mirror of https://gitee.com/openkylin/linux.git
860 lines
23 KiB
C
860 lines
23 KiB
C
/*
|
|
* Qualcomm Technologies HIDMA DMA engine low level code
|
|
*
|
|
* Copyright (c) 2015-2016, The Linux Foundation. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 and
|
|
* only version 2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*/
|
|
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/atomic.h>
|
|
#include <linux/iopoll.h>
|
|
#include <linux/kfifo.h>
|
|
#include <linux/bitops.h>
|
|
|
|
#include "hidma.h"
|
|
|
|
#define HIDMA_EVRE_SIZE 16 /* each EVRE is 16 bytes */
|
|
|
|
#define HIDMA_TRCA_CTRLSTS_REG 0x000
|
|
#define HIDMA_TRCA_RING_LOW_REG 0x008
|
|
#define HIDMA_TRCA_RING_HIGH_REG 0x00C
|
|
#define HIDMA_TRCA_RING_LEN_REG 0x010
|
|
#define HIDMA_TRCA_DOORBELL_REG 0x400
|
|
|
|
#define HIDMA_EVCA_CTRLSTS_REG 0x000
|
|
#define HIDMA_EVCA_INTCTRL_REG 0x004
|
|
#define HIDMA_EVCA_RING_LOW_REG 0x008
|
|
#define HIDMA_EVCA_RING_HIGH_REG 0x00C
|
|
#define HIDMA_EVCA_RING_LEN_REG 0x010
|
|
#define HIDMA_EVCA_WRITE_PTR_REG 0x020
|
|
#define HIDMA_EVCA_DOORBELL_REG 0x400
|
|
|
|
#define HIDMA_EVCA_IRQ_STAT_REG 0x100
|
|
#define HIDMA_EVCA_IRQ_CLR_REG 0x108
|
|
#define HIDMA_EVCA_IRQ_EN_REG 0x110
|
|
|
|
#define HIDMA_EVRE_CFG_IDX 0
|
|
|
|
#define HIDMA_EVRE_ERRINFO_BIT_POS 24
|
|
#define HIDMA_EVRE_CODE_BIT_POS 28
|
|
|
|
#define HIDMA_EVRE_ERRINFO_MASK GENMASK(3, 0)
|
|
#define HIDMA_EVRE_CODE_MASK GENMASK(3, 0)
|
|
|
|
#define HIDMA_CH_CONTROL_MASK GENMASK(7, 0)
|
|
#define HIDMA_CH_STATE_MASK GENMASK(7, 0)
|
|
#define HIDMA_CH_STATE_BIT_POS 0x8
|
|
|
|
#define HIDMA_IRQ_EV_CH_EOB_IRQ_BIT_POS 0
|
|
#define HIDMA_IRQ_EV_CH_WR_RESP_BIT_POS 1
|
|
#define HIDMA_IRQ_TR_CH_TRE_RD_RSP_ER_BIT_POS 9
|
|
#define HIDMA_IRQ_TR_CH_DATA_RD_ER_BIT_POS 10
|
|
#define HIDMA_IRQ_TR_CH_DATA_WR_ER_BIT_POS 11
|
|
#define HIDMA_IRQ_TR_CH_INVALID_TRE_BIT_POS 14
|
|
|
|
#define ENABLE_IRQS (BIT(HIDMA_IRQ_EV_CH_EOB_IRQ_BIT_POS) | \
|
|
BIT(HIDMA_IRQ_EV_CH_WR_RESP_BIT_POS) | \
|
|
BIT(HIDMA_IRQ_TR_CH_TRE_RD_RSP_ER_BIT_POS) | \
|
|
BIT(HIDMA_IRQ_TR_CH_DATA_RD_ER_BIT_POS) | \
|
|
BIT(HIDMA_IRQ_TR_CH_DATA_WR_ER_BIT_POS) | \
|
|
BIT(HIDMA_IRQ_TR_CH_INVALID_TRE_BIT_POS))
|
|
|
|
#define HIDMA_INCREMENT_ITERATOR(iter, size, ring_size) \
|
|
do { \
|
|
iter += size; \
|
|
if (iter >= ring_size) \
|
|
iter -= ring_size; \
|
|
} while (0)
|
|
|
|
#define HIDMA_CH_STATE(val) \
|
|
((val >> HIDMA_CH_STATE_BIT_POS) & HIDMA_CH_STATE_MASK)
|
|
|
|
#define HIDMA_ERR_INT_MASK \
|
|
(BIT(HIDMA_IRQ_TR_CH_INVALID_TRE_BIT_POS) | \
|
|
BIT(HIDMA_IRQ_TR_CH_TRE_RD_RSP_ER_BIT_POS) | \
|
|
BIT(HIDMA_IRQ_EV_CH_WR_RESP_BIT_POS) | \
|
|
BIT(HIDMA_IRQ_TR_CH_DATA_RD_ER_BIT_POS) | \
|
|
BIT(HIDMA_IRQ_TR_CH_DATA_WR_ER_BIT_POS))
|
|
|
|
enum ch_command {
|
|
HIDMA_CH_DISABLE = 0,
|
|
HIDMA_CH_ENABLE = 1,
|
|
HIDMA_CH_SUSPEND = 2,
|
|
HIDMA_CH_RESET = 9,
|
|
};
|
|
|
|
enum ch_state {
|
|
HIDMA_CH_DISABLED = 0,
|
|
HIDMA_CH_ENABLED = 1,
|
|
HIDMA_CH_RUNNING = 2,
|
|
HIDMA_CH_SUSPENDED = 3,
|
|
HIDMA_CH_STOPPED = 4,
|
|
};
|
|
|
|
enum tre_type {
|
|
HIDMA_TRE_MEMCPY = 3,
|
|
};
|
|
|
|
enum err_code {
|
|
HIDMA_EVRE_STATUS_COMPLETE = 1,
|
|
HIDMA_EVRE_STATUS_ERROR = 4,
|
|
};
|
|
|
|
static int hidma_is_chan_enabled(int state)
|
|
{
|
|
switch (state) {
|
|
case HIDMA_CH_ENABLED:
|
|
case HIDMA_CH_RUNNING:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void hidma_ll_free(struct hidma_lldev *lldev, u32 tre_ch)
|
|
{
|
|
struct hidma_tre *tre;
|
|
|
|
if (tre_ch >= lldev->nr_tres) {
|
|
dev_err(lldev->dev, "invalid TRE number in free:%d", tre_ch);
|
|
return;
|
|
}
|
|
|
|
tre = &lldev->trepool[tre_ch];
|
|
if (atomic_read(&tre->allocated) != true) {
|
|
dev_err(lldev->dev, "trying to free an unused TRE:%d", tre_ch);
|
|
return;
|
|
}
|
|
|
|
atomic_set(&tre->allocated, 0);
|
|
}
|
|
|
|
int hidma_ll_request(struct hidma_lldev *lldev, u32 sig, const char *dev_name,
|
|
void (*callback)(void *data), void *data, u32 *tre_ch)
|
|
{
|
|
unsigned int i;
|
|
struct hidma_tre *tre;
|
|
u32 *tre_local;
|
|
|
|
if (!tre_ch || !lldev)
|
|
return -EINVAL;
|
|
|
|
/* need to have at least one empty spot in the queue */
|
|
for (i = 0; i < lldev->nr_tres - 1; i++) {
|
|
if (atomic_add_unless(&lldev->trepool[i].allocated, 1, 1))
|
|
break;
|
|
}
|
|
|
|
if (i == (lldev->nr_tres - 1))
|
|
return -ENOMEM;
|
|
|
|
tre = &lldev->trepool[i];
|
|
tre->dma_sig = sig;
|
|
tre->dev_name = dev_name;
|
|
tre->callback = callback;
|
|
tre->data = data;
|
|
tre->idx = i;
|
|
tre->status = 0;
|
|
tre->queued = 0;
|
|
tre->err_code = 0;
|
|
tre->err_info = 0;
|
|
tre->lldev = lldev;
|
|
tre_local = &tre->tre_local[0];
|
|
tre_local[HIDMA_TRE_CFG_IDX] = HIDMA_TRE_MEMCPY;
|
|
tre_local[HIDMA_TRE_CFG_IDX] |= (lldev->chidx & 0xFF) << 8;
|
|
tre_local[HIDMA_TRE_CFG_IDX] |= BIT(16); /* set IEOB */
|
|
*tre_ch = i;
|
|
if (callback)
|
|
callback(data);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Multiple TREs may be queued and waiting in the pending queue.
|
|
*/
|
|
static void hidma_ll_tre_complete(unsigned long arg)
|
|
{
|
|
struct hidma_lldev *lldev = (struct hidma_lldev *)arg;
|
|
struct hidma_tre *tre;
|
|
|
|
while (kfifo_out(&lldev->handoff_fifo, &tre, 1)) {
|
|
/* call the user if it has been read by the hardware */
|
|
if (tre->callback)
|
|
tre->callback(tre->data);
|
|
}
|
|
}
|
|
|
|
static int hidma_post_completed(struct hidma_lldev *lldev, u8 err_info,
|
|
u8 err_code)
|
|
{
|
|
struct hidma_tre *tre;
|
|
unsigned long flags;
|
|
u32 tre_iterator;
|
|
|
|
spin_lock_irqsave(&lldev->lock, flags);
|
|
|
|
tre_iterator = lldev->tre_processed_off;
|
|
tre = lldev->pending_tre_list[tre_iterator / HIDMA_TRE_SIZE];
|
|
if (!tre) {
|
|
spin_unlock_irqrestore(&lldev->lock, flags);
|
|
dev_warn(lldev->dev, "tre_index [%d] and tre out of sync\n",
|
|
tre_iterator / HIDMA_TRE_SIZE);
|
|
return -EINVAL;
|
|
}
|
|
lldev->pending_tre_list[tre->tre_index] = NULL;
|
|
|
|
/*
|
|
* Keep track of pending TREs that SW is expecting to receive
|
|
* from HW. We got one now. Decrement our counter.
|
|
*/
|
|
if (atomic_dec_return(&lldev->pending_tre_count) < 0) {
|
|
dev_warn(lldev->dev, "tre count mismatch on completion");
|
|
atomic_set(&lldev->pending_tre_count, 0);
|
|
}
|
|
|
|
HIDMA_INCREMENT_ITERATOR(tre_iterator, HIDMA_TRE_SIZE,
|
|
lldev->tre_ring_size);
|
|
lldev->tre_processed_off = tre_iterator;
|
|
spin_unlock_irqrestore(&lldev->lock, flags);
|
|
|
|
tre->err_info = err_info;
|
|
tre->err_code = err_code;
|
|
tre->queued = 0;
|
|
|
|
kfifo_put(&lldev->handoff_fifo, tre);
|
|
tasklet_schedule(&lldev->task);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Called to handle the interrupt for the channel.
|
|
* Return a positive number if TRE or EVRE were consumed on this run.
|
|
* Return a positive number if there are pending TREs or EVREs.
|
|
* Return 0 if there is nothing to consume or no pending TREs/EVREs found.
|
|
*/
|
|
static int hidma_handle_tre_completion(struct hidma_lldev *lldev)
|
|
{
|
|
u32 evre_ring_size = lldev->evre_ring_size;
|
|
u32 err_info, err_code, evre_write_off;
|
|
u32 evre_iterator;
|
|
u32 num_completed = 0;
|
|
|
|
evre_write_off = readl_relaxed(lldev->evca + HIDMA_EVCA_WRITE_PTR_REG);
|
|
evre_iterator = lldev->evre_processed_off;
|
|
|
|
if ((evre_write_off > evre_ring_size) ||
|
|
(evre_write_off % HIDMA_EVRE_SIZE)) {
|
|
dev_err(lldev->dev, "HW reports invalid EVRE write offset\n");
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* By the time control reaches here the number of EVREs and TREs
|
|
* may not match. Only consume the ones that hardware told us.
|
|
*/
|
|
while ((evre_iterator != evre_write_off)) {
|
|
u32 *current_evre = lldev->evre_ring + evre_iterator;
|
|
u32 cfg;
|
|
|
|
cfg = current_evre[HIDMA_EVRE_CFG_IDX];
|
|
err_info = cfg >> HIDMA_EVRE_ERRINFO_BIT_POS;
|
|
err_info &= HIDMA_EVRE_ERRINFO_MASK;
|
|
err_code =
|
|
(cfg >> HIDMA_EVRE_CODE_BIT_POS) & HIDMA_EVRE_CODE_MASK;
|
|
|
|
if (hidma_post_completed(lldev, err_info, err_code))
|
|
break;
|
|
|
|
HIDMA_INCREMENT_ITERATOR(evre_iterator, HIDMA_EVRE_SIZE,
|
|
evre_ring_size);
|
|
|
|
/*
|
|
* Read the new event descriptor written by the HW.
|
|
* As we are processing the delivered events, other events
|
|
* get queued to the SW for processing.
|
|
*/
|
|
evre_write_off =
|
|
readl_relaxed(lldev->evca + HIDMA_EVCA_WRITE_PTR_REG);
|
|
num_completed++;
|
|
|
|
/*
|
|
* An error interrupt might have arrived while we are processing
|
|
* the completed interrupt.
|
|
*/
|
|
if (!hidma_ll_isenabled(lldev))
|
|
break;
|
|
}
|
|
|
|
if (num_completed) {
|
|
u32 evre_read_off = (lldev->evre_processed_off +
|
|
HIDMA_EVRE_SIZE * num_completed);
|
|
evre_read_off = evre_read_off % evre_ring_size;
|
|
writel(evre_read_off, lldev->evca + HIDMA_EVCA_DOORBELL_REG);
|
|
|
|
/* record the last processed tre offset */
|
|
lldev->evre_processed_off = evre_read_off;
|
|
}
|
|
|
|
return num_completed;
|
|
}
|
|
|
|
void hidma_cleanup_pending_tre(struct hidma_lldev *lldev, u8 err_info,
|
|
u8 err_code)
|
|
{
|
|
while (atomic_read(&lldev->pending_tre_count)) {
|
|
if (hidma_post_completed(lldev, err_info, err_code))
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int hidma_ll_reset(struct hidma_lldev *lldev)
|
|
{
|
|
u32 val;
|
|
int ret;
|
|
|
|
val = readl(lldev->trca + HIDMA_TRCA_CTRLSTS_REG);
|
|
val &= ~(HIDMA_CH_CONTROL_MASK << 16);
|
|
val |= HIDMA_CH_RESET << 16;
|
|
writel(val, lldev->trca + HIDMA_TRCA_CTRLSTS_REG);
|
|
|
|
/*
|
|
* Delay 10ms after reset to allow DMA logic to quiesce.
|
|
* Do a polled read up to 1ms and 10ms maximum.
|
|
*/
|
|
ret = readl_poll_timeout(lldev->trca + HIDMA_TRCA_CTRLSTS_REG, val,
|
|
HIDMA_CH_STATE(val) == HIDMA_CH_DISABLED,
|
|
1000, 10000);
|
|
if (ret) {
|
|
dev_err(lldev->dev, "transfer channel did not reset\n");
|
|
return ret;
|
|
}
|
|
|
|
val = readl(lldev->evca + HIDMA_EVCA_CTRLSTS_REG);
|
|
val &= ~(HIDMA_CH_CONTROL_MASK << 16);
|
|
val |= HIDMA_CH_RESET << 16;
|
|
writel(val, lldev->evca + HIDMA_EVCA_CTRLSTS_REG);
|
|
|
|
/*
|
|
* Delay 10ms after reset to allow DMA logic to quiesce.
|
|
* Do a polled read up to 1ms and 10ms maximum.
|
|
*/
|
|
ret = readl_poll_timeout(lldev->evca + HIDMA_EVCA_CTRLSTS_REG, val,
|
|
HIDMA_CH_STATE(val) == HIDMA_CH_DISABLED,
|
|
1000, 10000);
|
|
if (ret)
|
|
return ret;
|
|
|
|
lldev->trch_state = HIDMA_CH_DISABLED;
|
|
lldev->evch_state = HIDMA_CH_DISABLED;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The interrupt handler for HIDMA will try to consume as many pending
|
|
* EVRE from the event queue as possible. Each EVRE has an associated
|
|
* TRE that holds the user interface parameters. EVRE reports the
|
|
* result of the transaction. Hardware guarantees ordering between EVREs
|
|
* and TREs. We use last processed offset to figure out which TRE is
|
|
* associated with which EVRE. If two TREs are consumed by HW, the EVREs
|
|
* are in order in the event ring.
|
|
*
|
|
* This handler will do a one pass for consuming EVREs. Other EVREs may
|
|
* be delivered while we are working. It will try to consume incoming
|
|
* EVREs one more time and return.
|
|
*
|
|
* For unprocessed EVREs, hardware will trigger another interrupt until
|
|
* all the interrupt bits are cleared.
|
|
*
|
|
* Hardware guarantees that by the time interrupt is observed, all data
|
|
* transactions in flight are delivered to their respective places and
|
|
* are visible to the CPU.
|
|
*
|
|
* On demand paging for IOMMU is only supported for PCIe via PRI
|
|
* (Page Request Interface) not for HIDMA. All other hardware instances
|
|
* including HIDMA work on pinned DMA addresses.
|
|
*
|
|
* HIDMA is not aware of IOMMU presence since it follows the DMA API. All
|
|
* IOMMU latency will be built into the data movement time. By the time
|
|
* interrupt happens, IOMMU lookups + data movement has already taken place.
|
|
*
|
|
* While the first read in a typical PCI endpoint ISR flushes all outstanding
|
|
* requests traditionally to the destination, this concept does not apply
|
|
* here for this HW.
|
|
*/
|
|
static void hidma_ll_int_handler_internal(struct hidma_lldev *lldev, int cause)
|
|
{
|
|
if (cause & HIDMA_ERR_INT_MASK) {
|
|
dev_err(lldev->dev, "error 0x%x, disabling...\n",
|
|
cause);
|
|
|
|
/* Clear out pending interrupts */
|
|
writel(cause, lldev->evca + HIDMA_EVCA_IRQ_CLR_REG);
|
|
|
|
/* No further submissions. */
|
|
hidma_ll_disable(lldev);
|
|
|
|
/* Driver completes the txn and intimates the client.*/
|
|
hidma_cleanup_pending_tre(lldev, 0xFF,
|
|
HIDMA_EVRE_STATUS_ERROR);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Fine tuned for this HW...
|
|
*
|
|
* This ISR has been designed for this particular hardware. Relaxed
|
|
* read and write accessors are used for performance reasons due to
|
|
* interrupt delivery guarantees. Do not copy this code blindly and
|
|
* expect that to work.
|
|
*
|
|
* Try to consume as many EVREs as possible.
|
|
*/
|
|
hidma_handle_tre_completion(lldev);
|
|
|
|
/* We consumed TREs or there are pending TREs or EVREs. */
|
|
writel_relaxed(cause, lldev->evca + HIDMA_EVCA_IRQ_CLR_REG);
|
|
}
|
|
|
|
irqreturn_t hidma_ll_inthandler(int chirq, void *arg)
|
|
{
|
|
struct hidma_lldev *lldev = arg;
|
|
u32 status;
|
|
u32 enable;
|
|
u32 cause;
|
|
|
|
status = readl_relaxed(lldev->evca + HIDMA_EVCA_IRQ_STAT_REG);
|
|
enable = readl_relaxed(lldev->evca + HIDMA_EVCA_IRQ_EN_REG);
|
|
cause = status & enable;
|
|
|
|
while (cause) {
|
|
hidma_ll_int_handler_internal(lldev, cause);
|
|
|
|
/*
|
|
* Another interrupt might have arrived while we are
|
|
* processing this one. Read the new cause.
|
|
*/
|
|
status = readl_relaxed(lldev->evca + HIDMA_EVCA_IRQ_STAT_REG);
|
|
enable = readl_relaxed(lldev->evca + HIDMA_EVCA_IRQ_EN_REG);
|
|
cause = status & enable;
|
|
}
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
irqreturn_t hidma_ll_inthandler_msi(int chirq, void *arg, int cause)
|
|
{
|
|
struct hidma_lldev *lldev = arg;
|
|
|
|
hidma_ll_int_handler_internal(lldev, cause);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
int hidma_ll_enable(struct hidma_lldev *lldev)
|
|
{
|
|
u32 val;
|
|
int ret;
|
|
|
|
val = readl(lldev->evca + HIDMA_EVCA_CTRLSTS_REG);
|
|
val &= ~(HIDMA_CH_CONTROL_MASK << 16);
|
|
val |= HIDMA_CH_ENABLE << 16;
|
|
writel(val, lldev->evca + HIDMA_EVCA_CTRLSTS_REG);
|
|
|
|
ret = readl_poll_timeout(lldev->evca + HIDMA_EVCA_CTRLSTS_REG, val,
|
|
hidma_is_chan_enabled(HIDMA_CH_STATE(val)),
|
|
1000, 10000);
|
|
if (ret) {
|
|
dev_err(lldev->dev, "event channel did not get enabled\n");
|
|
return ret;
|
|
}
|
|
|
|
val = readl(lldev->trca + HIDMA_TRCA_CTRLSTS_REG);
|
|
val &= ~(HIDMA_CH_CONTROL_MASK << 16);
|
|
val |= HIDMA_CH_ENABLE << 16;
|
|
writel(val, lldev->trca + HIDMA_TRCA_CTRLSTS_REG);
|
|
|
|
ret = readl_poll_timeout(lldev->trca + HIDMA_TRCA_CTRLSTS_REG, val,
|
|
hidma_is_chan_enabled(HIDMA_CH_STATE(val)),
|
|
1000, 10000);
|
|
if (ret) {
|
|
dev_err(lldev->dev, "transfer channel did not get enabled\n");
|
|
return ret;
|
|
}
|
|
|
|
lldev->trch_state = HIDMA_CH_ENABLED;
|
|
lldev->evch_state = HIDMA_CH_ENABLED;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void hidma_ll_start(struct hidma_lldev *lldev)
|
|
{
|
|
unsigned long irqflags;
|
|
|
|
spin_lock_irqsave(&lldev->lock, irqflags);
|
|
writel(lldev->tre_write_offset, lldev->trca + HIDMA_TRCA_DOORBELL_REG);
|
|
spin_unlock_irqrestore(&lldev->lock, irqflags);
|
|
}
|
|
|
|
bool hidma_ll_isenabled(struct hidma_lldev *lldev)
|
|
{
|
|
u32 val;
|
|
|
|
val = readl(lldev->trca + HIDMA_TRCA_CTRLSTS_REG);
|
|
lldev->trch_state = HIDMA_CH_STATE(val);
|
|
val = readl(lldev->evca + HIDMA_EVCA_CTRLSTS_REG);
|
|
lldev->evch_state = HIDMA_CH_STATE(val);
|
|
|
|
/* both channels have to be enabled before calling this function */
|
|
if (hidma_is_chan_enabled(lldev->trch_state) &&
|
|
hidma_is_chan_enabled(lldev->evch_state))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
void hidma_ll_queue_request(struct hidma_lldev *lldev, u32 tre_ch)
|
|
{
|
|
struct hidma_tre *tre;
|
|
unsigned long flags;
|
|
|
|
tre = &lldev->trepool[tre_ch];
|
|
|
|
/* copy the TRE into its location in the TRE ring */
|
|
spin_lock_irqsave(&lldev->lock, flags);
|
|
tre->tre_index = lldev->tre_write_offset / HIDMA_TRE_SIZE;
|
|
lldev->pending_tre_list[tre->tre_index] = tre;
|
|
memcpy(lldev->tre_ring + lldev->tre_write_offset,
|
|
&tre->tre_local[0], HIDMA_TRE_SIZE);
|
|
tre->err_code = 0;
|
|
tre->err_info = 0;
|
|
tre->queued = 1;
|
|
atomic_inc(&lldev->pending_tre_count);
|
|
lldev->tre_write_offset = (lldev->tre_write_offset + HIDMA_TRE_SIZE)
|
|
% lldev->tre_ring_size;
|
|
spin_unlock_irqrestore(&lldev->lock, flags);
|
|
}
|
|
|
|
/*
|
|
* Note that even though we stop this channel if there is a pending transaction
|
|
* in flight it will complete and follow the callback. This request will
|
|
* prevent further requests to be made.
|
|
*/
|
|
int hidma_ll_disable(struct hidma_lldev *lldev)
|
|
{
|
|
u32 val;
|
|
int ret;
|
|
|
|
/* The channel needs to be in working state */
|
|
if (!hidma_ll_isenabled(lldev))
|
|
return 0;
|
|
|
|
val = readl(lldev->trca + HIDMA_TRCA_CTRLSTS_REG);
|
|
val &= ~(HIDMA_CH_CONTROL_MASK << 16);
|
|
val |= HIDMA_CH_SUSPEND << 16;
|
|
writel(val, lldev->trca + HIDMA_TRCA_CTRLSTS_REG);
|
|
|
|
/*
|
|
* Start the wait right after the suspend is confirmed.
|
|
* Do a polled read up to 1ms and 10ms maximum.
|
|
*/
|
|
ret = readl_poll_timeout(lldev->trca + HIDMA_TRCA_CTRLSTS_REG, val,
|
|
HIDMA_CH_STATE(val) == HIDMA_CH_SUSPENDED,
|
|
1000, 10000);
|
|
if (ret)
|
|
return ret;
|
|
|
|
val = readl(lldev->evca + HIDMA_EVCA_CTRLSTS_REG);
|
|
val &= ~(HIDMA_CH_CONTROL_MASK << 16);
|
|
val |= HIDMA_CH_SUSPEND << 16;
|
|
writel(val, lldev->evca + HIDMA_EVCA_CTRLSTS_REG);
|
|
|
|
/*
|
|
* Start the wait right after the suspend is confirmed
|
|
* Delay up to 10ms after reset to allow DMA logic to quiesce.
|
|
*/
|
|
ret = readl_poll_timeout(lldev->evca + HIDMA_EVCA_CTRLSTS_REG, val,
|
|
HIDMA_CH_STATE(val) == HIDMA_CH_SUSPENDED,
|
|
1000, 10000);
|
|
if (ret)
|
|
return ret;
|
|
|
|
lldev->trch_state = HIDMA_CH_SUSPENDED;
|
|
lldev->evch_state = HIDMA_CH_SUSPENDED;
|
|
return 0;
|
|
}
|
|
|
|
void hidma_ll_set_transfer_params(struct hidma_lldev *lldev, u32 tre_ch,
|
|
dma_addr_t src, dma_addr_t dest, u32 len,
|
|
u32 flags)
|
|
{
|
|
struct hidma_tre *tre;
|
|
u32 *tre_local;
|
|
|
|
if (tre_ch >= lldev->nr_tres) {
|
|
dev_err(lldev->dev, "invalid TRE number in transfer params:%d",
|
|
tre_ch);
|
|
return;
|
|
}
|
|
|
|
tre = &lldev->trepool[tre_ch];
|
|
if (atomic_read(&tre->allocated) != true) {
|
|
dev_err(lldev->dev, "trying to set params on an unused TRE:%d",
|
|
tre_ch);
|
|
return;
|
|
}
|
|
|
|
tre_local = &tre->tre_local[0];
|
|
tre_local[HIDMA_TRE_LEN_IDX] = len;
|
|
tre_local[HIDMA_TRE_SRC_LOW_IDX] = lower_32_bits(src);
|
|
tre_local[HIDMA_TRE_SRC_HI_IDX] = upper_32_bits(src);
|
|
tre_local[HIDMA_TRE_DEST_LOW_IDX] = lower_32_bits(dest);
|
|
tre_local[HIDMA_TRE_DEST_HI_IDX] = upper_32_bits(dest);
|
|
tre->int_flags = flags;
|
|
}
|
|
|
|
/*
|
|
* Called during initialization and after an error condition
|
|
* to restore hardware state.
|
|
*/
|
|
int hidma_ll_setup(struct hidma_lldev *lldev)
|
|
{
|
|
int rc;
|
|
u64 addr;
|
|
u32 val;
|
|
u32 nr_tres = lldev->nr_tres;
|
|
|
|
atomic_set(&lldev->pending_tre_count, 0);
|
|
lldev->tre_processed_off = 0;
|
|
lldev->evre_processed_off = 0;
|
|
lldev->tre_write_offset = 0;
|
|
|
|
/* disable interrupts */
|
|
writel(0, lldev->evca + HIDMA_EVCA_IRQ_EN_REG);
|
|
|
|
/* clear all pending interrupts */
|
|
val = readl(lldev->evca + HIDMA_EVCA_IRQ_STAT_REG);
|
|
writel(val, lldev->evca + HIDMA_EVCA_IRQ_CLR_REG);
|
|
|
|
rc = hidma_ll_reset(lldev);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/*
|
|
* Clear all pending interrupts again.
|
|
* Otherwise, we observe reset complete interrupts.
|
|
*/
|
|
val = readl(lldev->evca + HIDMA_EVCA_IRQ_STAT_REG);
|
|
writel(val, lldev->evca + HIDMA_EVCA_IRQ_CLR_REG);
|
|
|
|
/* disable interrupts again after reset */
|
|
writel(0, lldev->evca + HIDMA_EVCA_IRQ_EN_REG);
|
|
|
|
addr = lldev->tre_dma;
|
|
writel(lower_32_bits(addr), lldev->trca + HIDMA_TRCA_RING_LOW_REG);
|
|
writel(upper_32_bits(addr), lldev->trca + HIDMA_TRCA_RING_HIGH_REG);
|
|
writel(lldev->tre_ring_size, lldev->trca + HIDMA_TRCA_RING_LEN_REG);
|
|
|
|
addr = lldev->evre_dma;
|
|
writel(lower_32_bits(addr), lldev->evca + HIDMA_EVCA_RING_LOW_REG);
|
|
writel(upper_32_bits(addr), lldev->evca + HIDMA_EVCA_RING_HIGH_REG);
|
|
writel(HIDMA_EVRE_SIZE * nr_tres,
|
|
lldev->evca + HIDMA_EVCA_RING_LEN_REG);
|
|
|
|
/* configure interrupts */
|
|
hidma_ll_setup_irq(lldev, lldev->msi_support);
|
|
|
|
rc = hidma_ll_enable(lldev);
|
|
if (rc)
|
|
return rc;
|
|
|
|
return rc;
|
|
}
|
|
|
|
void hidma_ll_setup_irq(struct hidma_lldev *lldev, bool msi)
|
|
{
|
|
u32 val;
|
|
|
|
lldev->msi_support = msi;
|
|
|
|
/* disable interrupts again after reset */
|
|
writel(0, lldev->evca + HIDMA_EVCA_IRQ_CLR_REG);
|
|
writel(0, lldev->evca + HIDMA_EVCA_IRQ_EN_REG);
|
|
|
|
/* support IRQ by default */
|
|
val = readl(lldev->evca + HIDMA_EVCA_INTCTRL_REG);
|
|
val &= ~0xF;
|
|
if (!lldev->msi_support)
|
|
val = val | 0x1;
|
|
writel(val, lldev->evca + HIDMA_EVCA_INTCTRL_REG);
|
|
|
|
/* clear all pending interrupts and enable them */
|
|
writel(ENABLE_IRQS, lldev->evca + HIDMA_EVCA_IRQ_CLR_REG);
|
|
writel(ENABLE_IRQS, lldev->evca + HIDMA_EVCA_IRQ_EN_REG);
|
|
}
|
|
|
|
struct hidma_lldev *hidma_ll_init(struct device *dev, u32 nr_tres,
|
|
void __iomem *trca, void __iomem *evca,
|
|
u8 chidx)
|
|
{
|
|
u32 required_bytes;
|
|
struct hidma_lldev *lldev;
|
|
int rc;
|
|
size_t sz;
|
|
|
|
if (!trca || !evca || !dev || !nr_tres)
|
|
return NULL;
|
|
|
|
/* need at least four TREs */
|
|
if (nr_tres < 4)
|
|
return NULL;
|
|
|
|
/* need an extra space */
|
|
nr_tres += 1;
|
|
|
|
lldev = devm_kzalloc(dev, sizeof(struct hidma_lldev), GFP_KERNEL);
|
|
if (!lldev)
|
|
return NULL;
|
|
|
|
lldev->evca = evca;
|
|
lldev->trca = trca;
|
|
lldev->dev = dev;
|
|
sz = sizeof(struct hidma_tre);
|
|
lldev->trepool = devm_kcalloc(lldev->dev, nr_tres, sz, GFP_KERNEL);
|
|
if (!lldev->trepool)
|
|
return NULL;
|
|
|
|
required_bytes = sizeof(lldev->pending_tre_list[0]);
|
|
lldev->pending_tre_list = devm_kcalloc(dev, nr_tres, required_bytes,
|
|
GFP_KERNEL);
|
|
if (!lldev->pending_tre_list)
|
|
return NULL;
|
|
|
|
sz = (HIDMA_TRE_SIZE + 1) * nr_tres;
|
|
lldev->tre_ring = dmam_alloc_coherent(dev, sz, &lldev->tre_dma,
|
|
GFP_KERNEL);
|
|
if (!lldev->tre_ring)
|
|
return NULL;
|
|
|
|
memset(lldev->tre_ring, 0, (HIDMA_TRE_SIZE + 1) * nr_tres);
|
|
lldev->tre_ring_size = HIDMA_TRE_SIZE * nr_tres;
|
|
lldev->nr_tres = nr_tres;
|
|
|
|
/* the TRE ring has to be TRE_SIZE aligned */
|
|
if (!IS_ALIGNED(lldev->tre_dma, HIDMA_TRE_SIZE)) {
|
|
u8 tre_ring_shift;
|
|
|
|
tre_ring_shift = lldev->tre_dma % HIDMA_TRE_SIZE;
|
|
tre_ring_shift = HIDMA_TRE_SIZE - tre_ring_shift;
|
|
lldev->tre_dma += tre_ring_shift;
|
|
lldev->tre_ring += tre_ring_shift;
|
|
}
|
|
|
|
sz = (HIDMA_EVRE_SIZE + 1) * nr_tres;
|
|
lldev->evre_ring = dmam_alloc_coherent(dev, sz, &lldev->evre_dma,
|
|
GFP_KERNEL);
|
|
if (!lldev->evre_ring)
|
|
return NULL;
|
|
|
|
memset(lldev->evre_ring, 0, (HIDMA_EVRE_SIZE + 1) * nr_tres);
|
|
lldev->evre_ring_size = HIDMA_EVRE_SIZE * nr_tres;
|
|
|
|
/* the EVRE ring has to be EVRE_SIZE aligned */
|
|
if (!IS_ALIGNED(lldev->evre_dma, HIDMA_EVRE_SIZE)) {
|
|
u8 evre_ring_shift;
|
|
|
|
evre_ring_shift = lldev->evre_dma % HIDMA_EVRE_SIZE;
|
|
evre_ring_shift = HIDMA_EVRE_SIZE - evre_ring_shift;
|
|
lldev->evre_dma += evre_ring_shift;
|
|
lldev->evre_ring += evre_ring_shift;
|
|
}
|
|
lldev->nr_tres = nr_tres;
|
|
lldev->chidx = chidx;
|
|
|
|
sz = nr_tres * sizeof(struct hidma_tre *);
|
|
rc = kfifo_alloc(&lldev->handoff_fifo, sz, GFP_KERNEL);
|
|
if (rc)
|
|
return NULL;
|
|
|
|
rc = hidma_ll_setup(lldev);
|
|
if (rc)
|
|
return NULL;
|
|
|
|
spin_lock_init(&lldev->lock);
|
|
tasklet_init(&lldev->task, hidma_ll_tre_complete, (unsigned long)lldev);
|
|
lldev->initialized = 1;
|
|
writel(ENABLE_IRQS, lldev->evca + HIDMA_EVCA_IRQ_EN_REG);
|
|
return lldev;
|
|
}
|
|
|
|
int hidma_ll_uninit(struct hidma_lldev *lldev)
|
|
{
|
|
u32 required_bytes;
|
|
int rc = 0;
|
|
u32 val;
|
|
|
|
if (!lldev)
|
|
return -ENODEV;
|
|
|
|
if (!lldev->initialized)
|
|
return 0;
|
|
|
|
lldev->initialized = 0;
|
|
|
|
required_bytes = sizeof(struct hidma_tre) * lldev->nr_tres;
|
|
tasklet_kill(&lldev->task);
|
|
memset(lldev->trepool, 0, required_bytes);
|
|
lldev->trepool = NULL;
|
|
atomic_set(&lldev->pending_tre_count, 0);
|
|
lldev->tre_write_offset = 0;
|
|
|
|
rc = hidma_ll_reset(lldev);
|
|
|
|
/*
|
|
* Clear all pending interrupts again.
|
|
* Otherwise, we observe reset complete interrupts.
|
|
*/
|
|
val = readl(lldev->evca + HIDMA_EVCA_IRQ_STAT_REG);
|
|
writel(val, lldev->evca + HIDMA_EVCA_IRQ_CLR_REG);
|
|
writel(0, lldev->evca + HIDMA_EVCA_IRQ_EN_REG);
|
|
return rc;
|
|
}
|
|
|
|
enum dma_status hidma_ll_status(struct hidma_lldev *lldev, u32 tre_ch)
|
|
{
|
|
enum dma_status ret = DMA_ERROR;
|
|
struct hidma_tre *tre;
|
|
unsigned long flags;
|
|
u8 err_code;
|
|
|
|
spin_lock_irqsave(&lldev->lock, flags);
|
|
|
|
tre = &lldev->trepool[tre_ch];
|
|
err_code = tre->err_code;
|
|
|
|
if (err_code & HIDMA_EVRE_STATUS_COMPLETE)
|
|
ret = DMA_COMPLETE;
|
|
else if (err_code & HIDMA_EVRE_STATUS_ERROR)
|
|
ret = DMA_ERROR;
|
|
else
|
|
ret = DMA_IN_PROGRESS;
|
|
spin_unlock_irqrestore(&lldev->lock, flags);
|
|
|
|
return ret;
|
|
}
|