mirror of https://gitee.com/openkylin/linux.git
1218 lines
35 KiB
C
1218 lines
35 KiB
C
/*
|
|
* Intel 7300 class Memory Controllers kernel module (Clarksboro)
|
|
*
|
|
* This file may be distributed under the terms of the
|
|
* GNU General Public License version 2 only.
|
|
*
|
|
* Copyright (c) 2010 by:
|
|
* Mauro Carvalho Chehab
|
|
*
|
|
* Red Hat Inc. http://www.redhat.com
|
|
*
|
|
* Intel 7300 Chipset Memory Controller Hub (MCH) - Datasheet
|
|
* http://www.intel.com/Assets/PDF/datasheet/318082.pdf
|
|
*
|
|
* TODO: The chipset allow checking for PCI Express errors also. Currently,
|
|
* the driver covers only memory error errors
|
|
*
|
|
* This driver uses "csrows" EDAC attribute to represent DIMM slot#
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/pci_ids.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/edac.h>
|
|
#include <linux/mmzone.h>
|
|
|
|
#include "edac_module.h"
|
|
|
|
/*
|
|
* Alter this version for the I7300 module when modifications are made
|
|
*/
|
|
#define I7300_REVISION " Ver: 1.0.0"
|
|
|
|
#define EDAC_MOD_STR "i7300_edac"
|
|
|
|
#define i7300_printk(level, fmt, arg...) \
|
|
edac_printk(level, "i7300", fmt, ##arg)
|
|
|
|
#define i7300_mc_printk(mci, level, fmt, arg...) \
|
|
edac_mc_chipset_printk(mci, level, "i7300", fmt, ##arg)
|
|
|
|
/***********************************************
|
|
* i7300 Limit constants Structs and static vars
|
|
***********************************************/
|
|
|
|
/*
|
|
* Memory topology is organized as:
|
|
* Branch 0 - 2 channels: channels 0 and 1 (FDB0 PCI dev 21.0)
|
|
* Branch 1 - 2 channels: channels 2 and 3 (FDB1 PCI dev 22.0)
|
|
* Each channel can have to 8 DIMM sets (called as SLOTS)
|
|
* Slots should generally be filled in pairs
|
|
* Except on Single Channel mode of operation
|
|
* just slot 0/channel0 filled on this mode
|
|
* On normal operation mode, the two channels on a branch should be
|
|
* filled together for the same SLOT#
|
|
* When in mirrored mode, Branch 1 replicate memory at Branch 0, so, the four
|
|
* channels on both branches should be filled
|
|
*/
|
|
|
|
/* Limits for i7300 */
|
|
#define MAX_SLOTS 8
|
|
#define MAX_BRANCHES 2
|
|
#define MAX_CH_PER_BRANCH 2
|
|
#define MAX_CHANNELS (MAX_CH_PER_BRANCH * MAX_BRANCHES)
|
|
#define MAX_MIR 3
|
|
|
|
#define to_channel(ch, branch) ((((branch)) << 1) | (ch))
|
|
|
|
#define to_csrow(slot, ch, branch) \
|
|
(to_channel(ch, branch) | ((slot) << 2))
|
|
|
|
/* Device name and register DID (Device ID) */
|
|
struct i7300_dev_info {
|
|
const char *ctl_name; /* name for this device */
|
|
u16 fsb_mapping_errors; /* DID for the branchmap,control */
|
|
};
|
|
|
|
/* Table of devices attributes supported by this driver */
|
|
static const struct i7300_dev_info i7300_devs[] = {
|
|
{
|
|
.ctl_name = "I7300",
|
|
.fsb_mapping_errors = PCI_DEVICE_ID_INTEL_I7300_MCH_ERR,
|
|
},
|
|
};
|
|
|
|
struct i7300_dimm_info {
|
|
int megabytes; /* size, 0 means not present */
|
|
};
|
|
|
|
/* driver private data structure */
|
|
struct i7300_pvt {
|
|
struct pci_dev *pci_dev_16_0_fsb_ctlr; /* 16.0 */
|
|
struct pci_dev *pci_dev_16_1_fsb_addr_map; /* 16.1 */
|
|
struct pci_dev *pci_dev_16_2_fsb_err_regs; /* 16.2 */
|
|
struct pci_dev *pci_dev_2x_0_fbd_branch[MAX_BRANCHES]; /* 21.0 and 22.0 */
|
|
|
|
u16 tolm; /* top of low memory */
|
|
u64 ambase; /* AMB BAR */
|
|
|
|
u32 mc_settings; /* Report several settings */
|
|
u32 mc_settings_a;
|
|
|
|
u16 mir[MAX_MIR]; /* Memory Interleave Reg*/
|
|
|
|
u16 mtr[MAX_SLOTS][MAX_BRANCHES]; /* Memory Technlogy Reg */
|
|
u16 ambpresent[MAX_CHANNELS]; /* AMB present regs */
|
|
|
|
/* DIMM information matrix, allocating architecture maximums */
|
|
struct i7300_dimm_info dimm_info[MAX_SLOTS][MAX_CHANNELS];
|
|
|
|
/* Temporary buffer for use when preparing error messages */
|
|
char *tmp_prt_buffer;
|
|
};
|
|
|
|
/* FIXME: Why do we need to have this static? */
|
|
static struct edac_pci_ctl_info *i7300_pci;
|
|
|
|
/***************************************************
|
|
* i7300 Register definitions for memory enumeration
|
|
***************************************************/
|
|
|
|
/*
|
|
* Device 16,
|
|
* Function 0: System Address (not documented)
|
|
* Function 1: Memory Branch Map, Control, Errors Register
|
|
*/
|
|
|
|
/* OFFSETS for Function 0 */
|
|
#define AMBASE 0x48 /* AMB Mem Mapped Reg Region Base */
|
|
#define MAXCH 0x56 /* Max Channel Number */
|
|
#define MAXDIMMPERCH 0x57 /* Max DIMM PER Channel Number */
|
|
|
|
/* OFFSETS for Function 1 */
|
|
#define MC_SETTINGS 0x40
|
|
#define IS_MIRRORED(mc) ((mc) & (1 << 16))
|
|
#define IS_ECC_ENABLED(mc) ((mc) & (1 << 5))
|
|
#define IS_RETRY_ENABLED(mc) ((mc) & (1 << 31))
|
|
#define IS_SCRBALGO_ENHANCED(mc) ((mc) & (1 << 8))
|
|
|
|
#define MC_SETTINGS_A 0x58
|
|
#define IS_SINGLE_MODE(mca) ((mca) & (1 << 14))
|
|
|
|
#define TOLM 0x6C
|
|
|
|
#define MIR0 0x80
|
|
#define MIR1 0x84
|
|
#define MIR2 0x88
|
|
|
|
/*
|
|
* Note: Other Intel EDAC drivers use AMBPRESENT to identify if the available
|
|
* memory. From datasheet item 7.3.1 (FB-DIMM technology & organization), it
|
|
* seems that we cannot use this information directly for the same usage.
|
|
* Each memory slot may have up to 2 AMB interfaces, one for income and another
|
|
* for outcome interface to the next slot.
|
|
* For now, the driver just stores the AMB present registers, but rely only at
|
|
* the MTR info to detect memory.
|
|
* Datasheet is also not clear about how to map each AMBPRESENT registers to
|
|
* one of the 4 available channels.
|
|
*/
|
|
#define AMBPRESENT_0 0x64
|
|
#define AMBPRESENT_1 0x66
|
|
|
|
static const u16 mtr_regs[MAX_SLOTS] = {
|
|
0x80, 0x84, 0x88, 0x8c,
|
|
0x82, 0x86, 0x8a, 0x8e
|
|
};
|
|
|
|
/*
|
|
* Defines to extract the vaious fields from the
|
|
* MTRx - Memory Technology Registers
|
|
*/
|
|
#define MTR_DIMMS_PRESENT(mtr) ((mtr) & (1 << 8))
|
|
#define MTR_DIMMS_ETHROTTLE(mtr) ((mtr) & (1 << 7))
|
|
#define MTR_DRAM_WIDTH(mtr) (((mtr) & (1 << 6)) ? 8 : 4)
|
|
#define MTR_DRAM_BANKS(mtr) (((mtr) & (1 << 5)) ? 8 : 4)
|
|
#define MTR_DIMM_RANKS(mtr) (((mtr) & (1 << 4)) ? 1 : 0)
|
|
#define MTR_DIMM_ROWS(mtr) (((mtr) >> 2) & 0x3)
|
|
#define MTR_DRAM_BANKS_ADDR_BITS 2
|
|
#define MTR_DIMM_ROWS_ADDR_BITS(mtr) (MTR_DIMM_ROWS(mtr) + 13)
|
|
#define MTR_DIMM_COLS(mtr) ((mtr) & 0x3)
|
|
#define MTR_DIMM_COLS_ADDR_BITS(mtr) (MTR_DIMM_COLS(mtr) + 10)
|
|
|
|
/************************************************
|
|
* i7300 Register definitions for error detection
|
|
************************************************/
|
|
|
|
/*
|
|
* Device 16.1: FBD Error Registers
|
|
*/
|
|
#define FERR_FAT_FBD 0x98
|
|
static const char *ferr_fat_fbd_name[] = {
|
|
[22] = "Non-Redundant Fast Reset Timeout",
|
|
[2] = ">Tmid Thermal event with intelligent throttling disabled",
|
|
[1] = "Memory or FBD configuration CRC read error",
|
|
[0] = "Memory Write error on non-redundant retry or "
|
|
"FBD configuration Write error on retry",
|
|
};
|
|
#define GET_FBD_FAT_IDX(fbderr) (((fbderr) >> 28) & 3)
|
|
#define FERR_FAT_FBD_ERR_MASK ((1 << 0) | (1 << 1) | (1 << 2) | (1 << 22))
|
|
|
|
#define FERR_NF_FBD 0xa0
|
|
static const char *ferr_nf_fbd_name[] = {
|
|
[24] = "DIMM-Spare Copy Completed",
|
|
[23] = "DIMM-Spare Copy Initiated",
|
|
[22] = "Redundant Fast Reset Timeout",
|
|
[21] = "Memory Write error on redundant retry",
|
|
[18] = "SPD protocol Error",
|
|
[17] = "FBD Northbound parity error on FBD Sync Status",
|
|
[16] = "Correctable Patrol Data ECC",
|
|
[15] = "Correctable Resilver- or Spare-Copy Data ECC",
|
|
[14] = "Correctable Mirrored Demand Data ECC",
|
|
[13] = "Correctable Non-Mirrored Demand Data ECC",
|
|
[11] = "Memory or FBD configuration CRC read error",
|
|
[10] = "FBD Configuration Write error on first attempt",
|
|
[9] = "Memory Write error on first attempt",
|
|
[8] = "Non-Aliased Uncorrectable Patrol Data ECC",
|
|
[7] = "Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
|
|
[6] = "Non-Aliased Uncorrectable Mirrored Demand Data ECC",
|
|
[5] = "Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC",
|
|
[4] = "Aliased Uncorrectable Patrol Data ECC",
|
|
[3] = "Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
|
|
[2] = "Aliased Uncorrectable Mirrored Demand Data ECC",
|
|
[1] = "Aliased Uncorrectable Non-Mirrored Demand Data ECC",
|
|
[0] = "Uncorrectable Data ECC on Replay",
|
|
};
|
|
#define GET_FBD_NF_IDX(fbderr) (((fbderr) >> 28) & 3)
|
|
#define FERR_NF_FBD_ERR_MASK ((1 << 24) | (1 << 23) | (1 << 22) | (1 << 21) |\
|
|
(1 << 18) | (1 << 17) | (1 << 16) | (1 << 15) |\
|
|
(1 << 14) | (1 << 13) | (1 << 11) | (1 << 10) |\
|
|
(1 << 9) | (1 << 8) | (1 << 7) | (1 << 6) |\
|
|
(1 << 5) | (1 << 4) | (1 << 3) | (1 << 2) |\
|
|
(1 << 1) | (1 << 0))
|
|
|
|
#define EMASK_FBD 0xa8
|
|
#define EMASK_FBD_ERR_MASK ((1 << 27) | (1 << 26) | (1 << 25) | (1 << 24) |\
|
|
(1 << 22) | (1 << 21) | (1 << 20) | (1 << 19) |\
|
|
(1 << 18) | (1 << 17) | (1 << 16) | (1 << 14) |\
|
|
(1 << 13) | (1 << 12) | (1 << 11) | (1 << 10) |\
|
|
(1 << 9) | (1 << 8) | (1 << 7) | (1 << 6) |\
|
|
(1 << 5) | (1 << 4) | (1 << 3) | (1 << 2) |\
|
|
(1 << 1) | (1 << 0))
|
|
|
|
/*
|
|
* Device 16.2: Global Error Registers
|
|
*/
|
|
|
|
#define FERR_GLOBAL_HI 0x48
|
|
static const char *ferr_global_hi_name[] = {
|
|
[3] = "FSB 3 Fatal Error",
|
|
[2] = "FSB 2 Fatal Error",
|
|
[1] = "FSB 1 Fatal Error",
|
|
[0] = "FSB 0 Fatal Error",
|
|
};
|
|
#define ferr_global_hi_is_fatal(errno) 1
|
|
|
|
#define FERR_GLOBAL_LO 0x40
|
|
static const char *ferr_global_lo_name[] = {
|
|
[31] = "Internal MCH Fatal Error",
|
|
[30] = "Intel QuickData Technology Device Fatal Error",
|
|
[29] = "FSB1 Fatal Error",
|
|
[28] = "FSB0 Fatal Error",
|
|
[27] = "FBD Channel 3 Fatal Error",
|
|
[26] = "FBD Channel 2 Fatal Error",
|
|
[25] = "FBD Channel 1 Fatal Error",
|
|
[24] = "FBD Channel 0 Fatal Error",
|
|
[23] = "PCI Express Device 7Fatal Error",
|
|
[22] = "PCI Express Device 6 Fatal Error",
|
|
[21] = "PCI Express Device 5 Fatal Error",
|
|
[20] = "PCI Express Device 4 Fatal Error",
|
|
[19] = "PCI Express Device 3 Fatal Error",
|
|
[18] = "PCI Express Device 2 Fatal Error",
|
|
[17] = "PCI Express Device 1 Fatal Error",
|
|
[16] = "ESI Fatal Error",
|
|
[15] = "Internal MCH Non-Fatal Error",
|
|
[14] = "Intel QuickData Technology Device Non Fatal Error",
|
|
[13] = "FSB1 Non-Fatal Error",
|
|
[12] = "FSB 0 Non-Fatal Error",
|
|
[11] = "FBD Channel 3 Non-Fatal Error",
|
|
[10] = "FBD Channel 2 Non-Fatal Error",
|
|
[9] = "FBD Channel 1 Non-Fatal Error",
|
|
[8] = "FBD Channel 0 Non-Fatal Error",
|
|
[7] = "PCI Express Device 7 Non-Fatal Error",
|
|
[6] = "PCI Express Device 6 Non-Fatal Error",
|
|
[5] = "PCI Express Device 5 Non-Fatal Error",
|
|
[4] = "PCI Express Device 4 Non-Fatal Error",
|
|
[3] = "PCI Express Device 3 Non-Fatal Error",
|
|
[2] = "PCI Express Device 2 Non-Fatal Error",
|
|
[1] = "PCI Express Device 1 Non-Fatal Error",
|
|
[0] = "ESI Non-Fatal Error",
|
|
};
|
|
#define ferr_global_lo_is_fatal(errno) ((errno < 16) ? 0 : 1)
|
|
|
|
#define NRECMEMA 0xbe
|
|
#define NRECMEMA_BANK(v) (((v) >> 12) & 7)
|
|
#define NRECMEMA_RANK(v) (((v) >> 8) & 15)
|
|
|
|
#define NRECMEMB 0xc0
|
|
#define NRECMEMB_IS_WR(v) ((v) & (1 << 31))
|
|
#define NRECMEMB_CAS(v) (((v) >> 16) & 0x1fff)
|
|
#define NRECMEMB_RAS(v) ((v) & 0xffff)
|
|
|
|
#define REDMEMA 0xdc
|
|
|
|
#define REDMEMB 0x7c
|
|
|
|
#define RECMEMA 0xe0
|
|
#define RECMEMA_BANK(v) (((v) >> 12) & 7)
|
|
#define RECMEMA_RANK(v) (((v) >> 8) & 15)
|
|
|
|
#define RECMEMB 0xe4
|
|
#define RECMEMB_IS_WR(v) ((v) & (1 << 31))
|
|
#define RECMEMB_CAS(v) (((v) >> 16) & 0x1fff)
|
|
#define RECMEMB_RAS(v) ((v) & 0xffff)
|
|
|
|
/********************************************
|
|
* i7300 Functions related to error detection
|
|
********************************************/
|
|
|
|
/**
|
|
* get_err_from_table() - Gets the error message from a table
|
|
* @table: table name (array of char *)
|
|
* @size: number of elements at the table
|
|
* @pos: position of the element to be returned
|
|
*
|
|
* This is a small routine that gets the pos-th element of a table. If the
|
|
* element doesn't exist (or it is empty), it returns "reserved".
|
|
* Instead of calling it directly, the better is to call via the macro
|
|
* GET_ERR_FROM_TABLE(), that automatically checks the table size via
|
|
* ARRAY_SIZE() macro
|
|
*/
|
|
static const char *get_err_from_table(const char *table[], int size, int pos)
|
|
{
|
|
if (unlikely(pos >= size))
|
|
return "Reserved";
|
|
|
|
if (unlikely(!table[pos]))
|
|
return "Reserved";
|
|
|
|
return table[pos];
|
|
}
|
|
|
|
#define GET_ERR_FROM_TABLE(table, pos) \
|
|
get_err_from_table(table, ARRAY_SIZE(table), pos)
|
|
|
|
/**
|
|
* i7300_process_error_global() - Retrieve the hardware error information from
|
|
* the hardware global error registers and
|
|
* sends it to dmesg
|
|
* @mci: struct mem_ctl_info pointer
|
|
*/
|
|
static void i7300_process_error_global(struct mem_ctl_info *mci)
|
|
{
|
|
struct i7300_pvt *pvt;
|
|
u32 errnum, error_reg;
|
|
unsigned long errors;
|
|
const char *specific;
|
|
bool is_fatal;
|
|
|
|
pvt = mci->pvt_info;
|
|
|
|
/* read in the 1st FATAL error register */
|
|
pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
|
|
FERR_GLOBAL_HI, &error_reg);
|
|
if (unlikely(error_reg)) {
|
|
errors = error_reg;
|
|
errnum = find_first_bit(&errors,
|
|
ARRAY_SIZE(ferr_global_hi_name));
|
|
specific = GET_ERR_FROM_TABLE(ferr_global_hi_name, errnum);
|
|
is_fatal = ferr_global_hi_is_fatal(errnum);
|
|
|
|
/* Clear the error bit */
|
|
pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
|
|
FERR_GLOBAL_HI, error_reg);
|
|
|
|
goto error_global;
|
|
}
|
|
|
|
pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
|
|
FERR_GLOBAL_LO, &error_reg);
|
|
if (unlikely(error_reg)) {
|
|
errors = error_reg;
|
|
errnum = find_first_bit(&errors,
|
|
ARRAY_SIZE(ferr_global_lo_name));
|
|
specific = GET_ERR_FROM_TABLE(ferr_global_lo_name, errnum);
|
|
is_fatal = ferr_global_lo_is_fatal(errnum);
|
|
|
|
/* Clear the error bit */
|
|
pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
|
|
FERR_GLOBAL_LO, error_reg);
|
|
|
|
goto error_global;
|
|
}
|
|
return;
|
|
|
|
error_global:
|
|
i7300_mc_printk(mci, KERN_EMERG, "%s misc error: %s\n",
|
|
is_fatal ? "Fatal" : "NOT fatal", specific);
|
|
}
|
|
|
|
/**
|
|
* i7300_process_fbd_error() - Retrieve the hardware error information from
|
|
* the FBD error registers and sends it via
|
|
* EDAC error API calls
|
|
* @mci: struct mem_ctl_info pointer
|
|
*/
|
|
static void i7300_process_fbd_error(struct mem_ctl_info *mci)
|
|
{
|
|
struct i7300_pvt *pvt;
|
|
u32 errnum, value, error_reg;
|
|
u16 val16;
|
|
unsigned branch, channel, bank, rank, cas, ras;
|
|
u32 syndrome;
|
|
|
|
unsigned long errors;
|
|
const char *specific;
|
|
bool is_wr;
|
|
|
|
pvt = mci->pvt_info;
|
|
|
|
/* read in the 1st FATAL error register */
|
|
pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
|
|
FERR_FAT_FBD, &error_reg);
|
|
if (unlikely(error_reg & FERR_FAT_FBD_ERR_MASK)) {
|
|
errors = error_reg & FERR_FAT_FBD_ERR_MASK ;
|
|
errnum = find_first_bit(&errors,
|
|
ARRAY_SIZE(ferr_fat_fbd_name));
|
|
specific = GET_ERR_FROM_TABLE(ferr_fat_fbd_name, errnum);
|
|
branch = (GET_FBD_FAT_IDX(error_reg) == 2) ? 1 : 0;
|
|
|
|
pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map,
|
|
NRECMEMA, &val16);
|
|
bank = NRECMEMA_BANK(val16);
|
|
rank = NRECMEMA_RANK(val16);
|
|
|
|
pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
|
|
NRECMEMB, &value);
|
|
is_wr = NRECMEMB_IS_WR(value);
|
|
cas = NRECMEMB_CAS(value);
|
|
ras = NRECMEMB_RAS(value);
|
|
|
|
/* Clean the error register */
|
|
pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
|
|
FERR_FAT_FBD, error_reg);
|
|
|
|
snprintf(pvt->tmp_prt_buffer, PAGE_SIZE,
|
|
"Bank=%d RAS=%d CAS=%d Err=0x%lx (%s))",
|
|
bank, ras, cas, errors, specific);
|
|
|
|
edac_mc_handle_error(HW_EVENT_ERR_FATAL, mci, 1, 0, 0, 0,
|
|
branch, -1, rank,
|
|
is_wr ? "Write error" : "Read error",
|
|
pvt->tmp_prt_buffer);
|
|
|
|
}
|
|
|
|
/* read in the 1st NON-FATAL error register */
|
|
pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
|
|
FERR_NF_FBD, &error_reg);
|
|
if (unlikely(error_reg & FERR_NF_FBD_ERR_MASK)) {
|
|
errors = error_reg & FERR_NF_FBD_ERR_MASK;
|
|
errnum = find_first_bit(&errors,
|
|
ARRAY_SIZE(ferr_nf_fbd_name));
|
|
specific = GET_ERR_FROM_TABLE(ferr_nf_fbd_name, errnum);
|
|
branch = (GET_FBD_NF_IDX(error_reg) == 2) ? 1 : 0;
|
|
|
|
pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
|
|
REDMEMA, &syndrome);
|
|
|
|
pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map,
|
|
RECMEMA, &val16);
|
|
bank = RECMEMA_BANK(val16);
|
|
rank = RECMEMA_RANK(val16);
|
|
|
|
pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
|
|
RECMEMB, &value);
|
|
is_wr = RECMEMB_IS_WR(value);
|
|
cas = RECMEMB_CAS(value);
|
|
ras = RECMEMB_RAS(value);
|
|
|
|
pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
|
|
REDMEMB, &value);
|
|
channel = (branch << 1);
|
|
|
|
/* Second channel ? */
|
|
channel += !!(value & BIT(17));
|
|
|
|
/* Clear the error bit */
|
|
pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
|
|
FERR_NF_FBD, error_reg);
|
|
|
|
/* Form out message */
|
|
snprintf(pvt->tmp_prt_buffer, PAGE_SIZE,
|
|
"DRAM-Bank=%d RAS=%d CAS=%d, Err=0x%lx (%s))",
|
|
bank, ras, cas, errors, specific);
|
|
|
|
edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0,
|
|
syndrome,
|
|
branch >> 1, channel % 2, rank,
|
|
is_wr ? "Write error" : "Read error",
|
|
pvt->tmp_prt_buffer);
|
|
}
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* i7300_check_error() - Calls the error checking subroutines
|
|
* @mci: struct mem_ctl_info pointer
|
|
*/
|
|
static void i7300_check_error(struct mem_ctl_info *mci)
|
|
{
|
|
i7300_process_error_global(mci);
|
|
i7300_process_fbd_error(mci);
|
|
};
|
|
|
|
/**
|
|
* i7300_clear_error() - Clears the error registers
|
|
* @mci: struct mem_ctl_info pointer
|
|
*/
|
|
static void i7300_clear_error(struct mem_ctl_info *mci)
|
|
{
|
|
struct i7300_pvt *pvt = mci->pvt_info;
|
|
u32 value;
|
|
/*
|
|
* All error values are RWC - we need to read and write 1 to the
|
|
* bit that we want to cleanup
|
|
*/
|
|
|
|
/* Clear global error registers */
|
|
pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
|
|
FERR_GLOBAL_HI, &value);
|
|
pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
|
|
FERR_GLOBAL_HI, value);
|
|
|
|
pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
|
|
FERR_GLOBAL_LO, &value);
|
|
pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
|
|
FERR_GLOBAL_LO, value);
|
|
|
|
/* Clear FBD error registers */
|
|
pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
|
|
FERR_FAT_FBD, &value);
|
|
pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
|
|
FERR_FAT_FBD, value);
|
|
|
|
pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
|
|
FERR_NF_FBD, &value);
|
|
pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
|
|
FERR_NF_FBD, value);
|
|
}
|
|
|
|
/**
|
|
* i7300_enable_error_reporting() - Enable the memory reporting logic at the
|
|
* hardware
|
|
* @mci: struct mem_ctl_info pointer
|
|
*/
|
|
static void i7300_enable_error_reporting(struct mem_ctl_info *mci)
|
|
{
|
|
struct i7300_pvt *pvt = mci->pvt_info;
|
|
u32 fbd_error_mask;
|
|
|
|
/* Read the FBD Error Mask Register */
|
|
pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
|
|
EMASK_FBD, &fbd_error_mask);
|
|
|
|
/* Enable with a '0' */
|
|
fbd_error_mask &= ~(EMASK_FBD_ERR_MASK);
|
|
|
|
pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
|
|
EMASK_FBD, fbd_error_mask);
|
|
}
|
|
|
|
/************************************************
|
|
* i7300 Functions related to memory enumberation
|
|
************************************************/
|
|
|
|
/**
|
|
* decode_mtr() - Decodes the MTR descriptor, filling the edac structs
|
|
* @pvt: pointer to the private data struct used by i7300 driver
|
|
* @slot: DIMM slot (0 to 7)
|
|
* @ch: Channel number within the branch (0 or 1)
|
|
* @branch: Branch number (0 or 1)
|
|
* @dinfo: Pointer to DIMM info where dimm size is stored
|
|
* @p_csrow: Pointer to the struct csrow_info that corresponds to that element
|
|
*/
|
|
static int decode_mtr(struct i7300_pvt *pvt,
|
|
int slot, int ch, int branch,
|
|
struct i7300_dimm_info *dinfo,
|
|
struct dimm_info *dimm)
|
|
{
|
|
int mtr, ans, addrBits, channel;
|
|
|
|
channel = to_channel(ch, branch);
|
|
|
|
mtr = pvt->mtr[slot][branch];
|
|
ans = MTR_DIMMS_PRESENT(mtr) ? 1 : 0;
|
|
|
|
edac_dbg(2, "\tMTR%d CH%d: DIMMs are %sPresent (mtr)\n",
|
|
slot, channel, ans ? "" : "NOT ");
|
|
|
|
/* Determine if there is a DIMM present in this DIMM slot */
|
|
if (!ans)
|
|
return 0;
|
|
|
|
/* Start with the number of bits for a Bank
|
|
* on the DRAM */
|
|
addrBits = MTR_DRAM_BANKS_ADDR_BITS;
|
|
/* Add thenumber of ROW bits */
|
|
addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
|
|
/* add the number of COLUMN bits */
|
|
addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
|
|
/* add the number of RANK bits */
|
|
addrBits += MTR_DIMM_RANKS(mtr);
|
|
|
|
addrBits += 6; /* add 64 bits per DIMM */
|
|
addrBits -= 20; /* divide by 2^^20 */
|
|
addrBits -= 3; /* 8 bits per bytes */
|
|
|
|
dinfo->megabytes = 1 << addrBits;
|
|
|
|
edac_dbg(2, "\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
|
|
|
|
edac_dbg(2, "\t\tELECTRICAL THROTTLING is %s\n",
|
|
MTR_DIMMS_ETHROTTLE(mtr) ? "enabled" : "disabled");
|
|
|
|
edac_dbg(2, "\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
|
|
edac_dbg(2, "\t\tNUMRANK: %s\n",
|
|
MTR_DIMM_RANKS(mtr) ? "double" : "single");
|
|
edac_dbg(2, "\t\tNUMROW: %s\n",
|
|
MTR_DIMM_ROWS(mtr) == 0 ? "8,192 - 13 rows" :
|
|
MTR_DIMM_ROWS(mtr) == 1 ? "16,384 - 14 rows" :
|
|
MTR_DIMM_ROWS(mtr) == 2 ? "32,768 - 15 rows" :
|
|
"65,536 - 16 rows");
|
|
edac_dbg(2, "\t\tNUMCOL: %s\n",
|
|
MTR_DIMM_COLS(mtr) == 0 ? "1,024 - 10 columns" :
|
|
MTR_DIMM_COLS(mtr) == 1 ? "2,048 - 11 columns" :
|
|
MTR_DIMM_COLS(mtr) == 2 ? "4,096 - 12 columns" :
|
|
"reserved");
|
|
edac_dbg(2, "\t\tSIZE: %d MB\n", dinfo->megabytes);
|
|
|
|
/*
|
|
* The type of error detection actually depends of the
|
|
* mode of operation. When it is just one single memory chip, at
|
|
* socket 0, channel 0, it uses 8-byte-over-32-byte SECDED+ code.
|
|
* In normal or mirrored mode, it uses Lockstep mode,
|
|
* with the possibility of using an extended algorithm for x8 memories
|
|
* See datasheet Sections 7.3.6 to 7.3.8
|
|
*/
|
|
|
|
dimm->nr_pages = MiB_TO_PAGES(dinfo->megabytes);
|
|
dimm->grain = 8;
|
|
dimm->mtype = MEM_FB_DDR2;
|
|
if (IS_SINGLE_MODE(pvt->mc_settings_a)) {
|
|
dimm->edac_mode = EDAC_SECDED;
|
|
edac_dbg(2, "\t\tECC code is 8-byte-over-32-byte SECDED+ code\n");
|
|
} else {
|
|
edac_dbg(2, "\t\tECC code is on Lockstep mode\n");
|
|
if (MTR_DRAM_WIDTH(mtr) == 8)
|
|
dimm->edac_mode = EDAC_S8ECD8ED;
|
|
else
|
|
dimm->edac_mode = EDAC_S4ECD4ED;
|
|
}
|
|
|
|
/* ask what device type on this row */
|
|
if (MTR_DRAM_WIDTH(mtr) == 8) {
|
|
edac_dbg(2, "\t\tScrub algorithm for x8 is on %s mode\n",
|
|
IS_SCRBALGO_ENHANCED(pvt->mc_settings) ?
|
|
"enhanced" : "normal");
|
|
|
|
dimm->dtype = DEV_X8;
|
|
} else
|
|
dimm->dtype = DEV_X4;
|
|
|
|
return mtr;
|
|
}
|
|
|
|
/**
|
|
* print_dimm_size() - Prints dump of the memory organization
|
|
* @pvt: pointer to the private data struct used by i7300 driver
|
|
*
|
|
* Useful for debug. If debug is disabled, this routine do nothing
|
|
*/
|
|
static void print_dimm_size(struct i7300_pvt *pvt)
|
|
{
|
|
#ifdef CONFIG_EDAC_DEBUG
|
|
struct i7300_dimm_info *dinfo;
|
|
char *p;
|
|
int space, n;
|
|
int channel, slot;
|
|
|
|
space = PAGE_SIZE;
|
|
p = pvt->tmp_prt_buffer;
|
|
|
|
n = snprintf(p, space, " ");
|
|
p += n;
|
|
space -= n;
|
|
for (channel = 0; channel < MAX_CHANNELS; channel++) {
|
|
n = snprintf(p, space, "channel %d | ", channel);
|
|
p += n;
|
|
space -= n;
|
|
}
|
|
edac_dbg(2, "%s\n", pvt->tmp_prt_buffer);
|
|
p = pvt->tmp_prt_buffer;
|
|
space = PAGE_SIZE;
|
|
n = snprintf(p, space, "-------------------------------"
|
|
"------------------------------");
|
|
p += n;
|
|
space -= n;
|
|
edac_dbg(2, "%s\n", pvt->tmp_prt_buffer);
|
|
p = pvt->tmp_prt_buffer;
|
|
space = PAGE_SIZE;
|
|
|
|
for (slot = 0; slot < MAX_SLOTS; slot++) {
|
|
n = snprintf(p, space, "csrow/SLOT %d ", slot);
|
|
p += n;
|
|
space -= n;
|
|
|
|
for (channel = 0; channel < MAX_CHANNELS; channel++) {
|
|
dinfo = &pvt->dimm_info[slot][channel];
|
|
n = snprintf(p, space, "%4d MB | ", dinfo->megabytes);
|
|
p += n;
|
|
space -= n;
|
|
}
|
|
|
|
edac_dbg(2, "%s\n", pvt->tmp_prt_buffer);
|
|
p = pvt->tmp_prt_buffer;
|
|
space = PAGE_SIZE;
|
|
}
|
|
|
|
n = snprintf(p, space, "-------------------------------"
|
|
"------------------------------");
|
|
p += n;
|
|
space -= n;
|
|
edac_dbg(2, "%s\n", pvt->tmp_prt_buffer);
|
|
p = pvt->tmp_prt_buffer;
|
|
space = PAGE_SIZE;
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* i7300_init_csrows() - Initialize the 'csrows' table within
|
|
* the mci control structure with the
|
|
* addressing of memory.
|
|
* @mci: struct mem_ctl_info pointer
|
|
*/
|
|
static int i7300_init_csrows(struct mem_ctl_info *mci)
|
|
{
|
|
struct i7300_pvt *pvt;
|
|
struct i7300_dimm_info *dinfo;
|
|
int rc = -ENODEV;
|
|
int mtr;
|
|
int ch, branch, slot, channel, max_channel, max_branch;
|
|
struct dimm_info *dimm;
|
|
|
|
pvt = mci->pvt_info;
|
|
|
|
edac_dbg(2, "Memory Technology Registers:\n");
|
|
|
|
if (IS_SINGLE_MODE(pvt->mc_settings_a)) {
|
|
max_branch = 1;
|
|
max_channel = 1;
|
|
} else {
|
|
max_branch = MAX_BRANCHES;
|
|
max_channel = MAX_CH_PER_BRANCH;
|
|
}
|
|
|
|
/* Get the AMB present registers for the four channels */
|
|
for (branch = 0; branch < max_branch; branch++) {
|
|
/* Read and dump branch 0's MTRs */
|
|
channel = to_channel(0, branch);
|
|
pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch],
|
|
AMBPRESENT_0,
|
|
&pvt->ambpresent[channel]);
|
|
edac_dbg(2, "\t\tAMB-present CH%d = 0x%x:\n",
|
|
channel, pvt->ambpresent[channel]);
|
|
|
|
if (max_channel == 1)
|
|
continue;
|
|
|
|
channel = to_channel(1, branch);
|
|
pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch],
|
|
AMBPRESENT_1,
|
|
&pvt->ambpresent[channel]);
|
|
edac_dbg(2, "\t\tAMB-present CH%d = 0x%x:\n",
|
|
channel, pvt->ambpresent[channel]);
|
|
}
|
|
|
|
/* Get the set of MTR[0-7] regs by each branch */
|
|
for (slot = 0; slot < MAX_SLOTS; slot++) {
|
|
int where = mtr_regs[slot];
|
|
for (branch = 0; branch < max_branch; branch++) {
|
|
pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch],
|
|
where,
|
|
&pvt->mtr[slot][branch]);
|
|
for (ch = 0; ch < max_channel; ch++) {
|
|
int channel = to_channel(ch, branch);
|
|
|
|
dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms,
|
|
mci->n_layers, branch, ch, slot);
|
|
|
|
dinfo = &pvt->dimm_info[slot][channel];
|
|
|
|
mtr = decode_mtr(pvt, slot, ch, branch,
|
|
dinfo, dimm);
|
|
|
|
/* if no DIMMS on this row, continue */
|
|
if (!MTR_DIMMS_PRESENT(mtr))
|
|
continue;
|
|
|
|
rc = 0;
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* decode_mir() - Decodes Memory Interleave Register (MIR) info
|
|
* @int mir_no: number of the MIR register to decode
|
|
* @mir: array with the MIR data cached on the driver
|
|
*/
|
|
static void decode_mir(int mir_no, u16 mir[MAX_MIR])
|
|
{
|
|
if (mir[mir_no] & 3)
|
|
edac_dbg(2, "MIR%d: limit= 0x%x Branch(es) that participate: %s %s\n",
|
|
mir_no,
|
|
(mir[mir_no] >> 4) & 0xfff,
|
|
(mir[mir_no] & 1) ? "B0" : "",
|
|
(mir[mir_no] & 2) ? "B1" : "");
|
|
}
|
|
|
|
/**
|
|
* i7300_get_mc_regs() - Get the contents of the MC enumeration registers
|
|
* @mci: struct mem_ctl_info pointer
|
|
*
|
|
* Data read is cached internally for its usage when needed
|
|
*/
|
|
static int i7300_get_mc_regs(struct mem_ctl_info *mci)
|
|
{
|
|
struct i7300_pvt *pvt;
|
|
u32 actual_tolm;
|
|
int i, rc;
|
|
|
|
pvt = mci->pvt_info;
|
|
|
|
pci_read_config_dword(pvt->pci_dev_16_0_fsb_ctlr, AMBASE,
|
|
(u32 *) &pvt->ambase);
|
|
|
|
edac_dbg(2, "AMBASE= 0x%lx\n", (long unsigned int)pvt->ambase);
|
|
|
|
/* Get the Branch Map regs */
|
|
pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, TOLM, &pvt->tolm);
|
|
pvt->tolm >>= 12;
|
|
edac_dbg(2, "TOLM (number of 256M regions) =%u (0x%x)\n",
|
|
pvt->tolm, pvt->tolm);
|
|
|
|
actual_tolm = (u32) ((1000l * pvt->tolm) >> (30 - 28));
|
|
edac_dbg(2, "Actual TOLM byte addr=%u.%03u GB (0x%x)\n",
|
|
actual_tolm/1000, actual_tolm % 1000, pvt->tolm << 28);
|
|
|
|
/* Get memory controller settings */
|
|
pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, MC_SETTINGS,
|
|
&pvt->mc_settings);
|
|
pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, MC_SETTINGS_A,
|
|
&pvt->mc_settings_a);
|
|
|
|
if (IS_SINGLE_MODE(pvt->mc_settings_a))
|
|
edac_dbg(0, "Memory controller operating on single mode\n");
|
|
else
|
|
edac_dbg(0, "Memory controller operating on %smirrored mode\n",
|
|
IS_MIRRORED(pvt->mc_settings) ? "" : "non-");
|
|
|
|
edac_dbg(0, "Error detection is %s\n",
|
|
IS_ECC_ENABLED(pvt->mc_settings) ? "enabled" : "disabled");
|
|
edac_dbg(0, "Retry is %s\n",
|
|
IS_RETRY_ENABLED(pvt->mc_settings) ? "enabled" : "disabled");
|
|
|
|
/* Get Memory Interleave Range registers */
|
|
pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR0,
|
|
&pvt->mir[0]);
|
|
pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR1,
|
|
&pvt->mir[1]);
|
|
pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR2,
|
|
&pvt->mir[2]);
|
|
|
|
/* Decode the MIR regs */
|
|
for (i = 0; i < MAX_MIR; i++)
|
|
decode_mir(i, pvt->mir);
|
|
|
|
rc = i7300_init_csrows(mci);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
/* Go and determine the size of each DIMM and place in an
|
|
* orderly matrix */
|
|
print_dimm_size(pvt);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*************************************************
|
|
* i7300 Functions related to device probe/release
|
|
*************************************************/
|
|
|
|
/**
|
|
* i7300_put_devices() - Release the PCI devices
|
|
* @mci: struct mem_ctl_info pointer
|
|
*/
|
|
static void i7300_put_devices(struct mem_ctl_info *mci)
|
|
{
|
|
struct i7300_pvt *pvt;
|
|
int branch;
|
|
|
|
pvt = mci->pvt_info;
|
|
|
|
/* Decrement usage count for devices */
|
|
for (branch = 0; branch < MAX_CH_PER_BRANCH; branch++)
|
|
pci_dev_put(pvt->pci_dev_2x_0_fbd_branch[branch]);
|
|
pci_dev_put(pvt->pci_dev_16_2_fsb_err_regs);
|
|
pci_dev_put(pvt->pci_dev_16_1_fsb_addr_map);
|
|
}
|
|
|
|
/**
|
|
* i7300_get_devices() - Find and perform 'get' operation on the MCH's
|
|
* device/functions we want to reference for this driver
|
|
* @mci: struct mem_ctl_info pointer
|
|
*
|
|
* Access and prepare the several devices for usage:
|
|
* I7300 devices used by this driver:
|
|
* Device 16, functions 0,1 and 2: PCI_DEVICE_ID_INTEL_I7300_MCH_ERR
|
|
* Device 21 function 0: PCI_DEVICE_ID_INTEL_I7300_MCH_FB0
|
|
* Device 22 function 0: PCI_DEVICE_ID_INTEL_I7300_MCH_FB1
|
|
*/
|
|
static int i7300_get_devices(struct mem_ctl_info *mci)
|
|
{
|
|
struct i7300_pvt *pvt;
|
|
struct pci_dev *pdev;
|
|
|
|
pvt = mci->pvt_info;
|
|
|
|
/* Attempt to 'get' the MCH register we want */
|
|
pdev = NULL;
|
|
while ((pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
|
|
PCI_DEVICE_ID_INTEL_I7300_MCH_ERR,
|
|
pdev))) {
|
|
/* Store device 16 funcs 1 and 2 */
|
|
switch (PCI_FUNC(pdev->devfn)) {
|
|
case 1:
|
|
if (!pvt->pci_dev_16_1_fsb_addr_map)
|
|
pvt->pci_dev_16_1_fsb_addr_map =
|
|
pci_dev_get(pdev);
|
|
break;
|
|
case 2:
|
|
if (!pvt->pci_dev_16_2_fsb_err_regs)
|
|
pvt->pci_dev_16_2_fsb_err_regs =
|
|
pci_dev_get(pdev);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!pvt->pci_dev_16_1_fsb_addr_map ||
|
|
!pvt->pci_dev_16_2_fsb_err_regs) {
|
|
/* At least one device was not found */
|
|
i7300_printk(KERN_ERR,
|
|
"'system address,Process Bus' device not found:"
|
|
"vendor 0x%x device 0x%x ERR funcs (broken BIOS?)\n",
|
|
PCI_VENDOR_ID_INTEL,
|
|
PCI_DEVICE_ID_INTEL_I7300_MCH_ERR);
|
|
goto error;
|
|
}
|
|
|
|
edac_dbg(1, "System Address, processor bus- PCI Bus ID: %s %x:%x\n",
|
|
pci_name(pvt->pci_dev_16_0_fsb_ctlr),
|
|
pvt->pci_dev_16_0_fsb_ctlr->vendor,
|
|
pvt->pci_dev_16_0_fsb_ctlr->device);
|
|
edac_dbg(1, "Branchmap, control and errors - PCI Bus ID: %s %x:%x\n",
|
|
pci_name(pvt->pci_dev_16_1_fsb_addr_map),
|
|
pvt->pci_dev_16_1_fsb_addr_map->vendor,
|
|
pvt->pci_dev_16_1_fsb_addr_map->device);
|
|
edac_dbg(1, "FSB Error Regs - PCI Bus ID: %s %x:%x\n",
|
|
pci_name(pvt->pci_dev_16_2_fsb_err_regs),
|
|
pvt->pci_dev_16_2_fsb_err_regs->vendor,
|
|
pvt->pci_dev_16_2_fsb_err_regs->device);
|
|
|
|
pvt->pci_dev_2x_0_fbd_branch[0] = pci_get_device(PCI_VENDOR_ID_INTEL,
|
|
PCI_DEVICE_ID_INTEL_I7300_MCH_FB0,
|
|
NULL);
|
|
if (!pvt->pci_dev_2x_0_fbd_branch[0]) {
|
|
i7300_printk(KERN_ERR,
|
|
"MC: 'BRANCH 0' device not found:"
|
|
"vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
|
|
PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I7300_MCH_FB0);
|
|
goto error;
|
|
}
|
|
|
|
pvt->pci_dev_2x_0_fbd_branch[1] = pci_get_device(PCI_VENDOR_ID_INTEL,
|
|
PCI_DEVICE_ID_INTEL_I7300_MCH_FB1,
|
|
NULL);
|
|
if (!pvt->pci_dev_2x_0_fbd_branch[1]) {
|
|
i7300_printk(KERN_ERR,
|
|
"MC: 'BRANCH 1' device not found:"
|
|
"vendor 0x%x device 0x%x Func 0 "
|
|
"(broken BIOS?)\n",
|
|
PCI_VENDOR_ID_INTEL,
|
|
PCI_DEVICE_ID_INTEL_I7300_MCH_FB1);
|
|
goto error;
|
|
}
|
|
|
|
return 0;
|
|
|
|
error:
|
|
i7300_put_devices(mci);
|
|
return -ENODEV;
|
|
}
|
|
|
|
/**
|
|
* i7300_init_one() - Probe for one instance of the device
|
|
* @pdev: struct pci_dev pointer
|
|
* @id: struct pci_device_id pointer - currently unused
|
|
*/
|
|
static int i7300_init_one(struct pci_dev *pdev, const struct pci_device_id *id)
|
|
{
|
|
struct mem_ctl_info *mci;
|
|
struct edac_mc_layer layers[3];
|
|
struct i7300_pvt *pvt;
|
|
int rc;
|
|
|
|
/* wake up device */
|
|
rc = pci_enable_device(pdev);
|
|
if (rc == -EIO)
|
|
return rc;
|
|
|
|
edac_dbg(0, "MC: pdev bus %u dev=0x%x fn=0x%x\n",
|
|
pdev->bus->number,
|
|
PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
|
|
|
|
/* We only are looking for func 0 of the set */
|
|
if (PCI_FUNC(pdev->devfn) != 0)
|
|
return -ENODEV;
|
|
|
|
/* allocate a new MC control structure */
|
|
layers[0].type = EDAC_MC_LAYER_BRANCH;
|
|
layers[0].size = MAX_BRANCHES;
|
|
layers[0].is_virt_csrow = false;
|
|
layers[1].type = EDAC_MC_LAYER_CHANNEL;
|
|
layers[1].size = MAX_CH_PER_BRANCH;
|
|
layers[1].is_virt_csrow = true;
|
|
layers[2].type = EDAC_MC_LAYER_SLOT;
|
|
layers[2].size = MAX_SLOTS;
|
|
layers[2].is_virt_csrow = true;
|
|
mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt));
|
|
if (mci == NULL)
|
|
return -ENOMEM;
|
|
|
|
edac_dbg(0, "MC: mci = %p\n", mci);
|
|
|
|
mci->pdev = &pdev->dev; /* record ptr to the generic device */
|
|
|
|
pvt = mci->pvt_info;
|
|
pvt->pci_dev_16_0_fsb_ctlr = pdev; /* Record this device in our private */
|
|
|
|
pvt->tmp_prt_buffer = kmalloc(PAGE_SIZE, GFP_KERNEL);
|
|
if (!pvt->tmp_prt_buffer) {
|
|
edac_mc_free(mci);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* 'get' the pci devices we want to reserve for our use */
|
|
if (i7300_get_devices(mci))
|
|
goto fail0;
|
|
|
|
mci->mc_idx = 0;
|
|
mci->mtype_cap = MEM_FLAG_FB_DDR2;
|
|
mci->edac_ctl_cap = EDAC_FLAG_NONE;
|
|
mci->edac_cap = EDAC_FLAG_NONE;
|
|
mci->mod_name = "i7300_edac.c";
|
|
mci->ctl_name = i7300_devs[0].ctl_name;
|
|
mci->dev_name = pci_name(pdev);
|
|
mci->ctl_page_to_phys = NULL;
|
|
|
|
/* Set the function pointer to an actual operation function */
|
|
mci->edac_check = i7300_check_error;
|
|
|
|
/* initialize the MC control structure 'csrows' table
|
|
* with the mapping and control information */
|
|
if (i7300_get_mc_regs(mci)) {
|
|
edac_dbg(0, "MC: Setting mci->edac_cap to EDAC_FLAG_NONE because i7300_init_csrows() returned nonzero value\n");
|
|
mci->edac_cap = EDAC_FLAG_NONE; /* no csrows found */
|
|
} else {
|
|
edac_dbg(1, "MC: Enable error reporting now\n");
|
|
i7300_enable_error_reporting(mci);
|
|
}
|
|
|
|
/* add this new MC control structure to EDAC's list of MCs */
|
|
if (edac_mc_add_mc(mci)) {
|
|
edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
|
|
/* FIXME: perhaps some code should go here that disables error
|
|
* reporting if we just enabled it
|
|
*/
|
|
goto fail1;
|
|
}
|
|
|
|
i7300_clear_error(mci);
|
|
|
|
/* allocating generic PCI control info */
|
|
i7300_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
|
|
if (!i7300_pci) {
|
|
printk(KERN_WARNING
|
|
"%s(): Unable to create PCI control\n",
|
|
__func__);
|
|
printk(KERN_WARNING
|
|
"%s(): PCI error report via EDAC not setup\n",
|
|
__func__);
|
|
}
|
|
|
|
return 0;
|
|
|
|
/* Error exit unwinding stack */
|
|
fail1:
|
|
|
|
i7300_put_devices(mci);
|
|
|
|
fail0:
|
|
kfree(pvt->tmp_prt_buffer);
|
|
edac_mc_free(mci);
|
|
return -ENODEV;
|
|
}
|
|
|
|
/**
|
|
* i7300_remove_one() - Remove the driver
|
|
* @pdev: struct pci_dev pointer
|
|
*/
|
|
static void i7300_remove_one(struct pci_dev *pdev)
|
|
{
|
|
struct mem_ctl_info *mci;
|
|
char *tmp;
|
|
|
|
edac_dbg(0, "\n");
|
|
|
|
if (i7300_pci)
|
|
edac_pci_release_generic_ctl(i7300_pci);
|
|
|
|
mci = edac_mc_del_mc(&pdev->dev);
|
|
if (!mci)
|
|
return;
|
|
|
|
tmp = ((struct i7300_pvt *)mci->pvt_info)->tmp_prt_buffer;
|
|
|
|
/* retrieve references to resources, and free those resources */
|
|
i7300_put_devices(mci);
|
|
|
|
kfree(tmp);
|
|
edac_mc_free(mci);
|
|
}
|
|
|
|
/*
|
|
* pci_device_id: table for which devices we are looking for
|
|
*
|
|
* Has only 8086:360c PCI ID
|
|
*/
|
|
static const struct pci_device_id i7300_pci_tbl[] = {
|
|
{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I7300_MCH_ERR)},
|
|
{0,} /* 0 terminated list. */
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(pci, i7300_pci_tbl);
|
|
|
|
/*
|
|
* i7300_driver: pci_driver structure for this module
|
|
*/
|
|
static struct pci_driver i7300_driver = {
|
|
.name = "i7300_edac",
|
|
.probe = i7300_init_one,
|
|
.remove = i7300_remove_one,
|
|
.id_table = i7300_pci_tbl,
|
|
};
|
|
|
|
/**
|
|
* i7300_init() - Registers the driver
|
|
*/
|
|
static int __init i7300_init(void)
|
|
{
|
|
int pci_rc;
|
|
|
|
edac_dbg(2, "\n");
|
|
|
|
/* Ensure that the OPSTATE is set correctly for POLL or NMI */
|
|
opstate_init();
|
|
|
|
pci_rc = pci_register_driver(&i7300_driver);
|
|
|
|
return (pci_rc < 0) ? pci_rc : 0;
|
|
}
|
|
|
|
/**
|
|
* i7300_init() - Unregisters the driver
|
|
*/
|
|
static void __exit i7300_exit(void)
|
|
{
|
|
edac_dbg(2, "\n");
|
|
pci_unregister_driver(&i7300_driver);
|
|
}
|
|
|
|
module_init(i7300_init);
|
|
module_exit(i7300_exit);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("Mauro Carvalho Chehab");
|
|
MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
|
|
MODULE_DESCRIPTION("MC Driver for Intel I7300 memory controllers - "
|
|
I7300_REVISION);
|
|
|
|
module_param(edac_op_state, int, 0444);
|
|
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
|