linux/drivers/phy/intel/phy-intel-lgm-combo.c

635 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Intel Combo-PHY driver
*
* Copyright (C) 2019-2020 Intel Corporation.
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/iopoll.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/reset.h>
#include <dt-bindings/phy/phy.h>
#define PCIE_PHY_GEN_CTRL 0x00
#define PCIE_PHY_CLK_PAD BIT(17)
#define PAD_DIS_CFG 0x174
#define PCS_XF_ATE_OVRD_IN_2 0x3008
#define ADAPT_REQ_MSK GENMASK(5, 4)
#define PCS_XF_RX_ADAPT_ACK 0x3010
#define RX_ADAPT_ACK_BIT BIT(0)
#define CR_ADDR(addr, lane) (((addr) + (lane) * 0x100) << 2)
#define REG_COMBO_MODE(x) ((x) * 0x200)
#define REG_CLK_DISABLE(x) ((x) * 0x200 + 0x124)
#define COMBO_PHY_ID(x) ((x)->parent->id)
#define PHY_ID(x) ((x)->id)
#define CLK_100MHZ 100000000
#define CLK_156_25MHZ 156250000
static const unsigned long intel_iphy_clk_rates[] = {
CLK_100MHZ, CLK_156_25MHZ, CLK_100MHZ,
};
enum {
PHY_0,
PHY_1,
PHY_MAX_NUM
};
/*
* Clock Register bit fields to enable clocks
* for ComboPhy according to the mode.
*/
enum intel_phy_mode {
PHY_PCIE_MODE = 0,
PHY_XPCS_MODE,
PHY_SATA_MODE,
};
/* ComboPhy mode Register values */
enum intel_combo_mode {
PCIE0_PCIE1_MODE = 0,
PCIE_DL_MODE,
RXAUI_MODE,
XPCS0_XPCS1_MODE,
SATA0_SATA1_MODE,
};
enum aggregated_mode {
PHY_SL_MODE,
PHY_DL_MODE,
};
struct intel_combo_phy;
struct intel_cbphy_iphy {
struct phy *phy;
struct intel_combo_phy *parent;
struct reset_control *app_rst;
u32 id;
};
struct intel_combo_phy {
struct device *dev;
struct clk *core_clk;
unsigned long clk_rate;
void __iomem *app_base;
void __iomem *cr_base;
struct regmap *syscfg;
struct regmap *hsiocfg;
u32 id;
u32 bid;
struct reset_control *phy_rst;
struct reset_control *core_rst;
struct intel_cbphy_iphy iphy[PHY_MAX_NUM];
enum intel_phy_mode phy_mode;
enum aggregated_mode aggr_mode;
u32 init_cnt;
struct mutex lock;
};
static int intel_cbphy_iphy_enable(struct intel_cbphy_iphy *iphy, bool set)
{
struct intel_combo_phy *cbphy = iphy->parent;
u32 mask = BIT(cbphy->phy_mode * 2 + iphy->id);
u32 val;
/* Register: 0 is enable, 1 is disable */
val = set ? 0 : mask;
return regmap_update_bits(cbphy->hsiocfg, REG_CLK_DISABLE(cbphy->bid),
mask, val);
}
static int intel_cbphy_pcie_refclk_cfg(struct intel_cbphy_iphy *iphy, bool set)
{
struct intel_combo_phy *cbphy = iphy->parent;
u32 mask = BIT(cbphy->id * 2 + iphy->id);
u32 val;
/* Register: 0 is enable, 1 is disable */
val = set ? 0 : mask;
return regmap_update_bits(cbphy->syscfg, PAD_DIS_CFG, mask, val);
}
static inline void combo_phy_w32_off_mask(void __iomem *base, unsigned int reg,
u32 mask, u32 val)
{
u32 reg_val;
reg_val = readl(base + reg);
reg_val &= ~mask;
reg_val |= val;
writel(reg_val, base + reg);
}
static int intel_cbphy_iphy_cfg(struct intel_cbphy_iphy *iphy,
int (*phy_cfg)(struct intel_cbphy_iphy *))
{
struct intel_combo_phy *cbphy = iphy->parent;
int ret;
ret = phy_cfg(iphy);
if (ret)
return ret;
if (cbphy->aggr_mode != PHY_DL_MODE)
return 0;
return phy_cfg(&cbphy->iphy[PHY_1]);
}
static int intel_cbphy_pcie_en_pad_refclk(struct intel_cbphy_iphy *iphy)
{
struct intel_combo_phy *cbphy = iphy->parent;
int ret;
ret = intel_cbphy_pcie_refclk_cfg(iphy, true);
if (ret) {
dev_err(cbphy->dev, "Failed to enable PCIe pad refclk\n");
return ret;
}
if (cbphy->init_cnt)
return 0;
combo_phy_w32_off_mask(cbphy->app_base, PCIE_PHY_GEN_CTRL,
PCIE_PHY_CLK_PAD, FIELD_PREP(PCIE_PHY_CLK_PAD, 0));
/* Delay for stable clock PLL */
usleep_range(50, 100);
return 0;
}
static int intel_cbphy_pcie_dis_pad_refclk(struct intel_cbphy_iphy *iphy)
{
struct intel_combo_phy *cbphy = iphy->parent;
int ret;
ret = intel_cbphy_pcie_refclk_cfg(iphy, false);
if (ret) {
dev_err(cbphy->dev, "Failed to disable PCIe pad refclk\n");
return ret;
}
if (cbphy->init_cnt)
return 0;
combo_phy_w32_off_mask(cbphy->app_base, PCIE_PHY_GEN_CTRL,
PCIE_PHY_CLK_PAD, FIELD_PREP(PCIE_PHY_CLK_PAD, 1));
return 0;
}
static int intel_cbphy_set_mode(struct intel_combo_phy *cbphy)
{
enum intel_combo_mode cb_mode;
enum aggregated_mode aggr = cbphy->aggr_mode;
struct device *dev = cbphy->dev;
enum intel_phy_mode mode;
int ret;
mode = cbphy->phy_mode;
switch (mode) {
case PHY_PCIE_MODE:
cb_mode = (aggr == PHY_DL_MODE) ? PCIE_DL_MODE : PCIE0_PCIE1_MODE;
break;
case PHY_XPCS_MODE:
cb_mode = (aggr == PHY_DL_MODE) ? RXAUI_MODE : XPCS0_XPCS1_MODE;
break;
case PHY_SATA_MODE:
if (aggr == PHY_DL_MODE) {
dev_err(dev, "Mode:%u not support dual lane!\n", mode);
return -EINVAL;
}
cb_mode = SATA0_SATA1_MODE;
break;
default:
return -EINVAL;
}
ret = regmap_write(cbphy->hsiocfg, REG_COMBO_MODE(cbphy->bid), cb_mode);
if (ret)
dev_err(dev, "Failed to set ComboPhy mode: %d\n", ret);
return ret;
}
static void intel_cbphy_rst_assert(struct intel_combo_phy *cbphy)
{
reset_control_assert(cbphy->core_rst);
reset_control_assert(cbphy->phy_rst);
}
static void intel_cbphy_rst_deassert(struct intel_combo_phy *cbphy)
{
reset_control_deassert(cbphy->core_rst);
reset_control_deassert(cbphy->phy_rst);
/* Delay to ensure reset process is done */
usleep_range(10, 20);
}
static int intel_cbphy_iphy_power_on(struct intel_cbphy_iphy *iphy)
{
struct intel_combo_phy *cbphy = iphy->parent;
int ret;
if (!cbphy->init_cnt) {
ret = clk_prepare_enable(cbphy->core_clk);
if (ret) {
dev_err(cbphy->dev, "Clock enable failed!\n");
return ret;
}
ret = clk_set_rate(cbphy->core_clk, cbphy->clk_rate);
if (ret) {
dev_err(cbphy->dev, "Clock freq set to %lu failed!\n",
cbphy->clk_rate);
goto clk_err;
}
intel_cbphy_rst_assert(cbphy);
intel_cbphy_rst_deassert(cbphy);
ret = intel_cbphy_set_mode(cbphy);
if (ret)
goto clk_err;
}
ret = intel_cbphy_iphy_enable(iphy, true);
if (ret) {
dev_err(cbphy->dev, "Failed enabling PHY core\n");
goto clk_err;
}
ret = reset_control_deassert(iphy->app_rst);
if (ret) {
dev_err(cbphy->dev, "PHY(%u:%u) reset deassert failed!\n",
COMBO_PHY_ID(iphy), PHY_ID(iphy));
goto clk_err;
}
/* Delay to ensure reset process is done */
udelay(1);
return 0;
clk_err:
clk_disable_unprepare(cbphy->core_clk);
return ret;
}
static int intel_cbphy_iphy_power_off(struct intel_cbphy_iphy *iphy)
{
struct intel_combo_phy *cbphy = iphy->parent;
int ret;
ret = reset_control_assert(iphy->app_rst);
if (ret) {
dev_err(cbphy->dev, "PHY(%u:%u) reset assert failed!\n",
COMBO_PHY_ID(iphy), PHY_ID(iphy));
return ret;
}
ret = intel_cbphy_iphy_enable(iphy, false);
if (ret) {
dev_err(cbphy->dev, "Failed disabling PHY core\n");
return ret;
}
if (cbphy->init_cnt)
return 0;
clk_disable_unprepare(cbphy->core_clk);
intel_cbphy_rst_assert(cbphy);
return 0;
}
static int intel_cbphy_init(struct phy *phy)
{
struct intel_cbphy_iphy *iphy = phy_get_drvdata(phy);
struct intel_combo_phy *cbphy = iphy->parent;
int ret;
mutex_lock(&cbphy->lock);
ret = intel_cbphy_iphy_cfg(iphy, intel_cbphy_iphy_power_on);
if (ret)
goto err;
if (cbphy->phy_mode == PHY_PCIE_MODE) {
ret = intel_cbphy_iphy_cfg(iphy, intel_cbphy_pcie_en_pad_refclk);
if (ret)
goto err;
}
cbphy->init_cnt++;
err:
mutex_unlock(&cbphy->lock);
return ret;
}
static int intel_cbphy_exit(struct phy *phy)
{
struct intel_cbphy_iphy *iphy = phy_get_drvdata(phy);
struct intel_combo_phy *cbphy = iphy->parent;
int ret;
mutex_lock(&cbphy->lock);
cbphy->init_cnt--;
if (cbphy->phy_mode == PHY_PCIE_MODE) {
ret = intel_cbphy_iphy_cfg(iphy, intel_cbphy_pcie_dis_pad_refclk);
if (ret)
goto err;
}
ret = intel_cbphy_iphy_cfg(iphy, intel_cbphy_iphy_power_off);
err:
mutex_unlock(&cbphy->lock);
return ret;
}
static int intel_cbphy_calibrate(struct phy *phy)
{
struct intel_cbphy_iphy *iphy = phy_get_drvdata(phy);
struct intel_combo_phy *cbphy = iphy->parent;
void __iomem *cr_base = cbphy->cr_base;
int val, ret, id;
if (cbphy->phy_mode != PHY_XPCS_MODE)
return 0;
id = PHY_ID(iphy);
/* trigger auto RX adaptation */
combo_phy_w32_off_mask(cr_base, CR_ADDR(PCS_XF_ATE_OVRD_IN_2, id),
ADAPT_REQ_MSK, FIELD_PREP(ADAPT_REQ_MSK, 3));
/* Wait RX adaptation to finish */
ret = readl_poll_timeout(cr_base + CR_ADDR(PCS_XF_RX_ADAPT_ACK, id),
val, val & RX_ADAPT_ACK_BIT, 10, 5000);
if (ret)
dev_err(cbphy->dev, "RX Adaptation failed!\n");
else
dev_dbg(cbphy->dev, "RX Adaptation success!\n");
/* Stop RX adaptation */
combo_phy_w32_off_mask(cr_base, CR_ADDR(PCS_XF_ATE_OVRD_IN_2, id),
ADAPT_REQ_MSK, FIELD_PREP(ADAPT_REQ_MSK, 0));
return ret;
}
static int intel_cbphy_fwnode_parse(struct intel_combo_phy *cbphy)
{
struct device *dev = cbphy->dev;
struct platform_device *pdev = to_platform_device(dev);
struct fwnode_handle *fwnode = dev_fwnode(dev);
struct fwnode_reference_args ref;
int ret;
u32 val;
cbphy->core_clk = devm_clk_get(dev, NULL);
if (IS_ERR(cbphy->core_clk)) {
ret = PTR_ERR(cbphy->core_clk);
if (ret != -EPROBE_DEFER)
dev_err(dev, "Get clk failed:%d!\n", ret);
return ret;
}
cbphy->core_rst = devm_reset_control_get_optional(dev, "core");
if (IS_ERR(cbphy->core_rst)) {
ret = PTR_ERR(cbphy->core_rst);
if (ret != -EPROBE_DEFER)
dev_err(dev, "Get core reset control err: %d!\n", ret);
return ret;
}
cbphy->phy_rst = devm_reset_control_get_optional(dev, "phy");
if (IS_ERR(cbphy->phy_rst)) {
ret = PTR_ERR(cbphy->phy_rst);
if (ret != -EPROBE_DEFER)
dev_err(dev, "Get PHY reset control err: %d!\n", ret);
return ret;
}
cbphy->iphy[0].app_rst = devm_reset_control_get_optional(dev, "iphy0");
if (IS_ERR(cbphy->iphy[0].app_rst)) {
ret = PTR_ERR(cbphy->iphy[0].app_rst);
if (ret != -EPROBE_DEFER)
dev_err(dev, "Get phy0 reset control err: %d!\n", ret);
return ret;
}
cbphy->iphy[1].app_rst = devm_reset_control_get_optional(dev, "iphy1");
if (IS_ERR(cbphy->iphy[1].app_rst)) {
ret = PTR_ERR(cbphy->iphy[1].app_rst);
if (ret != -EPROBE_DEFER)
dev_err(dev, "Get phy1 reset control err: %d!\n", ret);
return ret;
}
cbphy->app_base = devm_platform_ioremap_resource_byname(pdev, "app");
if (IS_ERR(cbphy->app_base))
return PTR_ERR(cbphy->app_base);
cbphy->cr_base = devm_platform_ioremap_resource_byname(pdev, "core");
if (IS_ERR(cbphy->cr_base))
return PTR_ERR(cbphy->cr_base);
/*
* syscfg and hsiocfg variables stores the handle of the registers set
* in which ComboPhy subsytem specific registers are subset. Using
* Register map framework to access the registers set.
*/
ret = fwnode_property_get_reference_args(fwnode, "intel,syscfg", NULL,
1, 0, &ref);
if (ret < 0)
return ret;
cbphy->id = ref.args[0];
cbphy->syscfg = device_node_to_regmap(to_of_node(ref.fwnode));
fwnode_handle_put(ref.fwnode);
ret = fwnode_property_get_reference_args(fwnode, "intel,hsio", NULL, 1,
0, &ref);
if (ret < 0)
return ret;
cbphy->bid = ref.args[0];
cbphy->hsiocfg = device_node_to_regmap(to_of_node(ref.fwnode));
fwnode_handle_put(ref.fwnode);
ret = fwnode_property_read_u32_array(fwnode, "intel,phy-mode", &val, 1);
if (ret)
return ret;
switch (val) {
case PHY_TYPE_PCIE:
cbphy->phy_mode = PHY_PCIE_MODE;
break;
case PHY_TYPE_SATA:
cbphy->phy_mode = PHY_SATA_MODE;
break;
case PHY_TYPE_XPCS:
cbphy->phy_mode = PHY_XPCS_MODE;
break;
default:
dev_err(dev, "Invalid PHY mode: %u\n", val);
return -EINVAL;
}
cbphy->clk_rate = intel_iphy_clk_rates[cbphy->phy_mode];
if (fwnode_property_present(fwnode, "intel,aggregation"))
cbphy->aggr_mode = PHY_DL_MODE;
else
cbphy->aggr_mode = PHY_SL_MODE;
return 0;
}
static const struct phy_ops intel_cbphy_ops = {
.init = intel_cbphy_init,
.exit = intel_cbphy_exit,
.calibrate = intel_cbphy_calibrate,
.owner = THIS_MODULE,
};
static struct phy *intel_cbphy_xlate(struct device *dev,
struct of_phandle_args *args)
{
struct intel_combo_phy *cbphy = dev_get_drvdata(dev);
u32 iphy_id;
if (args->args_count < 1) {
dev_err(dev, "Invalid number of arguments\n");
return ERR_PTR(-EINVAL);
}
iphy_id = args->args[0];
if (iphy_id >= PHY_MAX_NUM) {
dev_err(dev, "Invalid phy instance %d\n", iphy_id);
return ERR_PTR(-EINVAL);
}
if (cbphy->aggr_mode == PHY_DL_MODE && iphy_id == PHY_1) {
dev_err(dev, "Invalid. ComboPhy is in Dual lane mode %d\n", iphy_id);
return ERR_PTR(-EINVAL);
}
return cbphy->iphy[iphy_id].phy;
}
static int intel_cbphy_create(struct intel_combo_phy *cbphy)
{
struct phy_provider *phy_provider;
struct device *dev = cbphy->dev;
struct intel_cbphy_iphy *iphy;
int i;
for (i = 0; i < PHY_MAX_NUM; i++) {
iphy = &cbphy->iphy[i];
iphy->parent = cbphy;
iphy->id = i;
/* In dual lane mode skip phy creation for the second phy */
if (cbphy->aggr_mode == PHY_DL_MODE && iphy->id == PHY_1)
continue;
iphy->phy = devm_phy_create(dev, NULL, &intel_cbphy_ops);
if (IS_ERR(iphy->phy)) {
dev_err(dev, "PHY[%u:%u]: create PHY instance failed!\n",
COMBO_PHY_ID(iphy), PHY_ID(iphy));
return PTR_ERR(iphy->phy);
}
phy_set_drvdata(iphy->phy, iphy);
}
dev_set_drvdata(dev, cbphy);
phy_provider = devm_of_phy_provider_register(dev, intel_cbphy_xlate);
if (IS_ERR(phy_provider))
dev_err(dev, "Register PHY provider failed!\n");
return PTR_ERR_OR_ZERO(phy_provider);
}
static int intel_cbphy_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct intel_combo_phy *cbphy;
int ret;
cbphy = devm_kzalloc(dev, sizeof(*cbphy), GFP_KERNEL);
if (!cbphy)
return -ENOMEM;
cbphy->dev = dev;
cbphy->init_cnt = 0;
mutex_init(&cbphy->lock);
ret = intel_cbphy_fwnode_parse(cbphy);
if (ret)
return ret;
platform_set_drvdata(pdev, cbphy);
return intel_cbphy_create(cbphy);
}
static int intel_cbphy_remove(struct platform_device *pdev)
{
struct intel_combo_phy *cbphy = platform_get_drvdata(pdev);
intel_cbphy_rst_assert(cbphy);
clk_disable_unprepare(cbphy->core_clk);
return 0;
}
static const struct of_device_id of_intel_cbphy_match[] = {
{ .compatible = "intel,combo-phy" },
{ .compatible = "intel,combophy-lgm" },
{}
};
static struct platform_driver intel_cbphy_driver = {
.probe = intel_cbphy_probe,
.remove = intel_cbphy_remove,
.driver = {
.name = "intel-combo-phy",
.of_match_table = of_intel_cbphy_match,
}
};
module_platform_driver(intel_cbphy_driver);
MODULE_DESCRIPTION("Intel Combo-phy driver");
MODULE_LICENSE("GPL v2");