linux/arch/x86/mm/kaslr.c

173 lines
5.4 KiB
C

/*
* This file implements KASLR memory randomization for x86_64. It randomizes
* the virtual address space of kernel memory regions (physical memory
* mapping, vmalloc & vmemmap) for x86_64. This security feature mitigates
* exploits relying on predictable kernel addresses.
*
* Entropy is generated using the KASLR early boot functions now shared in
* the lib directory (originally written by Kees Cook). Randomization is
* done on PGD & PUD page table levels to increase possible addresses. The
* physical memory mapping code was adapted to support PUD level virtual
* addresses. This implementation on the best configuration provides 30,000
* possible virtual addresses in average for each memory region. An additional
* low memory page is used to ensure each CPU can start with a PGD aligned
* virtual address (for realmode).
*
* The order of each memory region is not changed. The feature looks at
* the available space for the regions based on different configuration
* options and randomizes the base and space between each. The size of the
* physical memory mapping is the available physical memory.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/random.h>
#include <asm/pgalloc.h>
#include <asm/pgtable.h>
#include <asm/setup.h>
#include <asm/kaslr.h>
#include "mm_internal.h"
#define TB_SHIFT 40
/*
* Virtual address start and end range for randomization. The end changes base
* on configuration to have the highest amount of space for randomization.
* It increases the possible random position for each randomized region.
*
* You need to add an if/def entry if you introduce a new memory region
* compatible with KASLR. Your entry must be in logical order with memory
* layout. For example, ESPFIX is before EFI because its virtual address is
* before. You also need to add a BUILD_BUG_ON in kernel_randomize_memory to
* ensure that this order is correct and won't be changed.
*/
static const unsigned long vaddr_start = __PAGE_OFFSET_BASE;
static const unsigned long vaddr_end = VMEMMAP_START;
/* Default values */
unsigned long page_offset_base = __PAGE_OFFSET_BASE;
EXPORT_SYMBOL(page_offset_base);
unsigned long vmalloc_base = __VMALLOC_BASE;
EXPORT_SYMBOL(vmalloc_base);
/*
* Memory regions randomized by KASLR (except modules that use a separate logic
* earlier during boot). The list is ordered based on virtual addresses. This
* order is kept after randomization.
*/
static __initdata struct kaslr_memory_region {
unsigned long *base;
unsigned long size_tb;
} kaslr_regions[] = {
{ &page_offset_base, 64/* Maximum */ },
{ &vmalloc_base, VMALLOC_SIZE_TB },
};
/* Get size in bytes used by the memory region */
static inline unsigned long get_padding(struct kaslr_memory_region *region)
{
return (region->size_tb << TB_SHIFT);
}
/*
* Apply no randomization if KASLR was disabled at boot or if KASAN
* is enabled. KASAN shadow mappings rely on regions being PGD aligned.
*/
static inline bool kaslr_memory_enabled(void)
{
return kaslr_enabled() && !config_enabled(CONFIG_KASAN);
}
/* Initialize base and padding for each memory region randomized with KASLR */
void __init kernel_randomize_memory(void)
{
size_t i;
unsigned long vaddr = vaddr_start;
unsigned long rand, memory_tb;
struct rnd_state rand_state;
unsigned long remain_entropy;
if (!kaslr_memory_enabled())
return;
/*
* Update Physical memory mapping to available and
* add padding if needed (especially for memory hotplug support).
*/
BUG_ON(kaslr_regions[0].base != &page_offset_base);
memory_tb = DIV_ROUND_UP(max_pfn << PAGE_SHIFT, 1UL << TB_SHIFT) +
CONFIG_RANDOMIZE_MEMORY_PHYSICAL_PADDING;
/* Adapt phyiscal memory region size based on available memory */
if (memory_tb < kaslr_regions[0].size_tb)
kaslr_regions[0].size_tb = memory_tb;
/* Calculate entropy available between regions */
remain_entropy = vaddr_end - vaddr_start;
for (i = 0; i < ARRAY_SIZE(kaslr_regions); i++)
remain_entropy -= get_padding(&kaslr_regions[i]);
prandom_seed_state(&rand_state, kaslr_get_random_long("Memory"));
for (i = 0; i < ARRAY_SIZE(kaslr_regions); i++) {
unsigned long entropy;
/*
* Select a random virtual address using the extra entropy
* available.
*/
entropy = remain_entropy / (ARRAY_SIZE(kaslr_regions) - i);
prandom_bytes_state(&rand_state, &rand, sizeof(rand));
entropy = (rand % (entropy + 1)) & PUD_MASK;
vaddr += entropy;
*kaslr_regions[i].base = vaddr;
/*
* Jump the region and add a minimum padding based on
* randomization alignment.
*/
vaddr += get_padding(&kaslr_regions[i]);
vaddr = round_up(vaddr + 1, PUD_SIZE);
remain_entropy -= entropy;
}
}
/*
* Create PGD aligned trampoline table to allow real mode initialization
* of additional CPUs. Consume only 1 low memory page.
*/
void __meminit init_trampoline(void)
{
unsigned long paddr, paddr_next;
pgd_t *pgd;
pud_t *pud_page, *pud_page_tramp;
int i;
if (!kaslr_memory_enabled()) {
init_trampoline_default();
return;
}
pud_page_tramp = alloc_low_page();
paddr = 0;
pgd = pgd_offset_k((unsigned long)__va(paddr));
pud_page = (pud_t *) pgd_page_vaddr(*pgd);
for (i = pud_index(paddr); i < PTRS_PER_PUD; i++, paddr = paddr_next) {
pud_t *pud, *pud_tramp;
unsigned long vaddr = (unsigned long)__va(paddr);
pud_tramp = pud_page_tramp + pud_index(paddr);
pud = pud_page + pud_index(vaddr);
paddr_next = (paddr & PUD_MASK) + PUD_SIZE;
*pud_tramp = *pud;
}
set_pgd(&trampoline_pgd_entry,
__pgd(_KERNPG_TABLE | __pa(pud_page_tramp)));
}