mirror of https://gitee.com/openkylin/linux.git
375 lines
11 KiB
C
375 lines
11 KiB
C
/*
|
|
* linux/arch/cris/arch-v10/kernel/time.c
|
|
*
|
|
* Copyright (C) 1991, 1992, 1995 Linus Torvalds
|
|
* Copyright (C) 1999-2002 Axis Communications AB
|
|
*
|
|
*/
|
|
|
|
#include <linux/timex.h>
|
|
#include <linux/time.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/init.h>
|
|
#include <asm/arch/svinto.h>
|
|
#include <asm/types.h>
|
|
#include <asm/signal.h>
|
|
#include <asm/io.h>
|
|
#include <asm/delay.h>
|
|
#include <asm/rtc.h>
|
|
#include <asm/irq_regs.h>
|
|
|
|
/* define this if you need to use print_timestamp */
|
|
/* it will make jiffies at 96 hz instead of 100 hz though */
|
|
#undef USE_CASCADE_TIMERS
|
|
|
|
extern void update_xtime_from_cmos(void);
|
|
extern int set_rtc_mmss(unsigned long nowtime);
|
|
extern int setup_irq(int, struct irqaction *);
|
|
extern int have_rtc;
|
|
|
|
unsigned long get_ns_in_jiffie(void)
|
|
{
|
|
unsigned char timer_count, t1;
|
|
unsigned short presc_count;
|
|
unsigned long ns;
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
timer_count = *R_TIMER0_DATA;
|
|
presc_count = *R_TIM_PRESC_STATUS;
|
|
/* presc_count might be wrapped */
|
|
t1 = *R_TIMER0_DATA;
|
|
|
|
if (timer_count != t1){
|
|
/* it wrapped, read prescaler again... */
|
|
presc_count = *R_TIM_PRESC_STATUS;
|
|
timer_count = t1;
|
|
}
|
|
local_irq_restore(flags);
|
|
if (presc_count >= PRESCALE_VALUE/2 ){
|
|
presc_count = PRESCALE_VALUE - presc_count + PRESCALE_VALUE/2;
|
|
} else {
|
|
presc_count = PRESCALE_VALUE - presc_count - PRESCALE_VALUE/2;
|
|
}
|
|
|
|
ns = ( (TIMER0_DIV - timer_count) * ((1000000000/HZ)/TIMER0_DIV )) +
|
|
( (presc_count) * (1000000000/PRESCALE_FREQ));
|
|
return ns;
|
|
}
|
|
|
|
unsigned long do_slow_gettimeoffset(void)
|
|
{
|
|
unsigned long count, t1;
|
|
unsigned long usec_count = 0;
|
|
unsigned short presc_count;
|
|
|
|
static unsigned long count_p = TIMER0_DIV;/* for the first call after boot */
|
|
static unsigned long jiffies_p = 0;
|
|
|
|
/*
|
|
* cache volatile jiffies temporarily; we have IRQs turned off.
|
|
*/
|
|
unsigned long jiffies_t;
|
|
|
|
/* The timer interrupt comes from Etrax timer 0. In order to get
|
|
* better precision, we check the current value. It might have
|
|
* underflowed already though.
|
|
*/
|
|
|
|
#ifndef CONFIG_SVINTO_SIM
|
|
/* Not available in the xsim simulator. */
|
|
count = *R_TIMER0_DATA;
|
|
presc_count = *R_TIM_PRESC_STATUS;
|
|
/* presc_count might be wrapped */
|
|
t1 = *R_TIMER0_DATA;
|
|
if (count != t1){
|
|
/* it wrapped, read prescaler again... */
|
|
presc_count = *R_TIM_PRESC_STATUS;
|
|
count = t1;
|
|
}
|
|
#else
|
|
count = 0;
|
|
presc_count = 0;
|
|
#endif
|
|
|
|
jiffies_t = jiffies;
|
|
|
|
/*
|
|
* avoiding timer inconsistencies (they are rare, but they happen)...
|
|
* there are one problem that must be avoided here:
|
|
* 1. the timer counter underflows
|
|
*/
|
|
if( jiffies_t == jiffies_p ) {
|
|
if( count > count_p ) {
|
|
/* Timer wrapped, use new count and prescale
|
|
* increase the time corresponding to one jiffie
|
|
*/
|
|
usec_count = 1000000/HZ;
|
|
}
|
|
} else
|
|
jiffies_p = jiffies_t;
|
|
count_p = count;
|
|
if (presc_count >= PRESCALE_VALUE/2 ){
|
|
presc_count = PRESCALE_VALUE - presc_count + PRESCALE_VALUE/2;
|
|
} else {
|
|
presc_count = PRESCALE_VALUE - presc_count - PRESCALE_VALUE/2;
|
|
}
|
|
/* Convert timer value to usec */
|
|
usec_count += ( (TIMER0_DIV - count) * (1000000/HZ)/TIMER0_DIV ) +
|
|
(( (presc_count) * (1000000000/PRESCALE_FREQ))/1000);
|
|
|
|
return usec_count;
|
|
}
|
|
|
|
/* Excerpt from the Etrax100 HSDD about the built-in watchdog:
|
|
*
|
|
* 3.10.4 Watchdog timer
|
|
|
|
* When the watchdog timer is started, it generates an NMI if the watchdog
|
|
* isn't restarted or stopped within 0.1 s. If it still isn't restarted or
|
|
* stopped after an additional 3.3 ms, the watchdog resets the chip.
|
|
* The watchdog timer is stopped after reset. The watchdog timer is controlled
|
|
* by the R_WATCHDOG register. The R_WATCHDOG register contains an enable bit
|
|
* and a 3-bit key value. The effect of writing to the R_WATCHDOG register is
|
|
* described in the table below:
|
|
*
|
|
* Watchdog Value written:
|
|
* state: To enable: To key: Operation:
|
|
* -------- ---------- ------- ----------
|
|
* stopped 0 X No effect.
|
|
* stopped 1 key_val Start watchdog with key = key_val.
|
|
* started 0 ~key Stop watchdog
|
|
* started 1 ~key Restart watchdog with key = ~key.
|
|
* started X new_key_val Change key to new_key_val.
|
|
*
|
|
* Note: '~' is the bitwise NOT operator.
|
|
*
|
|
*/
|
|
|
|
/* right now, starting the watchdog is the same as resetting it */
|
|
#define start_watchdog reset_watchdog
|
|
|
|
#if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM)
|
|
static int watchdog_key = 0; /* arbitrary number */
|
|
#endif
|
|
|
|
/* number of pages to consider "out of memory". it is normal that the memory
|
|
* is used though, so put this really low.
|
|
*/
|
|
|
|
#define WATCHDOG_MIN_FREE_PAGES 8
|
|
|
|
void
|
|
reset_watchdog(void)
|
|
{
|
|
#if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM)
|
|
/* only keep watchdog happy as long as we have memory left! */
|
|
if(nr_free_pages() > WATCHDOG_MIN_FREE_PAGES) {
|
|
/* reset the watchdog with the inverse of the old key */
|
|
watchdog_key ^= 0x7; /* invert key, which is 3 bits */
|
|
*R_WATCHDOG = IO_FIELD(R_WATCHDOG, key, watchdog_key) |
|
|
IO_STATE(R_WATCHDOG, enable, start);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* stop the watchdog - we still need the correct key */
|
|
|
|
void
|
|
stop_watchdog(void)
|
|
{
|
|
#if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM)
|
|
watchdog_key ^= 0x7; /* invert key, which is 3 bits */
|
|
*R_WATCHDOG = IO_FIELD(R_WATCHDOG, key, watchdog_key) |
|
|
IO_STATE(R_WATCHDOG, enable, stop);
|
|
#endif
|
|
}
|
|
|
|
/* last time the cmos clock got updated */
|
|
static long last_rtc_update = 0;
|
|
|
|
/*
|
|
* timer_interrupt() needs to keep up the real-time clock,
|
|
* as well as call the "do_timer()" routine every clocktick
|
|
*/
|
|
|
|
//static unsigned short myjiff; /* used by our debug routine print_timestamp */
|
|
|
|
extern void cris_do_profile(struct pt_regs *regs);
|
|
|
|
static inline irqreturn_t
|
|
timer_interrupt(int irq, void *dev_id)
|
|
{
|
|
struct pt_regs *regs = get_irq_regs();
|
|
/* acknowledge the timer irq */
|
|
|
|
#ifdef USE_CASCADE_TIMERS
|
|
*R_TIMER_CTRL =
|
|
IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) |
|
|
IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) |
|
|
IO_STATE( R_TIMER_CTRL, i1, clr) |
|
|
IO_STATE( R_TIMER_CTRL, tm1, run) |
|
|
IO_STATE( R_TIMER_CTRL, clksel1, cascade0) |
|
|
IO_STATE( R_TIMER_CTRL, i0, clr) |
|
|
IO_STATE( R_TIMER_CTRL, tm0, run) |
|
|
IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz);
|
|
#else
|
|
*R_TIMER_CTRL = r_timer_ctrl_shadow |
|
|
IO_STATE(R_TIMER_CTRL, i0, clr);
|
|
#endif
|
|
|
|
/* reset watchdog otherwise it resets us! */
|
|
reset_watchdog();
|
|
|
|
/* Update statistics. */
|
|
update_process_times(user_mode(regs));
|
|
|
|
/* call the real timer interrupt handler */
|
|
|
|
do_timer(1);
|
|
|
|
cris_do_profile(regs); /* Save profiling information */
|
|
|
|
/*
|
|
* If we have an externally synchronized Linux clock, then update
|
|
* CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
|
|
* called as close as possible to 500 ms before the new second starts.
|
|
*
|
|
* The division here is not time critical since it will run once in
|
|
* 11 minutes
|
|
*/
|
|
if (ntp_synced() &&
|
|
xtime.tv_sec > last_rtc_update + 660 &&
|
|
(xtime.tv_nsec / 1000) >= 500000 - (tick_nsec / 1000) / 2 &&
|
|
(xtime.tv_nsec / 1000) <= 500000 + (tick_nsec / 1000) / 2) {
|
|
if (set_rtc_mmss(xtime.tv_sec) == 0)
|
|
last_rtc_update = xtime.tv_sec;
|
|
else
|
|
last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */
|
|
}
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/* timer is IRQF_SHARED so drivers can add stuff to the timer irq chain
|
|
* it needs to be IRQF_DISABLED to make the jiffies update work properly
|
|
*/
|
|
|
|
static struct irqaction irq2 = {
|
|
.handler = timer_interrupt,
|
|
.flags = IRQF_SHARED | IRQF_DISABLED,
|
|
.mask = CPU_MASK_NONE,
|
|
.name = "timer",
|
|
};
|
|
|
|
void __init
|
|
time_init(void)
|
|
{
|
|
/* probe for the RTC and read it if it exists
|
|
* Before the RTC can be probed the loops_per_usec variable needs
|
|
* to be initialized to make usleep work. A better value for
|
|
* loops_per_usec is calculated by the kernel later once the
|
|
* clock has started.
|
|
*/
|
|
loops_per_usec = 50;
|
|
|
|
if(RTC_INIT() < 0) {
|
|
/* no RTC, start at 1980 */
|
|
xtime.tv_sec = 0;
|
|
xtime.tv_nsec = 0;
|
|
have_rtc = 0;
|
|
} else {
|
|
/* get the current time */
|
|
have_rtc = 1;
|
|
update_xtime_from_cmos();
|
|
}
|
|
|
|
/*
|
|
* Initialize wall_to_monotonic such that adding it to xtime will yield zero, the
|
|
* tv_nsec field must be normalized (i.e., 0 <= nsec < NSEC_PER_SEC).
|
|
*/
|
|
set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec);
|
|
|
|
/* Setup the etrax timers
|
|
* Base frequency is 25000 hz, divider 250 -> 100 HZ
|
|
* In normal mode, we use timer0, so timer1 is free. In cascade
|
|
* mode (which we sometimes use for debugging) both timers are used.
|
|
* Remember that linux/timex.h contains #defines that rely on the
|
|
* timer settings below (hz and divide factor) !!!
|
|
*/
|
|
|
|
#ifdef USE_CASCADE_TIMERS
|
|
*R_TIMER_CTRL =
|
|
IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) |
|
|
IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) |
|
|
IO_STATE( R_TIMER_CTRL, i1, nop) |
|
|
IO_STATE( R_TIMER_CTRL, tm1, stop_ld) |
|
|
IO_STATE( R_TIMER_CTRL, clksel1, cascade0) |
|
|
IO_STATE( R_TIMER_CTRL, i0, nop) |
|
|
IO_STATE( R_TIMER_CTRL, tm0, stop_ld) |
|
|
IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz);
|
|
|
|
*R_TIMER_CTRL = r_timer_ctrl_shadow =
|
|
IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) |
|
|
IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) |
|
|
IO_STATE( R_TIMER_CTRL, i1, nop) |
|
|
IO_STATE( R_TIMER_CTRL, tm1, run) |
|
|
IO_STATE( R_TIMER_CTRL, clksel1, cascade0) |
|
|
IO_STATE( R_TIMER_CTRL, i0, nop) |
|
|
IO_STATE( R_TIMER_CTRL, tm0, run) |
|
|
IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz);
|
|
#else
|
|
*R_TIMER_CTRL =
|
|
IO_FIELD(R_TIMER_CTRL, timerdiv1, 192) |
|
|
IO_FIELD(R_TIMER_CTRL, timerdiv0, TIMER0_DIV) |
|
|
IO_STATE(R_TIMER_CTRL, i1, nop) |
|
|
IO_STATE(R_TIMER_CTRL, tm1, stop_ld) |
|
|
IO_STATE(R_TIMER_CTRL, clksel1, c19k2Hz) |
|
|
IO_STATE(R_TIMER_CTRL, i0, nop) |
|
|
IO_STATE(R_TIMER_CTRL, tm0, stop_ld) |
|
|
IO_STATE(R_TIMER_CTRL, clksel0, flexible);
|
|
|
|
*R_TIMER_CTRL = r_timer_ctrl_shadow =
|
|
IO_FIELD(R_TIMER_CTRL, timerdiv1, 192) |
|
|
IO_FIELD(R_TIMER_CTRL, timerdiv0, TIMER0_DIV) |
|
|
IO_STATE(R_TIMER_CTRL, i1, nop) |
|
|
IO_STATE(R_TIMER_CTRL, tm1, run) |
|
|
IO_STATE(R_TIMER_CTRL, clksel1, c19k2Hz) |
|
|
IO_STATE(R_TIMER_CTRL, i0, nop) |
|
|
IO_STATE(R_TIMER_CTRL, tm0, run) |
|
|
IO_STATE(R_TIMER_CTRL, clksel0, flexible);
|
|
|
|
*R_TIMER_PRESCALE = PRESCALE_VALUE;
|
|
#endif
|
|
|
|
*R_IRQ_MASK0_SET =
|
|
IO_STATE(R_IRQ_MASK0_SET, timer0, set); /* unmask the timer irq */
|
|
|
|
/* now actually register the timer irq handler that calls timer_interrupt() */
|
|
|
|
setup_irq(2, &irq2); /* irq 2 is the timer0 irq in etrax */
|
|
|
|
/* enable watchdog if we should use one */
|
|
|
|
#if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM)
|
|
printk("Enabling watchdog...\n");
|
|
start_watchdog();
|
|
|
|
/* If we use the hardware watchdog, we want to trap it as an NMI
|
|
and dump registers before it resets us. For this to happen, we
|
|
must set the "m" NMI enable flag (which once set, is unset only
|
|
when an NMI is taken).
|
|
|
|
The same goes for the external NMI, but that doesn't have any
|
|
driver or infrastructure support yet. */
|
|
asm ("setf m");
|
|
|
|
*R_IRQ_MASK0_SET =
|
|
IO_STATE(R_IRQ_MASK0_SET, watchdog_nmi, set);
|
|
*R_VECT_MASK_SET =
|
|
IO_STATE(R_VECT_MASK_SET, nmi, set);
|
|
#endif
|
|
}
|