linux/drivers/rtc/rtc-meson.c

406 lines
10 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* RTC driver for the interal RTC block in the Amlogic Meson6, Meson8,
* Meson8b and Meson8m2 SoCs.
*
* The RTC is split in to two parts, the AHB front end and a simple serial
* connection to the actual registers. This driver manages both parts.
*
* Copyright (c) 2018 Martin Blumenstingl <martin.blumenstingl@googlemail.com>
* Copyright (c) 2015 Ben Dooks <ben.dooks@codethink.co.uk> for Codethink Ltd
* Based on origin by Carlo Caione <carlo@endlessm.com>
*/
#include <linux/bitfield.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/nvmem-provider.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/reset.h>
#include <linux/rtc.h>
/* registers accessed from cpu bus */
#define RTC_ADDR0 0x00
#define RTC_ADDR0_LINE_SCLK BIT(0)
#define RTC_ADDR0_LINE_SEN BIT(1)
#define RTC_ADDR0_LINE_SDI BIT(2)
#define RTC_ADDR0_START_SER BIT(17)
#define RTC_ADDR0_WAIT_SER BIT(22)
#define RTC_ADDR0_DATA GENMASK(31, 24)
#define RTC_ADDR1 0x04
#define RTC_ADDR1_SDO BIT(0)
#define RTC_ADDR1_S_READY BIT(1)
#define RTC_ADDR2 0x08
#define RTC_ADDR3 0x0c
#define RTC_REG4 0x10
#define RTC_REG4_STATIC_VALUE GENMASK(7, 0)
/* rtc registers accessed via rtc-serial interface */
#define RTC_COUNTER (0)
#define RTC_SEC_ADJ (2)
#define RTC_REGMEM_0 (4)
#define RTC_REGMEM_1 (5)
#define RTC_REGMEM_2 (6)
#define RTC_REGMEM_3 (7)
#define RTC_ADDR_BITS (3) /* number of address bits to send */
#define RTC_DATA_BITS (32) /* number of data bits to tx/rx */
#define MESON_STATIC_BIAS_CUR (0x5 << 1)
#define MESON_STATIC_VOLTAGE (0x3 << 11)
#define MESON_STATIC_DEFAULT (MESON_STATIC_BIAS_CUR | MESON_STATIC_VOLTAGE)
struct meson_rtc {
struct rtc_device *rtc; /* rtc device we created */
struct device *dev; /* device we bound from */
struct reset_control *reset; /* reset source */
struct regulator *vdd; /* voltage input */
struct regmap *peripheral; /* peripheral registers */
struct regmap *serial; /* serial registers */
};
static const struct regmap_config meson_rtc_peripheral_regmap_config = {
.name = "peripheral-registers",
.reg_bits = 8,
.val_bits = 32,
.reg_stride = 4,
.max_register = RTC_REG4,
.fast_io = true,
};
/* RTC front-end serialiser controls */
static void meson_rtc_sclk_pulse(struct meson_rtc *rtc)
{
udelay(5);
regmap_update_bits(rtc->peripheral, RTC_ADDR0, RTC_ADDR0_LINE_SCLK, 0);
udelay(5);
regmap_update_bits(rtc->peripheral, RTC_ADDR0, RTC_ADDR0_LINE_SCLK,
RTC_ADDR0_LINE_SCLK);
}
static void meson_rtc_send_bit(struct meson_rtc *rtc, unsigned int bit)
{
regmap_update_bits(rtc->peripheral, RTC_ADDR0, RTC_ADDR0_LINE_SDI,
bit ? RTC_ADDR0_LINE_SDI : 0);
meson_rtc_sclk_pulse(rtc);
}
static void meson_rtc_send_bits(struct meson_rtc *rtc, u32 data,
unsigned int nr)
{
u32 bit = 1 << (nr - 1);
while (bit) {
meson_rtc_send_bit(rtc, data & bit);
bit >>= 1;
}
}
static void meson_rtc_set_dir(struct meson_rtc *rtc, u32 mode)
{
regmap_update_bits(rtc->peripheral, RTC_ADDR0, RTC_ADDR0_LINE_SEN, 0);
regmap_update_bits(rtc->peripheral, RTC_ADDR0, RTC_ADDR0_LINE_SDI, 0);
meson_rtc_send_bit(rtc, mode);
regmap_update_bits(rtc->peripheral, RTC_ADDR0, RTC_ADDR0_LINE_SDI, 0);
}
static u32 meson_rtc_get_data(struct meson_rtc *rtc)
{
u32 tmp, val = 0;
int bit;
for (bit = 0; bit < RTC_DATA_BITS; bit++) {
meson_rtc_sclk_pulse(rtc);
val <<= 1;
regmap_read(rtc->peripheral, RTC_ADDR1, &tmp);
val |= tmp & RTC_ADDR1_SDO;
}
return val;
}
static int meson_rtc_get_bus(struct meson_rtc *rtc)
{
int ret, retries;
u32 val;
/* prepare bus for transfers, set all lines low */
val = RTC_ADDR0_LINE_SDI | RTC_ADDR0_LINE_SEN | RTC_ADDR0_LINE_SCLK;
regmap_update_bits(rtc->peripheral, RTC_ADDR0, val, 0);
for (retries = 0; retries < 3; retries++) {
/* wait for the bus to be ready */
if (!regmap_read_poll_timeout(rtc->peripheral, RTC_ADDR1, val,
val & RTC_ADDR1_S_READY, 10,
10000))
return 0;
dev_warn(rtc->dev, "failed to get bus, resetting RTC\n");
ret = reset_control_reset(rtc->reset);
if (ret)
return ret;
}
dev_err(rtc->dev, "bus is not ready\n");
return -ETIMEDOUT;
}
static int meson_rtc_serial_bus_reg_read(void *context, unsigned int reg,
unsigned int *data)
{
struct meson_rtc *rtc = context;
int ret;
ret = meson_rtc_get_bus(rtc);
if (ret)
return ret;
regmap_update_bits(rtc->peripheral, RTC_ADDR0, RTC_ADDR0_LINE_SEN,
RTC_ADDR0_LINE_SEN);
meson_rtc_send_bits(rtc, reg, RTC_ADDR_BITS);
meson_rtc_set_dir(rtc, 0);
*data = meson_rtc_get_data(rtc);
return 0;
}
static int meson_rtc_serial_bus_reg_write(void *context, unsigned int reg,
unsigned int data)
{
struct meson_rtc *rtc = context;
int ret;
ret = meson_rtc_get_bus(rtc);
if (ret)
return ret;
regmap_update_bits(rtc->peripheral, RTC_ADDR0, RTC_ADDR0_LINE_SEN,
RTC_ADDR0_LINE_SEN);
meson_rtc_send_bits(rtc, data, RTC_DATA_BITS);
meson_rtc_send_bits(rtc, reg, RTC_ADDR_BITS);
meson_rtc_set_dir(rtc, 1);
return 0;
}
static const struct regmap_bus meson_rtc_serial_bus = {
.reg_read = meson_rtc_serial_bus_reg_read,
.reg_write = meson_rtc_serial_bus_reg_write,
};
static const struct regmap_config meson_rtc_serial_regmap_config = {
.name = "serial-registers",
.reg_bits = 4,
.reg_stride = 1,
.val_bits = 32,
.max_register = RTC_REGMEM_3,
.fast_io = false,
};
static int meson_rtc_write_static(struct meson_rtc *rtc, u32 data)
{
u32 tmp;
regmap_write(rtc->peripheral, RTC_REG4,
FIELD_PREP(RTC_REG4_STATIC_VALUE, (data >> 8)));
/* write the static value and start the auto serializer */
tmp = FIELD_PREP(RTC_ADDR0_DATA, (data & 0xff)) | RTC_ADDR0_START_SER;
regmap_update_bits(rtc->peripheral, RTC_ADDR0,
RTC_ADDR0_DATA | RTC_ADDR0_START_SER, tmp);
/* wait for the auto serializer to complete */
return regmap_read_poll_timeout(rtc->peripheral, RTC_REG4, tmp,
!(tmp & RTC_ADDR0_WAIT_SER), 10,
10000);
}
/* RTC interface layer functions */
static int meson_rtc_gettime(struct device *dev, struct rtc_time *tm)
{
struct meson_rtc *rtc = dev_get_drvdata(dev);
u32 time;
int ret;
ret = regmap_read(rtc->serial, RTC_COUNTER, &time);
if (!ret)
rtc_time64_to_tm(time, tm);
return ret;
}
static int meson_rtc_settime(struct device *dev, struct rtc_time *tm)
{
struct meson_rtc *rtc = dev_get_drvdata(dev);
return regmap_write(rtc->serial, RTC_COUNTER, rtc_tm_to_time64(tm));
}
static const struct rtc_class_ops meson_rtc_ops = {
.read_time = meson_rtc_gettime,
.set_time = meson_rtc_settime,
};
/* NVMEM interface layer functions */
static int meson_rtc_regmem_read(void *context, unsigned int offset,
void *buf, size_t bytes)
{
struct meson_rtc *rtc = context;
unsigned int read_offset, read_size;
read_offset = RTC_REGMEM_0 + (offset / 4);
read_size = bytes / 4;
return regmap_bulk_read(rtc->serial, read_offset, buf, read_size);
}
static int meson_rtc_regmem_write(void *context, unsigned int offset,
void *buf, size_t bytes)
{
struct meson_rtc *rtc = context;
unsigned int write_offset, write_size;
write_offset = RTC_REGMEM_0 + (offset / 4);
write_size = bytes / 4;
return regmap_bulk_write(rtc->serial, write_offset, buf, write_size);
}
static int meson_rtc_probe(struct platform_device *pdev)
{
struct nvmem_config meson_rtc_nvmem_config = {
.name = "meson-rtc-regmem",
.type = NVMEM_TYPE_BATTERY_BACKED,
.word_size = 4,
.stride = 4,
.size = 4 * 4,
.reg_read = meson_rtc_regmem_read,
.reg_write = meson_rtc_regmem_write,
};
struct device *dev = &pdev->dev;
struct meson_rtc *rtc;
void __iomem *base;
int ret;
u32 tm;
rtc = devm_kzalloc(dev, sizeof(struct meson_rtc), GFP_KERNEL);
if (!rtc)
return -ENOMEM;
rtc->rtc = devm_rtc_allocate_device(dev);
if (IS_ERR(rtc->rtc))
return PTR_ERR(rtc->rtc);
platform_set_drvdata(pdev, rtc);
rtc->dev = dev;
rtc->rtc->ops = &meson_rtc_ops;
rtc->rtc->range_max = U32_MAX;
base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(base))
return PTR_ERR(base);
rtc->peripheral = devm_regmap_init_mmio(dev, base,
&meson_rtc_peripheral_regmap_config);
if (IS_ERR(rtc->peripheral)) {
dev_err(dev, "failed to create peripheral regmap\n");
return PTR_ERR(rtc->peripheral);
}
rtc->reset = devm_reset_control_get(dev, NULL);
if (IS_ERR(rtc->reset)) {
dev_err(dev, "missing reset line\n");
return PTR_ERR(rtc->reset);
}
rtc->vdd = devm_regulator_get(dev, "vdd");
if (IS_ERR(rtc->vdd)) {
dev_err(dev, "failed to get the vdd-supply\n");
return PTR_ERR(rtc->vdd);
}
ret = regulator_enable(rtc->vdd);
if (ret) {
dev_err(dev, "failed to enable vdd-supply\n");
return ret;
}
ret = meson_rtc_write_static(rtc, MESON_STATIC_DEFAULT);
if (ret) {
dev_err(dev, "failed to set static values\n");
goto out_disable_vdd;
}
rtc->serial = devm_regmap_init(dev, &meson_rtc_serial_bus, rtc,
&meson_rtc_serial_regmap_config);
if (IS_ERR(rtc->serial)) {
dev_err(dev, "failed to create serial regmap\n");
ret = PTR_ERR(rtc->serial);
goto out_disable_vdd;
}
/*
* check if we can read RTC counter, if not then the RTC is probably
* not functional. If it isn't probably best to not bind.
*/
ret = regmap_read(rtc->serial, RTC_COUNTER, &tm);
if (ret) {
dev_err(dev, "cannot read RTC counter, RTC not functional\n");
goto out_disable_vdd;
}
meson_rtc_nvmem_config.priv = rtc;
ret = devm_rtc_nvmem_register(rtc->rtc, &meson_rtc_nvmem_config);
if (ret)
goto out_disable_vdd;
ret = devm_rtc_register_device(rtc->rtc);
if (ret)
goto out_disable_vdd;
return 0;
out_disable_vdd:
regulator_disable(rtc->vdd);
return ret;
}
static const struct of_device_id meson_rtc_dt_match[] = {
{ .compatible = "amlogic,meson6-rtc", },
{ .compatible = "amlogic,meson8-rtc", },
{ .compatible = "amlogic,meson8b-rtc", },
{ .compatible = "amlogic,meson8m2-rtc", },
{ },
};
MODULE_DEVICE_TABLE(of, meson_rtc_dt_match);
static struct platform_driver meson_rtc_driver = {
.probe = meson_rtc_probe,
.driver = {
.name = "meson-rtc",
.of_match_table = of_match_ptr(meson_rtc_dt_match),
},
};
module_platform_driver(meson_rtc_driver);
MODULE_DESCRIPTION("Amlogic Meson RTC Driver");
MODULE_AUTHOR("Ben Dooks <ben.doosk@codethink.co.uk>");
MODULE_AUTHOR("Martin Blumenstingl <martin.blumenstingl@googlemail.com>");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:meson-rtc");