|
|
|
if (sdma0 & sdma1 & SDMA0_STATUS_REG__IDLE_MASK)
|
|
return 0;
|
|
udelay(1);
|
|
}
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
static int sdma_v4_0_soft_reset(void *handle)
|
|
{
|
|
/* todo */
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
|
|
struct amdgpu_irq_src *source,
|
|
unsigned type,
|
|
enum amdgpu_interrupt_state state)
|
|
{
|
|
u32 sdma_cntl;
|
|
|
|
u32 reg_offset = (type == AMDGPU_SDMA_IRQ_TRAP0) ?
|
|
sdma_v4_0_get_reg_offset(adev, 0, mmSDMA0_CNTL) :
|
|
sdma_v4_0_get_reg_offset(adev, 1, mmSDMA0_CNTL);
|
|
|
|
sdma_cntl = RREG32(reg_offset);
|
|
sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
|
|
state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
|
|
WREG32(reg_offset, sdma_cntl);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
|
|
struct amdgpu_irq_src *source,
|
|
struct amdgpu_iv_entry *entry)
|
|
{
|
|
DRM_DEBUG("IH: SDMA trap\n");
|
|
switch (entry->client_id) {
|
|
case SOC15_IH_CLIENTID_SDMA0:
|
|
switch (entry->ring_id) {
|
|
case 0:
|
|
amdgpu_fence_process(&adev->sdma.instance[0].ring);
|
|
break;
|
|
case 1:
|
|
/* XXX compute */
|
|
break;
|
|
case 2:
|
|
/* XXX compute */
|
|
break;
|
|
case 3:
|
|
/* XXX page queue*/
|
|
break;
|
|
}
|
|
break;
|
|
case SOC15_IH_CLIENTID_SDMA1:
|
|
switch (entry->ring_id) {
|
|
case 0:
|
|
amdgpu_fence_process(&adev->sdma.instance[1].ring);
|
|
break;
|
|
case 1:
|
|
/* XXX compute */
|
|
break;
|
|
case 2:
|
|
/* XXX compute */
|
|
break;
|
|
case 3:
|
|
/* XXX page queue*/
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
|
|
struct amdgpu_irq_src *source,
|
|
struct amdgpu_iv_entry *entry)
|
|
{
|
|
DRM_ERROR("Illegal instruction in SDMA command stream\n");
|
|
schedule_work(&adev->reset_work);
|
|
return 0;
|
|
}
|
|
|
|
|
|
static void sdma_v4_0_update_medium_grain_clock_gating(
|
|
struct amdgpu_device *adev,
|
|
bool enable)
|
|
{
|
|
uint32_t data, def;
|
|
|
|
if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
|
|
/* enable sdma0 clock gating */
|
|
def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
|
|
data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
|
|
SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
|
|
SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
|
|
SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
|
|
SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
|
|
SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
|
|
SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
|
|
SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
|
|
if (def != data)
|
|
WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);
|
|
|
|
if (adev->sdma.num_instances > 1) {
|
|
def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
|
|
data &= ~(SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
|
|
SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
|
|
SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
|
|
SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
|
|
SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
|
|
SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
|
|
SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
|
|
SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
|
|
if (def != data)
|
|
WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
|
|
}
|
|
} else {
|
|
/* disable sdma0 clock gating */
|
|
def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
|
|
data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
|
|
SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
|
|
SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
|
|
SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
|
|
SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
|
|
SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
|
|
SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
|
|
SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
|
|
|
|
if (def != data)
|
|
WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);
|
|
|
|
if (adev->sdma.num_instances > 1) {
|
|
def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
|
|
data |= (SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
|
|
SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
|
|
SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
|
|
SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
|
|
SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
|
|
SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
|
|
SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
|
|
SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
|
|
if (def != data)
|
|
WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static void sdma_v4_0_update_medium_grain_light_sleep(
|
|
struct amdgpu_device *adev,
|
|
bool enable)
|
|
{
|
|
uint32_t data, def;
|
|
|
|
if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
|
|
/* 1-not override: enable sdma0 mem light sleep */
|
|
def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
|
|
data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
|
|
if (def != data)
|
|
WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
|
|
|
|
/* 1-not override: enable sdma1 mem light sleep */
|
|
if (adev->sdma.num_instances > 1) {
|
|
def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
|
|
data |= SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
|
|
if (def != data)
|
|
WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
|
|
}
|
|
} else {
|
|
/* 0-override:disable sdma0 mem light sleep */
|
|
def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
|
|
data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
|
|
if (def != data)
|
|
WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
|
|
|
|
/* 0-override:disable sdma1 mem light sleep */
|
|
if (adev->sdma.num_instances > 1) {
|
|
def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
|
|
data &= ~SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
|
|
if (def != data)
|
|
WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int sdma_v4_0_set_clockgating_state(void *handle,
|
|
enum amd_clockgating_state state)
|
|
{
|
|
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
|
|
|
|
if (amdgpu_sriov_vf(adev))
|
|
return 0;
|
|
|
|
switch (adev->asic_type) {
|
|
case CHIP_VEGA10:
|
|
case CHIP_VEGA12:
|
|
case CHIP_VEGA20:
|
|
case CHIP_RAVEN:
|
|
sdma_v4_0_update_medium_grain_clock_gating(adev,
|
|
state == AMD_CG_STATE_GATE ? true : false);
|
|
sdma_v4_0_update_medium_grain_light_sleep(adev,
|
|
state == AMD_CG_STATE_GATE ? true : false);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int sdma_v4_0_set_powergating_state(void *handle,
|
|
enum amd_powergating_state state)
|
|
{
|
|
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
|
|
|
|
switch (adev->asic_type) {
|
|
case CHIP_RAVEN:
|
|
sdma_v4_1_update_power_gating(adev,
|
|
state == AMD_PG_STATE_GATE ? true : false);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sdma_v4_0_get_clockgating_state(void *handle, u32 *flags)
|
|
{
|
|
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
|
|
int data;
|
|
|
|
if (amdgpu_sriov_vf(adev))
|
|
*flags = 0;
|
|
|
|
/* AMD_CG_SUPPORT_SDMA_MGCG */
|
|
data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
|
|
if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
|
|
*flags |= AMD_CG_SUPPORT_SDMA_MGCG;
|
|
|
|
/* AMD_CG_SUPPORT_SDMA_LS */
|
|
data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
|
|
if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
|
|
*flags |= AMD_CG_SUPPORT_SDMA_LS;
|
|
}
|
|
|
|
const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
|
|
.name = "sdma_v4_0",
|
|
.early_init = sdma_v4_0_early_init,
|
|
.late_init = NULL,
|
|
.sw_init = sdma_v4_0_sw_init,
|
|
.sw_fini = sdma_v4_0_sw_fini,
|
|
.hw_init = sdma_v4_0_hw_init,
|
|
.hw_fini = sdma_v4_0_hw_fini,
|
|
.suspend = sdma_v4_0_suspend,
|
|
.resume = sdma_v4_0_resume,
|
|
.is_idle = sdma_v4_0_is_idle,
|
|
.wait_for_idle = sdma_v4_0_wait_for_idle,
|
|
.soft_reset = sdma_v4_0_soft_reset,
|
|
.set_clockgating_state = sdma_v4_0_set_clockgating_state,
|
|
.set_powergating_state = sdma_v4_0_set_powergating_state,
|
|
.get_clockgating_state = sdma_v4_0_get_clockgating_state,
|
|
};
|
|
|
|
static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
|
|
.type = AMDGPU_RING_TYPE_SDMA,
|
|
.align_mask = 0xf,
|
|
.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
|
|
.support_64bit_ptrs = true,
|
|
.vmhub = AMDGPU_MMHUB,
|
|
.get_rptr = sdma_v4_0_ring_get_rptr,
|
|
.get_wptr = sdma_v4_0_ring_get_wptr,
|
|
.set_wptr = sdma_v4_0_ring_set_wptr,
|
|
.emit_frame_size =
|
|
6 + /* sdma_v4_0_ring_emit_hdp_flush */
|
|
3 + /* hdp invalidate */
|
|
6 + /* sdma_v4_0_ring_emit_pipeline_sync */
|
|
/* sdma_v4_0_ring_emit_vm_flush */
|
|
SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
|
|
SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
|
|
10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
|
|
.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
|
|
.emit_ib = sdma_v4_0_ring_emit_ib,
|
|
.emit_fence = sdma_v4_0_ring_emit_fence,
|
|
.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
|
|
.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
|
|
.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
|
|
.test_ring = sdma_v4_0_ring_test_ring,
|
|
.test_ib = sdma_v4_0_ring_test_ib,
|
|
.insert_nop = sdma_v4_0_ring_insert_nop,
|
|
.pad_ib = sdma_v4_0_ring_pad_ib,
|
|
.emit_wreg = sdma_v4_0_ring_emit_wreg,
|
|
.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
|
|
.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
|
|
};
|
|
|
|
static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < adev->sdma.num_instances; i++) {
|
|
adev->sdma.instance[i].ring.funcs = &sdma_v4_0_ring_funcs;
|
|
adev->sdma.instance[i].ring.me = i;
|
|
}
|
|
}
|
|
|
|
static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
|
|
.set = sdma_v4_0_set_trap_irq_state,
|
|
.process = sdma_v4_0_process_trap_irq,
|
|
};
|
|
|
|
static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
|
|
.process = sdma_v4_0_process_illegal_inst_irq,
|
|
};
|
|
|
|
static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
|
|
{
|
|
adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
|
|
adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
|
|
adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
|
|
}
|
|
|
|
/**
|
|
* sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
|
|
*
|
|
* @ring: amdgpu_ring structure holding ring information
|
|
* @src_offset: src GPU address
|
|
* @dst_offset: dst GPU address
|
|
* @byte_count: number of bytes to xfer
|
|
*
|
|
* Copy GPU buffers using the DMA engine (VEGA10/12).
|
|
* Used by the amdgpu ttm implementation to move pages if
|
|
* registered as the asic copy callback.
|
|
*/
|
|
static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
|
|
uint64_t src_offset,
|
|
uint64_t dst_offset,
|
|
uint32_t byte_count)
|
|
{
|
|
ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
|
|
SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
|
|
ib->ptr[ib->length_dw++] = byte_count - 1;
|
|
ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
|
|
ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
|
|
ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
|
|
ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
|
|
ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
|
|
}
|
|
|
|
/**
|
|
* sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
|
|
*
|
|
* @ring: amdgpu_ring structure holding ring information
|
|
* @src_data: value to write to buffer
|
|
* @dst_offset: dst GPU address
|
|
* @byte_count: number of bytes to xfer
|
|
*
|
|
* Fill GPU buffers using the DMA engine (VEGA10/12).
|
|
*/
|
|
static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
|
|
uint32_t src_data,
|
|
uint64_t dst_offset,
|
|
uint32_t byte_count)
|
|
{
|
|
ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
|
|
ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
|
|
ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
|
|
ib->ptr[ib->length_dw++] = src_data;
|
|
ib->ptr[ib->length_dw++] = byte_count - 1;
|
|
}
|
|
|
|
static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
|
|
.copy_max_bytes = 0x400000,
|
|
.copy_num_dw = 7,
|
|
.emit_copy_buffer = sdma_v4_0_emit_copy_buffer,
|
|
|
|
.fill_max_bytes = 0x400000,
|
|
.fill_num_dw = 5,
|
|
.emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
|
|
};
|
|
|
|
static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
|
|
{
|
|
if (adev->mman.buffer_funcs == NULL) {
|
|
adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
|
|
adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
|
|
}
|
|
}
|
|
|
|
static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
|
|
.copy_pte_num_dw = 7,
|
|
.copy_pte = sdma_v4_0_vm_copy_pte,
|
|
|
|
.write_pte = sdma_v4_0_vm_write_pte,
|
|
.set_pte_pde = sdma_v4_0_vm_set_pte_pde,
|
|
};
|
|
|
|
static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
|
|
{
|
|
struct drm_gpu_scheduler *sched;
|
|
unsigned i;
|
|
|
|
if (adev->vm_manager.vm_pte_funcs == NULL) {
|
|
adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
|
|
for (i = 0; i < adev->sdma.num_instances; i++) {
|
|
sched = &adev->sdma.instance[i].ring.sched;
|
|
adev->vm_manager.vm_pte_rqs[i] =
|
|
&sched->sched_rq[DRM_SCHED_PRIORITY_KERNEL];
|
|
}
|
|
adev->vm_manager.vm_pte_num_rqs = adev->sdma.num_instances;
|
|
}
|
|
}
|
|
|
|
const struct amdgpu_ip_block_version sdma_v4_0_ip_block = {
|
|
.type = AMD_IP_BLOCK_TYPE_SDMA,
|
|
.major = 4,
|
|
.minor = 0,
|
|
.rev = 0,
|
|
.funcs = &sdma_v4_0_ip_funcs,
|
|
};
|